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Random walks on networks—basics:

 Imagine a single random walker moving around
on a network.

 At 𝑡 = 0, start walker at node 𝑗 and take time to be
discrete.

 Q: What’s the long term probability distribution for
where the walker will be?

 Define 𝑝𝑖(𝑡) as the probability that at time step 𝑡,
our walker is at node 𝑖.

 We want to characterize the evolution of ⃗𝑝(𝑡).
 First task: connect ⃗𝑝(𝑡 + 1) to ⃗𝑝(𝑡).
 Let’s call our walker Barry.
 Unfortunately for Barry, he lives on a high

dimensional graph and is far from home.
 Worse still: Barry is texting.
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Where is Barry?
 Consider simple undirected, ergodic (strongly

connected) networks.
 As usual, represent network by adjacency matrix

𝐴 where
𝑎𝑖𝑗 = 1 if 𝑖 has an edge leading to 𝑗,
𝑎𝑖𝑗 = 0 otherwise.

 Barry is at node 𝑗 at time 𝑡 with probability 𝑝𝑗(𝑡).
 In the next time step, he randomly lurches toward

one of 𝑗’s neighbors.
 Barry arrives at node 𝑖 from node 𝑗 with

probability 1
𝑘𝑗

if an edge connects 𝑗 to 𝑖.
 Equation-wise:

𝑝𝑖(𝑡 + 1) =
𝑛

∑
𝑗=1

1
𝑘𝑗

𝑎𝑗𝑖𝑝𝑗(𝑡).

where 𝑘𝑗 is 𝑗’s degree. Note: 𝑘𝑖 = ∑𝑛
𝑗=1 𝑎𝑖𝑗.
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Inebriation and diffusion:

 Excellent observation: The same equation applies
for stuff moving around a network, such that at
each time step all material at node 𝑖 is sent to its
neighbors.

 𝑥𝑖(𝑡) = amount of stuff at node 𝑖 at time 𝑡.


𝑥𝑖(𝑡 + 1) =
𝑛

∑
𝑗=1

1
𝑘𝑗

𝑎𝑗𝑖𝑥𝑗(𝑡).

 Random walking is equivalent to diffusion.

http://en.wikipedia.org/wiki/Diffusion
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Where is Barry?

 Linear algebra-based excitement:
𝑝𝑖(𝑡 + 1) = ∑𝑛

𝑗=1 𝑎𝑗𝑖
1
𝑘𝑗

𝑝𝑗(𝑡) is more usefully viewed
as

⃗𝑝(𝑡 + 1) = 𝐴T𝐾−1 ⃗𝑝(𝑡)
where [𝐾𝑖𝑗] = [𝛿𝑖𝑗𝑘𝑖] has node degrees on the
main diagonal and zeros everywhere else.

 So... we need to find the dominant eigenvalue of
𝐴T𝐾−1.

 Expect this eigenvalue will be 1 (doesn’t make
sense for total probability to change).

 The corresponding eigenvector will be the limiting
probability distribution (or invariant measure).

 Extra concerns: multiplicity of eigenvalue = 1, and
network connectedness.
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 By inspection, we see that

⃗𝑝(∞) = 1
∑𝑛

𝑖=1 𝑘𝑖
𝑘⃗

satisfies ⃗𝑝(∞) = 𝐴T𝐾−1 ⃗𝑝(∞) with eigenvalue 1.
 We will find Barry at node 𝑖 with probability

proportional to its degree 𝑘𝑖.
 Beautiful implication: probability of finding Barry

travelling along any edge is uniform.
 Diffusion in real space smooths things out.
 On networks, uniformity occurs on edges.
 So in fact, diffusion in real space is about the

edges too but we just don’t see that.
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Other pieces:

 Goodness: 𝐴T𝐾−1 is similar to a real symmetric
matrix if 𝐴 = 𝐴T.

 Consider the transformation 𝑀 = 𝐾−1/2:

𝐾−1/2𝐴T𝐾−1𝐾1/2 = 𝐾−1/2𝐴T𝐾−1/2.

 Since 𝐴T = 𝐴, we have

(𝐾−1/2𝐴𝐾−1/2)T = 𝐾−1/2𝐴𝐾−1/2.

 Upshot: 𝐴T𝐾−1 = 𝐴𝐾−1 has real eigenvalues and
a complete set of orthogonal eigenvectors.

 Can also show that maximum eigenvalue
magnitude is indeed 1.
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