Random walks and diffusion on networks

Last updated: 2023/08/22, 11:48:21 EDT

Principles of Complex Systems, Vols. 1, 2, & 3D CSYS/MATH 6701, 6713, & a pretend number, 2023-2024 | @pocsvox

Prof. Peter Sheridan Dodds | @peterdodds

Computational Story Lab | Vermont Complex Systems Center Santa Fe Institute | University of Vermont

Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 License

Outline

Random walks on networks

Random walks on networks—basics:

- Imagine a single random walker moving around on a network.
- At t = 0, start walker at node j and take time to be discrete.
- Q: What's the long term probability distribution for where the walker will be?
- Define $p_i(t)$ as the probability that at time step t, our walker is at node i.
- & We want to characterize the evolution of $\vec{p}(t)$.
- \clubsuit First task: connect $\vec{p}(t+1)$ to $\vec{p}(t)$.
- Let's call our walker Barry.
- Unfortunately for Barry, he lives on a high dimensional graph and is far from home.
- Worse still: Barry is texting.

The PoCSverse Diffusion 1 of 9

Where is Barry?

- Consider simple undirected, ergodic (strongly connected) networks.
- As usual, represent network by adjacency matrix

 $a_{ij} = 1$ if i has an edge leading to j, $a_{ij} = 0$ otherwise.

- \aleph Barry is at node j at time t with probability $p_i(t)$.
- In the next time step, he randomly lurches toward one of j's neighbors.
- & Barry arrives at node i from node j with probability $\frac{1}{k_i}$ if an edge connects j to i.
- Equation-wise:

$$p_i(t+1) = \sum_{j=1}^n \frac{1}{k_j} a_{ji} p_j(t).$$

where k_i is j's degree. Note: $k_i = \sum_{i=1}^n a_{ij}$.

Random walks on

Diffusion 2 of 9

Diffusion Random walks on

networks

Inebriation and diffusion:

- & Excellent observation: The same equation applies for stuff moving around a network, such that at each time step all material at node i is sent to its neighbors.
- $x_i(t)$ = amount of stuff at node i at time t.

$$x_i(t+1) = \sum_{j=1}^n \frac{1}{k_j} a_{ji} x_j(t).$$

Random walking is equivalent to diffusion ...

Where is Barry?

Linear algebra-based excitement: $p_i(t+1) = \sum_{j=1}^n a_{ji} \frac{1}{k_i} p_j(t)$ is more usefully viewed

$$\vec{p}(t+1) = A^{\mathsf{T}} K^{-1} \vec{p}(t)$$

where $[K_{ij}] = [\delta_{ij}k_i]$ has node degrees on the main diagonal and zeros everywhere else.

- So... we need to find the dominant eigenvalue of $A^{\mathsf{T}}K^{-1}$.
- Expect this eigenvalue will be 1 (doesn't make) sense for total probability to change).
- The corresponding eigenvector will be the limiting. probability distribution (or invariant measure).
- Extra concerns: multiplicity of eigenvalue = 1, and network connectedness.

Diffusion 5 of 9

Random walks on networks

Where is Barry?

By inspection, we see that

Diffusion

Diffusion

 $\vec{p}(\infty) = \frac{1}{\sum_{i=1}^{n} k_i} \vec{k}$

satisfies $\vec{p}(\infty) = A^{\mathsf{T}} K^{-1} \vec{p}(\infty)$ with eigenvalue 1.

- We will find Barry at node i with probability proportional to its degree k_i .
- Beautiful implication: probability of finding Barry travelling along any edge is uniform.
- Diffusion in real space smooths things out.
- On networks, uniformity occurs on edges.
- So in fact, diffusion in real space is about the edges too but we just don't see that.

Diffusion Random walks on

Other pieces:

 \mathbb{A} Goodness: $A^{\mathsf{T}}K^{-1}$ is similar to a real symmetric matrix if $A = A^{\mathsf{T}}$.

Solution Consider the transformation $M = K^{-1/2}$:

$$K^{-1/2}A^{\mathsf{T}}K^{-1}K^{1/2} = K^{-1/2}A^{\mathsf{T}}K^{-1/2}.$$

 $A^{\mathsf{T}} = A$, we have

$$(K^{-1/2}AK^{-1/2})^{\mathsf{T}} = K^{-1/2}AK^{-1/2}.$$

- \mathbb{A} Upshot: $A^{\mathsf{T}}K^{-1} = AK^{-1}$ has real eigenvalues and a complete set of orthogonal eigenvectors.
- & Can also show that maximum eigenvalue magnitude is indeed 1.