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Chaotic Contagion on Networks:

Limited Imitation Contagion on Random Networks: Chaos, Universality, and Unpredictability

Peter Sheridan Dodds,* Kameron Decker Harris,† and Christopher M. Danforth‡

Department of Mathematics and Statistics, Computational Story Lab, Vermont Complex Systems Center,
and Vermont Advanced Computing Core, The University of Vermont, Burlington, Vermont 05401, USA

(Received 1 August 2012; revised manuscript received 7 March 2013; published 8 April 2013)

We study a family of binary state, socially inspired contagion models which incorporate imitation

limited by an aversion to complete conformity. We uncover rich behavior in our models whether operating

with either probabilistic or deterministic individual response functions on both dynamic and fixed random

networks. In particular, we find significant variation in the limiting behavior of a population’s infected

fraction, ranging from steady state to chaotic. We show that period doubling arises as we increase the

average node degree, and that the universality class of this well-known route to chaos depends on the

interaction structure of random networks rather than the microscopic behavior of individual nodes. We

find that increasing the fixedness of the system tends to stabilize the infected fraction, yet disjoint,

multiple equilibria are possible depending solely on the choice of the initially infected node.

DOI: 10.1103/PhysRevLett.110.158701 PACS numbers: 89.65.�s, 05.45.�a, 87.23.Ge

The structure and dynamics of real, complex networks
remains an open area of great research interest, particularly
in the realm of evolutionary processes acting on and within
networked systems [1–6]. Here, motivated by considera-
tions of social contagion—the spreading of ideas and
behaviors between people through social networks and
media—we explore an idealized, binary-state social con-
tagion model in which individuals choose to be like others
but only up to a point: they do not want to be like everyone
else [7–10]. We term such behavior ‘‘limited imitation
contagion.’’ We build naturally on previous studies of
threshold models of contagion [12–15], and our model
can also be seen as a specific subfamily of dynamical
Boolean network models [16,17]. We show how macro-
scopic network structure overrides microscopic details, and
we find complex dynamics whose character moves from
universal and predictable to particular and unpredictable as
we allow the system to become increasingly deterministic.

In constructing our model, our main interest is in under-
standing how spreading by limited imitation contagion on
random networks behaves under three main tunable con-
ditions: (1) social awareness: the rate of contact between
individuals; (2) social variability: the extent to which
friendships are fixed; and (3) social influence: the character
of individuals’ responses to the behavior of others.

To begin with, we consider a binary state model for
which individuals are either in a base state S0 or an alter-
nate state S1. We assume individuals interact over an
uncorrelated random network, which may be dynamic or
fixed. For simplicity, and due to the richness of the dynam-
ics we find, we employ standard Erdös-Rényi networks
which possess Poisson degree distributions. We take time
to be discrete (t ¼ 0; 1; 2; . . . ), and we prescribe each
node’s degree k at t ¼ 0. In a dynamic network, when
node i updates, it samples the states of ki randomly
chosen nodes (i.e., the system is a random mixing model

with nonuniform contact rates). For a fixed network, node i
repeatedly samples the same ki nodes. We further restrict
our attention to single-seed contagion processes wherein
all nodes are in state S0 at time t ¼ 0, with one randomly
chosen node in state S1.
The contagion process is manifested through the

response functions of individual nodes. We allow nodes
to update synchronously, and node i’s response function
Fi: ½0; 1� � ½0; 1� gives the probability that node i will be
in state S1 upon updating, where the argument taken by Fi

is the fraction of nodes sampled by node i that are currently
in state S1, �i;t.

We investigate two kinds of response functions, proba-
bilistic and deterministic, both of which incorporate the

(a) (b)

FIG. 1. Examples of probabilistic and deterministic response
functions capturing limited imitation contagion dynamics. At
each time t, nodes use their given response functions to update
their own state based on the perceived fraction of their neighbors
in state S1, �i;t. We construct the tent map T2 (see main text)

shown in (a) by averaging over deterministic response functions
of the kind shown in (b) by considering a family of the latter with
‘‘on’’ and ‘‘off’’ thresholds uniformly distributed in ½0; 12� and
½12 ; 1�, respectively. We then build networked systems whose

macroscopic character is tent map-like but differ strongly at
the microscopic level.

PRL 110, 158701 (2013) P HY S I CA L R EV I EW LE T T E R S
week ending

12 APRIL 2013

0031-9007=13=110(15)=158701(5) 158701-1 � 2013 American Physical Society

“Limited Imitation Contagion on random
networks: Chaos, universality, and
unpredictability”
Dodds, Harris, and Danforth,
Phys. Rev. Lett., 110, 158701, 2013. [1]
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Dynamics of influence processes on networks:

Complete mean-field theory; the roles of response functions, connectivity, and

synchrony; and applications to social contagion

Kameron Decker Harris,1, ∗ Christopher M. Danforth,1, † and Peter Sheridan Dodds1, ‡

1Department of Mathematics and Statistics, Vermont Advanced Computing Core,

Vermont Complex Systems Center, and Computational Story Lab,

University of Vermont, Burlington, VT 05405 USA

(Dated: March 7, 2013)

We study binary state dynamics on a network where each node acts in response to the average
state of its neighborhood. Allowing varying amounts of stochasticity in both the network and node
responses, we find different outcomes in random and deterministic versions of the model. In the limit
of a large, dense network, however, we show that these dynamics coincide. We construct a general
mean field theory for random networks and show this predicts that the dynamics on the network are
a smoothed version of the average response function dynamics. Thus, the behavior of the system can
range from steady state to chaotic depending on the response functions, network connectivity, and
update synchronicity. As a specific example, we model the competing tendencies of imitation and
non-conformity by incorporating an off-threshold into standard threshold models of social contagion.
In this way we attempt to capture important aspects of fashions and societal trends. We compare
our theory to extensive simulations of this “limited imitation contagion” model on Poisson random
graphs, finding agreement between the mean-field theory and stochastic simulations.

I. INTRODUCTION

Networks are an exploding area of research due to the
recognition of their generality and ubiquity in physical,
biological, technological, and social settings. Dynamical
processes taking place on networks are now recognized as
the most natural description for a number of phenomena.
These include neuron behavior in the brain [1], cellular
genetic regulation [2], ecosystem dynamics and stability
[3], and infectious diseases [4]. This last category, the
study of biological contagion, is in many ways similar to
social contagion, which refers to the spreading of ideas,
fashions, or behaviors among people [5, 6]. This concept
underlies the vastly important contemporary area of viral
marketing, driven by the ease with which media can be
shared and spread through social network websites.
In this work, we present results for a very general

model of networked map dynamics, motivated by models
of social contagion. Each node has a “response function,”
a map which determines the state the node will take in
response to the states of nodes in its neighborhood. Our
model is a type of boolean network [7], and it is closely
related to models of percolation [8] and magnetism [7, 9].
We focus on the derivation and analysis of dynamical
master equations, both exact and mean-field approxima-
tions, that describe the expected evolution of the system
state. We also show how certain dense network limits

∗ Current address: Department of Applied Mathematics, Univer-

sity of Washington, Seattle, WA 98103 USA ; kamdh@uw.edu
† chris.danforth@uvm.edu
‡ peter.dodds@uvm.edu

lead to the convergence of the dynamics to the average
response function map dynamics.
We then apply our general theory to a particular lim-

ited imitation contagion model [10]. Nodes, representing
people, act according to competing tendencies of imita-
tion and non-conformity. One can argue that these two
ingredients are essential to all trends; indeed, Simmel,
in his classic essay “Fashion” [1957], believed that these
are the main forces behind the creation and destruction
of fashions. Our model is not meant to be quantitative,
except perhaps in carefully designed experiments, but it
captures the features with which we are familiar: some
trends take off and some do not, and some trends are sta-
ble while others vary wildly through time. Our model is
closely related to the seminal work of Schelling [12] and
Granovetter [13].
In Section II, we define the general model and its de-

terministic and stochastic variants. In Section III, we
provide an analysis of the model when the underlying
network is fixed. In Section IV, we develop a mean-field
theory of the model on generalized random networks. In
Section V, we consider the model on Poisson random
networks with a specific kind of response function that
reflects the limited imitation we expect in many social
contagion processes. For this specific case, we compare
the results of simulations and theory. Finally, in Sec-
tion VI, we present conclusions and directions for further
research.

II. GENERAL MODEL

Let G = (V,E) be a network with N = |V | nodes,
where V is the node set and E is the edge set. We let

“Dynamical influence processes on
networks: General theory and applications
to social contagion”
Harris, Danforth, and Dodds,
Phys. Rev. E, 88, 022816, 2013. [2]

A. Mandel, conference at Urbana-Champaign,
2007:
“If I was a younger man, I would have stolen this from
you.”

https://pdodds.w3.uvm.edu//research/papers/others/everything/dodds2013a.pdf
https://pdodds.w3.uvm.edu//research/papers/others/everything/dodds2013a.pdf
https://pdodds.w3.uvm.edu//research/papers/others/everything/dodds2013a.pdf
https://pdodds.w3.uvm.edu//research/papers/others/everything/dodds2013a.pdf
https://pdodds.w3.uvm.edu//research/papers/others/everything/harris2013a.pdf
https://pdodds.w3.uvm.edu//research/papers/others/everything/harris2013a.pdf
https://pdodds.w3.uvm.edu//research/papers/others/everything/harris2013a.pdf
https://pdodds.w3.uvm.edu//research/papers/others/everything/harris2013a.pdf
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Chaotic contagion:

 What if individual response functions are not
monotonic?

 Consider a simple deterministic version:

 Node 𝑖 has an ‘activation threshold’
𝜙𝑖,1

…and a ‘de-activation threshold’ 𝜙𝑖,2

 Nodes like to imitate but only up to a
limit—they don’t want to be like
everyone else.
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Chaotic contagion

Definition of the tent map:

𝐹(𝑥) = { 𝑟𝑥 for 0 ≤ 𝑥 ≤ 1
2 ,

𝑟(1 − 𝑥) for 1
2 ≤ 𝑥 ≤ 1.

 The usual business: look at how 𝐹 iteratively maps
the unit interval [0, 1].
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The tent map

Effect of increasing 𝑟 from 1 to 2.
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Chaotic behavior

Take 𝑟 = 2 case:
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 What happens if nodes have limited information?
 As before, allow interactions to take place on a

sparse random network.
 Vary average degree 𝑧 = ⟨𝑘⟩, a measure of

information
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Two population examples:
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 Randomly select (𝜙𝑖,1, 𝜙𝑖,2) from gray regions
shown in plots B and C.

 Insets show composite response function
averaged over population.

 We’ll consider plot C’s example: the tent map.
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Invariant densities—stochastic response
functions
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Invariant densities—deterministic
response functions for one specific
network with ⟨𝑘⟩ = 18
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Invariant densities—stochastic response
functions
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Invariant densities—deterministic
response functions
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Connectivity leads to chaos:
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Bifurcation diagram: Asynchronous
updating
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Bifurcation diagram: Asynchronous updating
7

FIG. 3. Bifurcation diagram for the dense map Φ(φ;α),
Eqn. (18). This was generated by iterating the map at 1000
α values between 0 and 1. The iteration was carried out with
3 random initial conditions for 10000 time steps each, dis-
carding the first 1000. The φ-axis contains 1000 bins and the
invariant density, shown by the grayscale value, is normalized
by the maximum for each α. With α < 2/3, all trajectories
go to the fixed point at φ = 2/3.

except φ = 0. When α = 2/3, [1/2, 5/6] is an interval
of period-2 centers. Any orbit will eventually land on
one of these period-2 orbits. When α > 2/3, this inter-
val of period-2 centers ceases to exist, and more compli-
cated behavior ensues. Figure 3 shows the bifurcation
diagram for Φ(φ;α). From the bifurcation diagram, the
orbit appears to cover dense subsets of the unit interval
when α > 2/3. The bifurcation diagram appears like
that of the tent map (not shown; see [10, 30]) except the
branches to the right of the first bifurcation point are
separated here by the interval of period-2 centers.

The effect of conformsits, an aside

Suppose some fraction c of the population is made up
of individuals without any off-threshold (alternatively,
each of their off-thresholds φoff = 1). These individ-
uals are conformist or “purely pro-social” in the sense
that they are perfectly happy being part of the majority.
For simplicity, assume α = 1. The map Φ(φ; c) = 2φ for
0 ≤ φ < 1/2 and 2−2(1−c)φ for 1/2 ≤ φ ≤ 1. If c > 1/2,
then the equilibrium at 2/3 is stable. Pure conformists,
then, can have a stabilizing effect on the process. We
expect a similar effect when the network is not dense.

B. Mean-field

Here we show how we compute the mean-field maps
derived in Section IV. In this specific example, we can
write the degree-dependent map Fk(ρ; f̄) in terms of in-
complete regularized beta functions Iz(a, b) [31]. Since f̄
is understood to be the tent map, we will write Fk(ρ; f̄) =
Fk(ρ). We find that

Fk(ρ) = 2ρ− 4ρIρ(M,k −M), (19)

where we have let M = ⌊k/2⌋ for clarity (⌊·⌋ and ⌈·⌉
are the floor and ceiling functions). The details of this
derivation are given in Appendix B.
The map g(ρ; pk, f̄) is parametrized here by the net-

work parameter kavg, since pk is fixed as a Poisson dis-
tribution with mean kavg and f̄ is the tent map, and we
write it as simply g(ρ; kavg). To evaluate g(ρ; kavg), we
compute Fk(ρ) using Eqn. (19) and constrain the sum
in Eqn. (10) to values of k with ⌊kavg − 3

√

kavg⌋ ≤

k ≤ ⌈kavg + 3
√

kavg⌉. This computes contributions to
within three standard deviations of the average degree
in the network, requiring only O(

√

kavg) evaluations of
Eqn. (19). The representation in Eqn. (19) allows for
quick numerical evaluation of Fk(ρ) for any k, which we
performed in MATLAB.
In Figure 2, we show g(ρ; kavg) for kavg = 1, 10,

and 100. We confirm the conclusions of Section IVB:
g(ρ; kavg) is bounded above by f̄(ρ), and g(ρ; kavg) ↗
f̄(ρ) as kavg → ∞. Convergence is slowest at ρ = 1/2,
where the kink exhibited by the tent map has been
smoothed out by the effect of the Bernstein operator.

C. Simulations

We performed stochastic simulations of the limited im-
itation model for the D-F, P-F, and P-R designs, in the
abbreviations of Table I. Unless otherwise noted, N =
104. For all of the bifurcation diagrams, the first 3000
time steps were considered transient and discarded, and
the invariant density of ρ was calculated from the follow-
ing 1000 points. For plotting purposes, the invariant den-
sity was normalized by its maximum at those parameters.
For example, in Figure 3 we plot P (φ|α)/maxφ P (φ|α)
rather than the raw density P (φ|α).
To compare the mean-field theory to those simula-

tions, we numerically iterated the edge map ρ(t + 1) =
G (ρ(t); kavg,α) for different values of α and kavg. We
then created bifurcation diagrams of the possible behav-
ior in the mean-field as was done for the simulations.

D. Results

To provide a feel for the deterministic dynamics, we
show the result of running the D-F model on a small net-
work in Figure 4. Here, N = 100 and kavg = 17. Starting
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https://www.youtube.com/watch?v=7JHrZyyq870?rel=0
How the bifurcation diagram changes with increasing
average degree ⟨𝑘⟩ as a function of the synchronicity
parameter 𝛼 for the stochastic response (tent map) case.


var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton0'){ocgs[i].state=false;}}

https://www.youtube.com/watch?v=7JHrZyyq870?rel=0
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https://www.youtube.com/watch?v=_zwK6poIBvc?rel=0
How the bifurcation diagram changes with increasing 𝛼, the
synchronicity parameter as a function of average degree ⟨𝑘⟩
for the stochastic response (tent map) case.


var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton1'){ocgs[i].state=false;}}

https://www.youtube.com/watch?v=_zwK6poIBvc?rel=0
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https://www.youtube.com/watch?v=3bo4fzp4Snw?rel=0
LIC dynamics on a fixed graph with a shared stochastic (tent
map) response function. Average degree = 6, update
synchronicity parameter 𝛼 = 1. The macroscopic behavior is
period-1, plus noisy fluctuations.


var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton2'){ocgs[i].state=false;}}

https://www.youtube.com/watch?v=3bo4fzp4Snw?rel=0
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https://www.youtube.com/watch?v=7UCuIa_ktmw?rel=0
LIC dynamics on a fixed graph with a shared stochastic (tent
map) response function. Average degree = 11, update
synchronicity parameter 𝛼 = 1. The macroscopic behavior
is period-2, plus noisy fluctuations.


var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton3'){ocgs[i].state=false;}}

https://www.youtube.com/watch?v=7UCuIa_ktmw?rel=0
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https://www.youtube.com/watch?v=oWKt8Zj1Ccw?rel=0
LIC dynamics on a fixed graph with a shared stochastic (tent
map) response function. ⟨𝑘⟩ = 30, update synchronicity
parameter 𝛼 = 1. The macroscopic behavior is chaotic.


var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton4'){ocgs[i].state=false;}}

https://www.youtube.com/watch?v=oWKt8Zj1Ccw?rel=0
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https://www.youtube.com/watch?v=AfhUlkIOiOU?rel=0
LIC dynamics on a fixed graph with fixed, deterministic
response functions. Average degree = 30, update
synchronicity parameter 𝛼 = 1. Shown are nodes which
continue changing (703/1000) after the transient chaotic
behavior has ”collapsed.”


var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton5'){ocgs[i].state=false;}}

https://www.youtube.com/watch?v=AfhUlkIOiOU?rel=0
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https://www.youtube.com/watch?v=ZwY0hTstJ2M?rel=0
LIC dynamics on a fixed graph with fixed, deterministic
response functions. Average degree = 30, update
synchronicity parameter 𝛼 = 1. The dynamics exhibit
transient chaotic behavior before collapsing to a fixed point.


var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton6'){ocgs[i].state=false;}}

https://www.youtube.com/watch?v=ZwY0hTstJ2M?rel=0
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https://www.youtube.com/watch?v=YDhjmFyBSn4?rel=0
LIC dynamics on a fixed graph with fixed, deterministic
response functions. Average degree = 17, update
synchronicity parameter 𝛼 = 1. The dynamics exhibit
transient chaotic behavior before collapsing to a period-4
orbit.


var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton7'){ocgs[i].state=false;}}

https://www.youtube.com/watch?v=YDhjmFyBSn4?rel=0
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