Branching Networks II

Last updated: 2023/08/22, 11:48:21 EDT

Principles of Complex Systems, Vols. 1, 2, & 3D CSYS/MATH 6701, 6713, & a pretend number, 2023-2024 | @pocsvox

Prof. Peter Sheridan Dodds | @peterdodds

Computational Story Lab | Vermont Complex Systems Center Santa Fe Institute | University of Vermont

Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 License

Branching Networks II

Horton ⇔

Reducing Horton

Scaling relations

Fluctuations Models

References

Piracy on the high χ 's:

More: How river networks move across a landscape ☑ (Science Daily)

More with the happy-making thing

Start with Tokunaga's law: $T_k = T_1 R_T^{k-1}$

Start looking for Horton's stream number law: $n_{\omega}/n_{\omega+1}=R_n$.

& Estimate n_{ω} , the number of streams of order ω in terms of other $n_{\omega'}$, $\omega' > \omega$.

& Observe that each stream of order ω terminates by either:

1. Running into another stream of order ω and generating a stream of order $\omega + 1$

 $ightharpoonup 2n_{\omega+1}$ streams of order ω do this

2. Running into and being absorbed by a stream of higher order $\omega' > \omega$...

 $ightharpoonup n_{\omega'}T_{\omega'=\omega}$ streams of order ω do this

Outline

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

References

Can Horton and Tokunaga be happy?

Branching Networks II Tokunaga

Reducing Horto Scaling relations

> Models Nutshell References

A Oddly, Horton's laws have four parameters and Tokunaga has two parameters. R_n , R_a , R_ℓ , and R_s versus T_1 and R_T . One simple

appear to contain less detailed information than

In terms of network achitecture, Horton's laws

Horton and Tokunaga seem different:

Tokunaga's law.

redundancy: $R_{\ell} = R_{s}$. Insert assignment question

To make a connection, clearest approach is to start with Tokunaga's law ...

Known result: Tokunaga → Horton [18, 19, 20, 9, 2]

Branching Networks I Horton ⇔ Tokunaga

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

References

Reducing Hortor Scaling relations Fluctuations

Models Nutshell References

Branching Networks II

Scaling relations

Fluctuations

Models

Nutshell

References

More with the happy-making thing

Putting things together:

$$n_{\omega} = \underbrace{2n_{\omega+1}}_{\text{generation}} + \sum_{\omega'=\omega+1}^{\Omega} \underbrace{T_{\omega'-\omega}n_{\omega'}}_{\text{absorption}}$$

Use Tokunaga's law and manipulate expression to find Horton's law for stream numbers follows and hence obtain R_n .

Insert assignment question

Solution:

$$R_n = \frac{(2 + R_T + T_1) \pm \sqrt{(2 + R_T + T_1)^2 - 8R_T}}{2}$$

(The larger value is the one we want.)

Piracy on the high χ 's:

"Dynamic Reorganization of River Basins" Willett et al.,

Science, **343**, 1248765, 2014. [21]

 $\frac{\partial z(x,t)}{\partial t} = U - KA^m \left| \frac{\partial z(x,t)}{\partial x} \right|^n$

Let us make them happy

We need one more ingredient:

Space-fillingness

A network is space-filling if the average distance between adjacent streams is roughly constant.

Reasonable for river and cardiovascular networks

For river networks: Drainage density ρ_{dd} = inverse of typical distance between channels in a landscape.

In terms of basin characteristics:

$$\rho_{\rm dd} \simeq \frac{\sum {\rm stream\ segment\ lengths}}{{\rm basin\ area}} = \frac{\sum_{\omega=1}^{\Omega} n_{\omega} \bar{s}_{\omega}}{a_{\Omega}}$$

Finding other Horton ratios

Horton ⇔ Tokunaga Connect Tokunaga to R_{\circ} Reducing Horton

 \aleph Now use uniform drainage density ρ_{dd} .

Assume side streams are roughly separated by distance $1/\rho_{dd}$.

For an order ω stream segment, expected length is

$$\bar{s}_\omega \simeq \rho_{\mathrm{dd}}^{-1} \left(1 + \sum_{k=1}^{\omega-1} T_k \right)$$

Substitute in Tokunaga's law $T_k = T_1 R_T^{k-1}$:

$$\bar{s}_\omega \simeq \rho_{\rm dd}^{-1} \left(1 + T_1 \sum_{k=1}^{\omega-1} R_T^{\;k-1} \right) \propto R_T^{\;\omega}$$

Branching Networks II Horton ⇔ Tokunaga

Branching Networks II

Horton ⇔

Tokunaga

Reducing Horton

Scaling relation

Fluctuation

Models

Nutshell

References

Reducing Horton Scaling relation

Models Nutshell

References

Branching Networks II 12 of 84 Horton ⇔ Tokunaga

Reducing Horton Scaling relations Fluctuations

Models Nutshell

References

Horton and Tokunaga are happy

Altogether then:

$$\Rightarrow \bar{s}_{\omega}/\bar{s}_{\omega-1} = R_T \Rightarrow R_s = R_T$$

 \Re Recall $R_{\ell} = R_{\circ}$ so

$$R_{\ell} = R_s = R_T$$

And from before:

$$\boxed{R_n = \frac{(2 + R_T + T_1) + \sqrt{(2 + R_T + T_1)^2 - 8R_T}}{2}}$$

Branching Networks II Horton ⇔ Tokunaga

Reducing Horton Scaling relations

Fluctuations Models

Nutshell References

Branching Networks II

Horton ⇔

Tokunaga

Models

Nutshell

References

The PoCSverse

Branching Networks II

Tokunaga

Models

Nutshell

References

Reducing Horton

Scaling relations

Reducing Horton

Scaling relations

From Horton to Tokunaga [2]

Horton and Tokunaga are friends

- Assume Horton's laws hold for number and length
- Start with picture showing an order ω stream and order $\omega - 1$ generating and side streams.
- Scale up by a factor of R_{θ} , orders increment to $\omega + 1$ and ω .
- Maintain drainage density by adding new order $\omega - 1$ streams

Horton's laws of area and number:

- In bottom plots, stream number graph has been flipped vertically.
- \mathbb{A} Highly suggestive that $R_n \equiv R_a \dots$

Horton and Tokunaga are happy

Some observations:

- $\Re R_n$ and R_ℓ depend on T_1 and R_T .
- & Seems that R_a must as well ...
- Suggests Horton's laws must contain some redundancy
- \Re We'll in fact see that $R_a = R_n$.
- Also: Both Tokunaga's law and Horton's laws can be generalized to relationships between non-trivial statistical distributions. [3, 4]

Horton and Tokunaga are friends

...and in detail:

- Must retain same drainage density.
- \mathbb{A} Add an extra $(R_{\ell}-1)$ first order streams for each original tributary.
- & Since by definition, an order $\omega + 1$ stream segment has T_{ij} order 1 side streams, we have:

$$T_k = (R_\ell-1)\left(1+\sum_{i=1}^{k-1}T_i\right).$$

 \clubsuit For large ω , Tokunaga's law is the solution—let's check ...

Measuring Horton ratios is tricky:

How robust are our estimates of ratios?

Rule of thumb: discard data for two smallest and two largest orders.

Branching Networks I Horton ⇔

Branching Networks II

Horton ⇔

Tokunaga

Reducing Horton

Scaling relation

Fluctuation

Models

Nutshell

References

Tokunaga Reducing Horton

Scaling relation

Fluctuation Models

Nutshell

References

Horton and Tokunaga are happy

The other way round

 \mathbb{R} Note: We can invert the expresssions for R_n and R_{ℓ} to find Tokunaga's parameters in terms of Horton's parameters.

$$R_T = R_\ell$$

$$T_1=R_n-R_\ell-2+2R_\ell/R_n.$$

Suggests we should be able to argue that Horton's laws imply Tokunaga's laws (if drainage density is uniform) ...

Horton and Tokunaga are friends

Just checking:

Substitute Tokunaga's law $T_i = T_1 R_T^{i-1} = T_1 R_{\ell}^{i-1}$

$$T_k = (R_\ell-1)\left(1+\sum_{i=1}^{k-1}T_i\right)$$

Branching Networks I Horton ⇔ Tokunaga

Branching Networks II

Horton ⇔

Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

References

Branching

Networks I

Horton A

Tokunaga

Models

Nutshell

References

Reducing Horton

Scaling relations

Reducing Horton Scaling relations Fluctuation Models Nutshell Reference

Mississippi:

ω range	R_n	R_a	R_{ℓ}	R_s	R_a/R_n
[2, 3]	5.27	5.26	2.48	2.30	1.00
[2, 5]	4.86	4.96	2.42	2.31	1.02
[2, 7]	4.77	4.88	2.40	2.31	1.02
[3, 4]	4.72	4.91	2.41	2.34	1.04
[3, 6]	4.70	4.83	2.40	2.35	1.03
[3, 8]	4.60	4.79	2.38	2.34	1.04
[4, 6]	4.69	4.81	2.40	2.36	1.02
[4, 8]	4.57	4.77	2.38	2.34	1.05
[5, 7]	4.68	4.83	2.36	2.29	1.03
[6, 7]	4.63	4.76	2.30	2.16	1.03
[7, 8]	4.16	4.67	2.41	2.56	1.12
mean μ	4.69	4.85	2.40	2.33	1.04
std dev σ	0.21	0.13	0.04	0.07	0.03
σ/μ	0.045	0.027	0.015	0.031	0.024

The PoCSverse Branching Networks I Horton ⇔ Tokunaga

Reducing Horton

Scaling relation Fluctuation

Models

Amazon:

ω range	R_n	R_a	R_{ℓ}	R_s	R_a/R_n
[2, 3]	4.78	4.71	2.47	2.08	0.99
[2, 5]	4.55	4.58	2.32	2.12	1.01
[2, 7]	4.42	4.53	2.24	2.10	1.02
[3, 5]	4.45	4.52	2.26	2.14	1.01
[3, 7]	4.35	4.49	2.20	2.10	1.03
[4, 6]	4.38	4.54	2.22	2.18	1.03
[5, 6]	4.38	4.62	2.22	2.21	1.06
[6, 7]	4.08	4.27	2.05	1.83	1.05
mean μ	4.42	4.53	2.25	2.10	1.02
std dev σ	0.17	0.10	0.10	0.09	0.02
σ/μ	0.038	0.023	0.045	0.042	0.019

Branching Networks II

Horton ⇔ Tokunaga

Models

Nutshell

References

Reducing Horton

Scaling relation

Not quite:

- ...But this only a rough argument as Horton's laws do not imply a strict hierarchy
- Need to account for sidebranching.
- Insert assignment question

Reducing Horton's laws:

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations Fluctuations Models

Nutshell References

Neural Reboot: Fwoompf

Branching Networks II 28 of 84 Horton ⇔ Tokunaga Reducing Horton

Scaling relation Fluctuation Models Nutshell

References

Branching

Networks I

Horton ⇔

Tokunaga

Models

Nutshell

References

Reducing Horton

Scaling relations

Reducing Horton's laws:

Rough first effort to show $R_n \equiv R_a$:

- $\& a_{\Omega} \propto \text{sum of all stream segment lengths in a order}$ Ω basin (assuming uniform drainage density)
- So:

$$\begin{split} a_{\Omega} &\simeq \sum_{\omega=1}^{\Omega} n_{\omega} \bar{s}_{\omega}/\rho_{\mathrm{dd}} \\ &\propto \sum_{\omega=1}^{\Omega} \underbrace{R_{n}^{\Omega-\omega} \cdot \hat{1}}_{n_{\omega}} \underbrace{\bar{s}_{1} \cdot R_{s}^{\omega-1}}_{\bar{s}_{\omega}} \\ &= \underbrace{R_{n}^{\Omega}}_{R_{n}} \bar{s}_{1} \sum_{s=1}^{\Omega} \left(\underbrace{R_{s}}_{R_{n}}\right)^{\omega} \end{split}$$

Branching Networks II

Horton ⇔ Tokunaga

Reducing Hortor Scaling relation

The PoCSverse

Branching

Networks II

Tokunaga

Models

Nutshel

References

Reducing Horton

Scaling relations

Models Nutshell References

Equipartitioning:

Intriguing division of area:

- & Observe: Combined area of basins of order ω independent of ω .
- Not obvious: basins of low orders not necessarily contained in basis on higher orders.
- Story:

$$R_n \equiv R_a \Rightarrow \boxed{n_\omega \bar{a}_\omega = \mathrm{const}}$$

Reason:

$$n_{\omega} \propto (R_n)^{-\omega}$$
$$\bar{a}_{\omega} \propto (R_n)^{\omega} \propto n_{\omega}^{-1}$$

Branching Networks I

Horton ⇔ Tokunaga

Reducing Horton Scaling relations

Fluctuations Models

Nutshell References

Scaling laws

The story so far:

- Natural branching networks are hierarchical, self-similar structures
- Hierarchy is mixed
- Tokunaga's law describes detailed architecture: $T_{k} = T_{1} R_{T}^{k-1}$.
- We have connected Tokunaga's and Horton's laws
- \mathbb{R} Only two Horton laws are independent $(R_n = R_n)$
- Only two parameters are independent: $(T_1, R_T) \Leftrightarrow (R_n, R_s)$

Reducing Horton's laws:

Continued ...

 $\mbox{\&}$ So, a_{Ω} is growing like R_{n}^{Ω} and therefore:

$$R_n \equiv R_a$$

Equipartitioning:

Some examples:

Scaling laws

Branching Networks II Horton ⇔ Tokunaga

Reducing Horton Scaling relations

Fluctuations Models

Nutshell References

A little further ...

Ignore stream ordering for the moment

- \clubsuit Pick a random location on a branching network p.
- \clubsuit Each point p is associated with a basin and a longest stream length
- Q: What is probability that the p's drainage basin has area a? $P(a) \propto a^{-\tau}$ for large a
- Q: What is probability that the longest stream from p has length ℓ ? $P(\ell) \propto \ell^{-\gamma}$ for large ℓ
- \Re Roughly observed: $1.3 \lesssim \tau \lesssim 1.5$ and $1.7 \lesssim \gamma \lesssim 2.0$

The PoCSverse Branching Networks I 30 of 84

Horton ⇔ Tokunaga

Reducing Horton Scaling relations

Fluctuatio Models

Nutshell

References

Scaling laws

Probability distributions with power-law decays

- We see them everywhere:
 - Earthquake magnitudes (Gutenberg-Richter law)
 - City sizes (Zipf's law)
 - Word frequency (Zipf's law) [22]
 - Wealth (maybe not—at least heavy tailed)
 - Statistical mechanics (phase transitions) [5]
- A big part of the story of complex systems
- Arise from mechanisms: growth, randomness, optimization, ...
- Our task is always to illuminate the mechanism ...

Scaling laws Branching Networks II

Finding γ : Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Models

References

- \clubsuit The connection between P(x) and $P_{\sim}(x)$ when P(x) has a power law tail is simple:
- Arr R Given $P(\ell) \sim \ell^{-\gamma}$ large ℓ then for large enough ℓ ,

$$P_{>}(\ell_*) = \int_{\ell=\ell_*}^{\ell_{\max}} P(\ell) \, \mathrm{d}\ell$$

$$\sim \int_{\ell=\ell_*}^{\ell_{\text{max}}} \frac{\ell^{-\gamma} \mathrm{d} \ell}{\ell}$$

$$= \left. \frac{\ell^{-(\gamma-1)}}{-(\gamma-1)} \right|_{\ell=\ell_*}^{\ell_{\max}}$$

$$\propto \ell_*^{-(\gamma-1)} \quad {\sf for} \ \ell_{\sf max} \gg \ell_*$$

Scaling laws

Branching Networks II

Horton ⇔

Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

References

Finding γ : We are here:

 $P_{>}(\bar{\ell}_{\omega}) \propto \sum_{s=1}^{\Omega} (1 \cdot R_{n}^{\Omega - \omega'})(\bar{s}_{1} \cdot R_{s}^{\omega' - 1})$

$$P_{>}(\bar{\ell}_{\omega}) \propto \sum_{\omega'=\omega+1}^{\Omega} \left(\frac{R_s}{R_n}\right)^{\omega'}$$

- Change summation order by substituting $\omega'' = \Omega - \omega'$.
- \implies Sum is now from $\omega'' = 0$ to $\omega'' = \Omega \omega 1$ (equivalent to $\omega' = \Omega$ down to $\omega' = \omega + 1$)

Scaling laws

Connecting exponents

- We have the detailed picture of branching networks (Tokunaga and Horton)
- \Leftrightarrow Plan: Derive $P(a) \propto a^{-\tau}$ and $P(\ell) \propto \ell^{-\gamma}$ starting with Tokunaga/Horton story [17, 1, 2]
- \clubsuit Let's work on $P(\ell)$...
- Our first fudge: assume Horton's laws hold throughout a basin of order Ω .
- & (We know they deviate from strict laws for low ω and high ω but not too much.)
- Next: place stick between teeth. Bite stick. Proceed.

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton Scaling relations

Models Nutshell

References

Horton ⇔ Tokunaga

Models

References

Reducing Horton

Scaling relations

Scaling laws

Finding γ :

- Aim: determine probability of randomly choosing a point on a network with main stream length $> \ell_*$
- & Assume some spatial sampling resolution \triangle
- & Landscape is broken up into grid of $\Delta \times \Delta$ sites
- \clubsuit Approximate $P_{\searrow}(\ell_*)$ as

$$P_{>}(\ell_*) = \frac{N_{>}(\ell_*; \Delta)}{N_{>}(0; \Delta)}. \label{eq:power_power}$$

where $N_{\sim}(\ell_{*}; \Delta)$ is the number of sites with main stream length $> \ell_{...}$

Use Horton's law of stream segments: $\bar{s}_{\omega}/\bar{s}_{\omega-1} = R_s \dots$

Scaling laws

Finding γ :

Horton A Tokunaga Reducing Horton

Branching

Networks I

Scaling relations Fluctuation

Models Nutshell References

$$P_{>}(\bar{\ell}_{\omega}) \propto \sum_{\omega''=0}^{\Omega-\omega-1} \left(\frac{R_s}{R_n}\right)^{\Omega-\omega''} \propto \sum_{\omega''=0}^{\Omega-\omega-1} \left(\frac{R_n}{R_s}\right)^{\omega''}$$

 \mathcal{S} Since $R_n > R_s$ and $1 \ll \omega \ll \Omega$,

$$P_{>}(\bar{\ell}_{\omega}) \propto \left(\frac{R_n}{R_s}\right)^{\Omega-\omega} \propto \left(\frac{R_n}{R_s}\right)^{-\omega}$$

again using $\sum_{i=0}^{n-1} a^i = (a^n - 1)/(a - 1)$

Scaling laws

Finding γ :

- Often useful to work with cumulative distributions, especially when dealing with power-law distributions.
- & The complementary cumulative distribution turns out to be most useful:

$$P_{>}(\ell_*) = P(\ell > \ell_*) = \int_{\ell = \ell_*}^{\ell_{\mathrm{max}}} P(\ell) \mathrm{d}\ell$$

$$P_{>}(\ell_*) = 1 - P(\ell < \ell_*)$$

Also known as the exceedance probability.

Scaling laws Branching Networks II

Finding γ :

$$P_{>}(\bar{\ell}_{\omega}) = \frac{N_{>}(\bar{\ell}_{\omega}; \Delta)}{N_{>}(0; \Delta)} \simeq \frac{\sum_{\omega'=\omega+1}^{\Omega} n_{\omega'} \bar{s}_{\omega'} / \cancel{\texttt{X}}}{\sum_{\omega'=1}^{\Omega} n_{\omega'} \bar{s}_{\omega'} / \cancel{\texttt{X}}}$$

- \triangle Δ 's cancel
- $\ensuremath{\mathfrak{S}}$ Denominator is $a_{\Omega} \rho_{\mathsf{dd}}$, a constant.
- So ...using Horton's laws ...

$$P_{>}(\bar{\ell}_{\omega}) \propto \sum_{\omega'=\omega+1}^{\Omega} n_{\omega'} \bar{s}_{\omega'} \simeq \sum_{\omega'=\omega+1}^{\Omega} (1 \cdot R_{n}^{\Omega-\omega'}) (\bar{s}_{1} \cdot R_{s}^{\omega'-1})$$

Scaling laws

Horton ⇔ Tokunaga

Reducing Horton Scaling relations

Fluctuations Models

Nutshell Reference

Finding γ :

A Nearly there:

$$P_{>}(\bar{\ell}_{\omega}) \propto \left(\frac{R_n}{R_s}\right)^{-\omega} = e^{-\omega \ln(R_n/R_s)}$$

- \aleph Need to express right hand side in terms of $\bar{\ell}_{\omega}$.
- \Re Recall that $\bar{\ell}_{\omega} \simeq \bar{\ell}_1 R_{\ell}^{\omega-1}$.

$$ar{\ell}_{\omega} \propto R_{\ell}^{\,\omega} = R_{s}^{\,\omega} = e^{\,\omega {\sf In} R_{s}}$$

Branching Networks I

Branching Networks II

Horton ⇔

Tokunaga

Models

Nutshell

Reference

Branching

Networks I

Horton ~

Tokunaga

Models

Reducing Hortor

Scaling relations

Reducing Horton

Scaling relations

Horton ⇔ Tokunaga

Reducing Horton Scaling relations

Fluctuation Models

Scaling laws

Finding γ :

Therefore:

$$P_>(\bar{\ell}_\omega) \propto e^{-\omega \ln(R_n/R_s)} = \left(\frac{e^{\,\omega \ln R_s}}{} \right)^{-\ln(R_n/R_s)/\ln(R_s)}$$

$$\propto \bar{\ell}_{\omega}^{-\ln(R_n/R_s)/\ln R_s}$$

8

$$= \bar{\ell}_{\omega}^{-(\ln R_n - \ln R_s)/\ln R_s}$$

3

$$= \bar{\ell}_{\omega}^{-\ln R_n/\ln R_s + 1}$$

8

$$= \bar{\ell}_\omega^{-{\color{gray}\gamma}+1}$$

Finding γ :

And so we have:

$$\gamma = {\rm ln} R_n / {\rm ln} R_s$$

Proceeding in a similar fashion, we can show

$$\tau = 2 - \ln R_s / \ln R_n = 2 - 1/\gamma$$

- Such connections between exponents are called scaling relations
- & Let's connect to one last relationship: Hack's law

The PoCSverse Branching Networks II Horton ⇔ Tokunaga

Reducing Horton Scaling relations

Fluctuations

Models References

Branching

Networks II

Horton ⇔

Tokunaga

Models

Nutshell

References

The PoCSverse

Reducing Horton

Scaling relations

Branching

Networks II

Horton ⇔ Tokunaga

Models

Nutshell

Reducing Horton

Scaling relations

We mentioned there were a good number of 'laws': [2]

-l---naga Relation: Name or description: icing Hortoi ng relations $T_k = T_1(R_T)^{k-1}$ Tokunaga's law self-affinity of single channels $n_{\underline{\omega}}/n_{\omega+1}=R_n$ Horton's law of stream numbers Horton's law of main stream lengths $\ell_{\omega+1}/\ell_{\omega} = R_{\ell}$ rences $\bar{a}_{\omega+1}/\bar{a}_{\omega} = R_{\alpha}$ Horton's law of basin areas Horton's law of stream segment lengths $\bar{s}_{\omega+1}/\bar{s}_{\omega} = R_s$ $L_{\perp} \sim L^{H}$ scaling of basin widths $P(a) \sim a^{-\tau}$ probability of basin areas $P(\ell) \sim \ell^{-\gamma}$ probability of stream lengths $\ell \sim a^h$ Hack's law $a \sim L^D$ scaling of basin areas $\Lambda \sim a^{\beta}$ Langbein's law

variation of Langbein's law

A toy model—Scheidegger's model

Random walk basins:

Boundaries of basins are random walks

Horton ⇔ Tokunaga

Branching Networks II

Reducing Horton

Scaling relations

Fluctuation Models

Nutshell References

Scaling laws

$$\gamma = {\rm ln} R_n / {\rm ln} R_s$$

$$\tau = 2 - \ln R_s / \ln R_n = 2 - 1/\gamma$$

Insert assignment question ☑

Connecting exponents

Only 3 parameters are independent: e.g., take d, R_n , and R_s

relation:	scaling relation/parameter: [2]
$\ell \sim L^d$	d
$T_k = T_1(R_T)^{k-1}$	$T_1 = R_n - R_s - 2 + 2R_s/R_n$
	$R_T = \frac{R_s}{}$
$n_{\omega}/n_{\omega+1} = R_n$	R_n
$\bar{a}_{\omega+1}/\bar{a}_{\omega} = R_a$	$R_a = \frac{R_n}{n}$
$\bar{\ell}_{\omega+1}/\bar{\ell}_{\omega} = R_{\ell}$	$R_{\ell} = \frac{R_s}{}$
$\ell \sim a^h$	$h = \ln R_s / \ln R_n$
$a \sim L^D$	D = d/h
$L_{\perp} \sim L^H$	H = d/h - 1
$P(a) \sim a^{-\tau}$	$\tau = 2 - h$
$P(\ell) \sim \ell^{-\gamma}$	$\gamma = 1/h$
$\Lambda \sim a^{\beta}$	$\beta = 1 + h$
$\lambda \sim L^{\varphi}$	$\varphi = d$

Scheidegger's model

Networks I Horton ⇔ Tokunaga

Branching

The PoCSverse Branching Networks II

Horton ⇔

Reducing Hortor Scaling relations

Fluctuation

Models Nutshell References

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

References

Branching Networks II Horton ⇔

Tokunaga

Reducing Hortor

Scaling relations

Models

Nutshell

References

Scaling laws

Hack's law: [6]

 $\ell \propto a^h$

- \red{split} Typically observed that $0.5 \lesssim h \lesssim 0.7$.
- & Use Horton laws to connect h to Horton ratios:

$$\bar{\ell}_{\omega} \propto R_s^{\,\omega}$$
 and $\bar{a}_{\omega} \propto R_n^{\,\omega}$

Observe:

$$\bar{\ell}_{\omega} \propto e^{\,\omega {\rm ln} R_s} \propto \left(e^{\,\omega {\rm ln} R_n}\right)^{{\rm ln} R_s/{\rm ln} R_n}$$

$$\propto \left(R_n^{\,\omega}\right)^{\ln\!R_s/\!\ln\!R_n} \, \propto \bar{a}_\omega^{\,\ln\!R_s/\!\ln\!R_n} \Rightarrow \boxed{\frac{h = \ln\!R_s/\!\ln\!R_n}{h}}$$

Scheidegger's model

Directed random networks [11, 12]

$$P(\searrow) = P(\swarrow) = 1/2$$

- Functional form of all scaling laws exhibited but exponents differ from real world [15, 16, 14]
- Useful and interesting test case

Scheidegger's model

Prob for first return of a random walk in (1+1) dimensions (from CSYS/MATH 300):

 $P(n) \sim \frac{1}{2\sqrt{\pi}} n^{-3/2}$.

and so $P(\ell) \propto \ell^{-3/2}$.

 $\ref{3}$ Typical area for a walk of length n is $\propto n^{3/2}$:

$$\ell \propto a^{2/3}$$
.

- \Rightarrow Find $\tau = 4/3$, h = 2/3, $\gamma = 3/2$, d = 1.
- \Re Note $\tau = 2 h$ and $\gamma = 1/h$.
- $\Re R_n$ and R_ℓ have not been derived analytically.

The PoCSverse Branching Networks II 48 of 84 Horton ⇔ Tokunaga

Reducing Hortor Scaling relations

Fluctuation Models

Equipartitioning reexamined: Recall this story:

Equipartitioning

What about

$$P(a) \sim a^{- au}$$

Since $\tau > 1$, suggests no equipartitioning:

$$aP(a) \sim a^{-\tau+1} \neq \mathsf{const}$$

- $\Re P(a)$ overcounts basins within basins ...
- & while stream ordering separates basins ...

Fluctuations

Moving beyond the mean:

Both Horton's laws and Tokunaga's law relate average properties, e.g.,

$$\bar{s}_{\omega}/\bar{s}_{\omega-1} = R_s$$

- Natural generalization to consider relationships between probability distributions
- Yields rich and full description of branching network structure
- See into the heart of randomness ...

A toy model—Scheidegger's model

Branching Networks II Horton ⇔ Tokunaga

Reducing Horton

The PoCSverse

Scaling relations

Models Nutshell References

Branching

Networks II

Horton ⇔

Tokunaga

Models

Nutshell

References

The PoCSverse

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

References

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

$$P(\searrow) = P(\swarrow) = 1/2$$

Flow is directed downwards

Generalizing Horton's laws

$$\hat{\bar{\ell}}_{\omega} \propto (R_{\ell})^{\omega} \Rightarrow N(\ell|\omega) = (R_n R_{\ell})^{-\omega} F_{\ell}(\ell/R_{\ell}^{\omega})$$

- Scaling collapse works well for intermediate orders
- All moments grow exponentially with order

Generalizing Horton's laws

How well does overall basin fit internal pattern?

- Actual length = 4920 km (at 1 km res)
- Predicted Mean length = 11100 km
- Predicted Std dev = 5600 km
- Actual length/Mean length = 44 %
- Okay.

Generalizing Horton's laws

Branching Networks II

Horton ⇔

Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

References

Branching

Networks I

Horton ⇔

Tokunaga

Reducing Hortor

Scaling relations

Fluctuations

Models

Nutshell

References

Branching Networks II

54 of 84

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

References

Comparison of predicted versus measured main stream lengths for large scale river networks (in 10^3

basin:	ℓ_Ω	ℓ_Ω	σ_ℓ	ℓ_Ω/ℓ_Ω	σ_ℓ/ℓ_Ω
Mississippi	4.92	11.10	5.60	0.44	0.51
Amazon	5.75	9.18	6.85	0.63	0.75
Nile	6.49	2.66	2.20	2.44	0.83
Congo	5.07	10.13	5.75	0.50	0.57
Kansas	1.07	2.37	1.74	0.45	0.73
	a_{Ω}	$ar{a}_{\Omega}$	σ_a	$a_{\Omega}/\bar{a}_{\Omega}$	σ_a/\bar{a}_Ω
Mississippi	a_{Ω} 2.74	$ar{a}_{\Omega}$ 7.55	σ_a 5.58	$a_\Omega/ar{a}_\Omega$ 0.36	$\sigma_a/ar{a}_\Omega$ 0.74
Mississippi Amazon				25, 25	ω, υ
	2.74	7.55	5.58	0.36	0.74
Amazon	2.74 5.40	7.55 9.07	5.58 8.04	0.36 0.60	0.74 0.89
Amazon Nile	2.74 5.40 3.08	7.55 9.07 0.96	5.58 8.04 0.79	0.36 0.60 3.19	0.74 0.89 0.82

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton Scaling relations

Fluctuations Models

Nutshell References

Combining stream segments distributions:

Stream segments sum to give main stream lengths

 $\Re P(\ell_{\omega})$ is a convolution of distributions for

Models Nutshell References

Branching

Networks II

Horton ⇔

Tokunaga

Reducing Horton

Scaling relations

Fluctuations

the s_{ω}

Generalizing Horton's laws

 \Re Sum of variables $\ell_{\omega} = \sum_{\mu=1}^{\mu=\omega} s_{\mu}$ leads to convolution of distributions:

$$N(\ell|\omega) = N(s|1) * N(s|2) * \dots * N(s|\omega)$$

 $N(s|\omega) = \frac{1}{R_n^{\omega} R_{\ell}^{\omega}} F\left(s/R_{\ell}^{\omega}\right)$

$$F(x) = e^{-x/x}$$

Mississippi: $\xi \simeq 900$ m.

The PoCSverse Branching Networks II 57 of 84 Horton ⇔ Tokunaga

Reducing Horton

Scaling relations Fluctuations

Models

Generalizing Horton's laws

Next level up: Main stream length distributions must combine to give overall distribution for stream length

The PoCSverse Branching Networks II

Horton ⇔ Tokunaga

Reducing Horto

Scaling relations Fluctuations

Models References

Generalizing Tokunaga's law

Mississippi:

🗞 Same data collapse for Mississippi ...

Generalizing Tokunaga's law

- Follow streams segments down stream from their
- \clubsuit Probability (or rate) of an order μ stream segment terminating is constant:

$$\tilde{p}_{\mu} \simeq 1/(R_s)^{\mu-1} \xi_s$$

- Probability decays exponentially with stream order
- Inter-tributary lengths exponentially distributed
- ⇒ random spatial distribution of stream segments

Generalizing Horton's laws

- Number and area distributions for the Scheidegger model [3]
- $\Re P(n_{1.6})$ versus $P(a_6)$ for a randomly selected $\omega = 6$ basin.

Branching Networks II

Tokunaga

Reducing Horton Scaling relations Fluctuations

Models Nutshell References

Branching

Networks II

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

Generalizing Tokunaga's law

$$P(T_{\mu,\nu}) = (R_s)^{\mu-\nu-1} P_t \left[T_{\mu,\nu}/(R_s)^{\mu-\nu-1} \right]$$

where

$$P_t(z) = \frac{1}{\xi_t} e^{-z/\xi_t}.$$

$$P(s_{\mu}) \Leftrightarrow P(T_{\mu,\nu})$$

- Exponentials arise from randomness.
- & Look at joint probability $P(s_{\mu}, T_{\mu,\nu})$.

Generalizing Tokunaga's law

Joint distribution for generalized version of

Reducing Horton Scaling relations Fluctuations

Models Nutshell References

Branching

Networks I

Horton ⇔

Tokunaga

Branching Networks II

Horton ⇔

Tokunaga

Reducing Horton

Scaling relations

Fluctuations

References

Models Nutshell

 $P(s_{\mu}, T_{\mu, \nu}) = \tilde{p}_{\mu} \binom{s_{\mu} - 1}{T_{\mu, \nu}} p_{\nu}^{T_{\mu, \nu}} (1 - p_{\nu} - \tilde{p}_{\mu})^{s_{\mu} - T_{\mu, \nu} - 1}$

where

Tokunaga's law:

- p_{ν} = probability of absorbing an order ν side
- \tilde{p}_{μ} = probability of an order μ stream terminating
- \clubsuit Approximation: depends on distance units of s_{μ}
- In each unit of distance along stream, there is one chance of a side stream entering or the stream terminating.

Generalizing Tokunaga's law

Scheidegger:

- & Observe exponential distributions for $T_{\mu,\nu}$
- & Scaling collapse works using R_{\circ}

Generalizing Tokunaga's law

Network architecture:

Inter-tributary lengths exponentially distributed

Leads to random spatial distribution of stream segments

Branching Networks II Horton ⇔ Tokunaga

Reducing Horton Scaling relations

Fluctuations Models

References

Generalizing Tokunaga's law

Now deal with this thing:

$$P(s_{\mu},T_{\mu,\nu}) = \tilde{p}_{\mu} \binom{s_{\mu}-1}{T_{\mu,\nu}} p_{\nu}^{T_{\mu,\nu}} (1-p_{\nu}-\tilde{p}_{\mu})^{s_{\mu}-T_{\mu,\nu}-1}$$

- Set $(x,y)=(s_{\mu},T_{\mu,\nu})$ and $q=1-p_{\nu}-\tilde{p}_{\mu}$, approximate liberally.
- Obtain

$$P(x,y) = Nx^{-1/2} \left[F(y/x) \right]^x$$

where

$$F(v) = \left(\frac{1-v}{q}\right)^{-(1-v)} \left(\frac{v}{p}\right)^{-v}.$$

Branching Networks I Horton ⇔

Branching Networks II

Horton ⇔

Tokunaga

Reducing Horton

Scaling relation

Fluctuations

Nutshell

References

Tokunaga Reducing Hortor

Scaling relations

Fluctuations Models

Nutshell References

Branching Networks II

Tokunaga Reducing Horton

Scaling relations

Fluctuations

Models Nutshell Reference

Generalizing Tokunaga's law

 \Leftrightarrow Checking form of $P(s_{\mu}, T_{\mu, \nu})$ works:

Scheidegger:

The PoCSverse Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton Scaling relations

Fluctuations Models

Nutshell

References

Generalizing Tokunaga's law

 $\mbox{\&}$ Checking form of $P(s_{\mu}, T_{\mu, \nu})$ works:

Mississippi:

Optimal channel networks

Rodríguez-Iturbe, Rinaldo, et al. [10]

 \clubsuit Landscapes $h(\vec{x})$ evolve such that energy dissipation $\dot{\varepsilon}$ is minimized, where

$$\dot{\varepsilon} \propto \int \mathrm{d}\vec{r} \; (\mathrm{flux}) \times (\mathrm{force}) \sim \sum_i a_i \nabla h_i \sim \sum_i a_i^\gamma$$

- & Landscapes obtained numerically give exponents near that of real networks.
- But: numerical method used matters.
- And: Maritan et al. find basic universality classes are that of Scheidegger, self-similar, and a third kind of random network [8]

Generalizing Tokunaga's law

 \Leftrightarrow Checking form of $P(s_{\mu}, T_{\mu, \nu})$ works:

Scheidegger:

Branching Networks II Horton ⇔

Tokunaga

Reducing Hortor Scaling relations

Fluctuations Models Nutshell

References

Models

Random subnetworks on a Bethe lattice [13]

- **But Bethe lattices** unconnected with surfaces.
- & In fact, Bethe lattices \simeq infinite dimensional spaces (oops).
- So let's move on ...

Theoretical networks

Summary of universality classes:

network	h	d		
Non-convergent flow	1	1		
Directed random	2/3	1		
Undirected random	5/8	5/4		
Self-similar	1/2	1		
OCN's (I)	1/2	1		
OCN's (II)	2/3	1		
OCN's (III)	3/5	1		
Real rivers	0.5-0.7	1.0-1.2		
h \ l as ah (Hack's law)				

 $h \Rightarrow \ell \propto a^h$ (Hack's law). $d \Rightarrow \ell \propto L_{\parallel}^d$ (stream self-affinity).

Generalizing Tokunaga's law

 $\ensuremath{\&}$ Checking form of $P(s_{\mu}, T_{\mu, \nu})$ works:

Scheidegger:

The PoCSverse Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton Scaling relations

Fluctuations Models Nutshell

Scheidegger's model

Directed random networks [11, 12]

$$P(\searrow) = P(\swarrow) = 1/2$$

Functional form of all scaling laws exhibited but exponents differ from real world [15, 16, 14]

Nutshell

Branching Networks II Horton ⇔ Tokunaga

Branching Networks II

Horton ⇔

Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

References

Branching

Networks I

Horton ⇔

Tokunaga

Models

Nutshell

References

Reducing Hortor

Scaling relations

Reducing Horton Scaling relations Fluctuations

Models Nutshell

References

Branching networks II Key Points:

A Horton's laws and Tokunaga's law all fit together.

For 2-d networks, these laws are 'planform' laws and ignore slope.

Abundant scaling relations can be derived.

- & Can take R_n , R_ℓ , and d as three independent parameters necessary to describe all 2-d branching networks.
- \Re For scaling laws, only $h = \ln R_{\ell} / \ln R_{n}$ and d are needed.
- & Laws can be extended nicely to laws of distributions.
- Numerous models of branching network evolution exist: nothing rock solid yet ...?

The PoCSverse Branching

Branching Networks II

Horton ⇔

Tokunaga

Reducing Horton

Scaling relations

Fluctuation

Models

Nutshell

References

Branching

Networks II

Horton ~

Tokunaga

Reducing Hortor

Scaling relations

Fluctuation

Models

Nutshell

References

Networks II 76 of 84 Horton ⇔ Tokunaga

Reducing Horton

Scaling relations Fluctuation

Models Nutshell References

References I

[1] H. de Vries, T. Becker, and B. Eckhardt. Power law distribution of discharge in ideal networks. Water Resources Research, 30(12):3541-3543,

1994. pdf ☑

- [2] P. S. Dodds and D. H. Rothman. Unified view of scaling laws for river networks. Physical Review E, 59(5):4865-4877, 1999. pdf
- [3] P. S. Dodds and D. H. Rothman. Geometry of river networks. II. Distributions of component size and number. Physical Review E, 63(1):016116, 2001. pdf ✓

The PoCSverse Branching Networks II

Horton ⇔ Tokunaga Reducing Horton Scaling relations

Fluctuations

Models Nutshell References

Branching

Networks II

Horton ⇔

Tokunaga

Models

Nutshell

References

The PoCSverse

Reducing Horton

Scaling relations

Models

Nutshell

References

Branching Networks II Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

References IV

[10] I. Rodríguez-Iturbe and A. Rinaldo. Fractal River Basins: Chance and Self-Organization. Cambridge University Press, Cambrigde, UK, 1997.

[11] A. E. Scheidegger.

A stochastic model for drainage patterns into an intramontane trench. Bull. Int. Assoc. Sci. Hydrol., 12(1):15-20, 1967. pdf 🖸

[12] A. E. Scheidegger. Theoretical Geomorphology.

Springer-Verlag, New York, third edition, 1991.

Branching

Networks I

Horton ⇔

Tokunaga Reducing Horton Scaling relations Fluctuations

Models Nutshell

References

Branching

Networks I

Horton ⇔

Tokunaga

Reducing Horton

References VII

[19] E. Tokunaga. Consideration on the composition of drainage networks and their evolution.

> Geographical Reports of Tokyo Metropolitan University, 13:G1–27, 1978. pdf ✓

[20] E. Tokunaga.

Ordering of divide segments and law of divide segment numbers.

Transactions of the Japanese Geomorphological Union, 5(2):71-77, 1984.

[21] S. D. Willett, S. W. McCoy, J. T. Perron, L. Goren, and C.-Y. Chen. Dynamic reorganization of river basins.

Science, 343(6175):1248765, 2014. pdf

References II

[4] P. S. Dodds and D. H. Rothman. Geometry of river networks. III. Characterization of component connectivity. Physical Review E, 63(1):016117, 2001. pdf

N. Goldenfeld. Lectures on Phase Transitions and the Renormalization Group, volume 85 of Frontiers in Addison-Wesley, Reading, Massachusetts, 1992.

[6] J. T. Hack. Studies of longitudinal stream profiles in Virginia and Maryland. United States Geological Survey Professional Paper, 294-B:45-97, 1957. pdf ☑

The PoCSverse References V

[13] R. L. Shreve. Infinite topologically random channel networks. Journal of Geology, 75:178–186, 1967. pdf

[14] H. Takayasu. Steady-state distribution of generalized aggregation system with injection. Physcial Review Letters, 63(23):2563-2565, 1989. pdf 🖸

[15] H. Takayasu, I. Nishikawa, and H. Tasaki. Power-law mass distribution of aggregation systems with injection. Physical Review A, 37(8):3110-3117, 1988.

References VIII

Scaling relations Fluctuation Models [22] G. K. Zipf. Nutshell Human Behaviour and the Principle of References Least-Effort. Addison-Wesley, Cambridge, MA, 1949. Branching Networks I

Branching

Networks II

Horton ⇔

Tokunaga

Reducing Horton

Scaling relation

Fluctuation

Models

Nutshell

References

Horton ⇔ Tokunaga

Reducing Hortor Scaling relations

Models Nutshell

References

References III

[7] J. W. Kirchner.

Statistical inevitability of Horton's laws and the apparent randomness of stream channel networks.

Geology, 21:591-594, 1993. pdf

A. Maritan, F. Colaiori, A. Flammini, M. Cieplak, and I. R. Banavar. Universality classes of optimal channel networks. Science, 272:984-986, 1996. pdf

S. D. Peckham. New results for self-similar trees with applications to river networks. Water Resources Research, 31(4):1023-1029, 1995.

References VI

[16] M. Takayasu and H. Takayasu.

Apparent independency of an aggregation system with injection.

Physical Review A, 39(8):4345–4347, 1989. pdf

[17] D. G. Tarboton, R. L. Bras, and I. Rodríguez-Iturbe. Comment on "On the fractal dimension of stream networks" by Paolo La Barbera and Renzo Rosso. Water Resources Research, 26(9):2243-4, 1990. pdf 🖸

[18] E. Tokunaga.

The composition of drainage network in Toyohira River Basin and the valuation of Horton's first law. Geophysical Bulletin of Hokkaido University, 15:1-19, 1966. pdf

Tokunaga

Scaling relations Fluctuations

Nutshell

References

The PoCSverse

Reducing Horton

Models