Assortativity and Mixing

Last updated: 2023/08/22, 11:48:25 EDT

Principles of Complex Systems, Vols. 1, 2, & 3D CSYS/MATH 6701, 6713, & a pretend number, 2023-2024 | @pocsvox

Prof. Peter Sheridan Dodds | @peterdodds

Computational Story Lab | Vermont Complex Systems Center Santa Fe Institute | University of Vermont

The PoCSverse Assortativity and Mixing 1 of 40

Definition

General mixing

Assortativity by degree

Spreading condition Triggering probability Expected size

These slides are brought to you by:

The PoCSverse Assortativity and Mixing

2 of 40

Definition

General mixing

Assortativity by degree

Contagi

Spreading condition Triggering probability Expected size

These slides are also brought to you by:

Special Guest Executive Producer

☑ On Instagram at pratchett_the_cat

The PoCSverse Assortativity and Mixing 3 of 40

Definition

General mixing

Assortativity by degree

Contagio

Spreading condition Triggering probability Expected size

Outline

Definition

General mixing

Assortativity by degree

Contagion

Spreading condition Triggering probability Expected size

References

The PoCSverse Assortativity and Mixing 4 of 40

Definition

General mixing

Assortativity by degree

Contag

Spreading condition Triggering probability Expected size

Random networks with arbitrary degree distributions cover much territory but do not represent all networks.

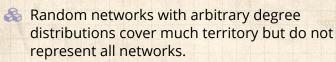
The PoCSverse Assortativity and Mixing 5 of 40

Definition

General mixing

Assortativity by degree

Spreading condition Triggering probability Expected size



Moving away from pure random networks was a key first step. The PoCSverse Assortativity and Mixing 5 of 40

Definition

General mixing

Assortativity by degree

Contagio

Spreading condition Triggering probability Expected size

Random networks with arbitrary degree distributions cover much territory but do not represent all networks.

Moving away from pure random networks was a key first step.

We can extend in many other directions and a natural one is to introduce correlations between different kinds of nodes. The PoCSverse Assortativity and Mixing 5 of 40

Definition

General mixing

Assortativity by degree

Contagio

Spreading condition Triggering probability Expected size

Random networks with arbitrary degree distributions cover much territory but do not represent all networks.

Moving away from pure random networks was a key first step.

We can extend in many other directions and a natural one is to introduce correlations between different kinds of nodes.

Node attributes may be anything, e.g.:

- 1. degree
- 2. demographics (age, gender, etc.)
- 3. group affiliation

The PoCSverse Assortativity and Mixing 5 of 40

Definition

General mixing

Assortativity by degree

Contagio

Spreading condition Triggering probability Expected size

Random networks with arbitrary degree distributions cover much territory but do not represent all networks.

Moving away from pure random networks was a key first step.

We can extend in many other directions and a natural one is to introduce correlations between different kinds of nodes.

Node attributes may be anything, e.g.:

- 1. degree
- 2. demographics (age, gender, etc.)
- 3. group affiliation

We speak of mixing patterns, correlations, biases...

The PoCSverse Assortativity and Mixing 5 of 40

Definition

General mixing

Assortativity by degree

Contagio

Spreading condition Triggering probability Expected size

Random networks with arbitrary degree distributions cover much territory but do not represent all networks.

Moving away from pure random networks was a key first step.

We can extend in many other directions and a natural one is to introduce correlations between different kinds of nodes.

Node attributes may be anything, e.g.:

- 1. degree
- 2. demographics (age, gender, etc.)
- 3. group affiliation

🙈 We speak of mixing patterns, correlations, biases...

Networks are still random at base but now have more global structure.

The PoCSverse Assortativity and Mixing 5 of 40

Definition

General mixing

Assortativity by degree

Contagio

Spreading condition Triggering probability Expected size

Random networks with arbitrary degree distributions cover much territory but do not represent all networks.

Moving away from pure random networks was a key first step.

We can extend in many other directions and a natural one is to introduce correlations between different kinds of nodes.

Node attributes may be anything, e.g.:

- 1. degree
- 2. demographics (age, gender, etc.)
- 3. group affiliation

🙈 We speak of mixing patterns, correlations, biases...

Networks are still random at base but now have more global structure.

Build on work by Newman [5, 6], and Boguñá and Serano. [1].

The PoCSverse Assortativity and Mixing 5 of 40

Definition

General mixing

Assortativity by degree

Contagio

Spreading condition Triggering probability Expected size

The PoCSverse Assortativity and Mixing 6 of 40

Definition

General mixing

Assortativity by degree

Contagion

Spreading condition Triggering probability Expected size

Assume types of nodes are countable, and are assigned numbers 1, 2, 3,

The PoCSverse Assortativity and Mixing 6 of 40

Definition

General mixing

Assortativity by degree

Spreading condition Triggering probability Expected size

Assume types of nodes are countable, and are assigned numbers 1, 2, 3,

Consider networks with directed edges.

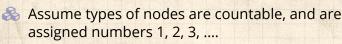
The PoCSverse Assortativity and Mixing 6 of 40

Definition

General mixing

Assortativity by degree

Spreading condition Triggering probability Expected size



Consider networks with directed edges.

 $e_{\mu\nu} = \Pr \left(\begin{array}{c} \text{an edge connects a node of type } \mu \\ \text{to a node of type } \nu \end{array} \right)$

The PoCSverse Assortativity and Mixing 6 of 40

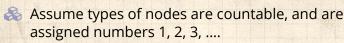
General mixing

General mixing

Assortativity by degree

Contagio

Spreading condition Triggering probability Expected size



Consider networks with directed edges.

$$e_{\mu\nu} = \Pr \left(\begin{array}{c} \text{an edge connects a node of type } \mu \\ \text{to a node of type } \nu \end{array} \right)$$

 $a_{\mu} = \mathbf{Pr}(\text{an edge comes from a node of type } \mu)$

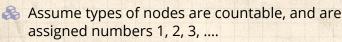
The PoCSverse Assortativity and Mixing 6 of 40

General mixing

Assortativity by degree

Contagio

Spreading condition Triggering probability Expected size



Consider networks with directed edges.

$$e_{\mu\nu} = \Pr \left(\begin{array}{c} \text{an edge connects a node of type } \mu \\ \text{to a node of type } \nu \end{array} \right)$$

 $a_{\mu} = \mathbf{Pr}(\text{an edge comes from a node of type } \mu)$

 $b_{\nu} = \mathbf{Pr}($ an edge leads to a node of type $\nu)$

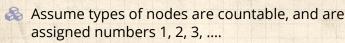
The PoCSverse Assortativity and Mixing 6 of 40

General mixing

Assortativity by degree

Contagio

Spreading condition Triggering probability Expected size



Consider networks with directed edges.

$$e_{\mu\nu} = \Pr \left(\begin{array}{c} \text{an edge connects a node of type } \mu \\ \text{to a node of type } \nu \end{array} \right)$$

 $a_{\mu} = \mathbf{Pr}(\text{an edge comes from a node of type } \mu)$

 $b_{\nu} = \mathbf{Pr}(\text{an edge leads to a node of type } \nu)$

 $\red{\$}$ Write $\mathbf{E}=[e_{\mu
u}]$, $\vec{a}=[a_{\mu}]$, and $\vec{b}=[b_{
u}]$.

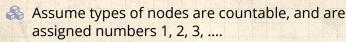
The PoCSverse Assortativity and Mixing 6 of 40

General mixing

Assortativity by degree

Contagio

Spreading condition Triggering probability Expected size



Consider networks with directed edges.

$$e_{\mu\nu} = \Pr \left(\begin{array}{c} \text{an edge connects a node of type } \mu \\ \text{to a node of type } \nu \end{array} \right)$$

 $a_{\mu} = \mathbf{Pr}(\text{an edge comes from a node of type } \mu)$

 $b_{\nu} = \mathbf{Pr}(\text{an edge leads to a node of type } \nu)$

Requirements:

$$\sum_{\mu \ \nu} e_{\mu \nu} = 1, \ \sum_{\nu} e_{\mu \nu} = a_{\mu}, \ \text{and} \ \sum_{\mu} e_{\mu \nu} = b_{\nu}.$$

The PoCSverse Assortativity and Mixing 6 of 40

General mixing

General mixing

Assortativity by degree

Contagio

Spreading condition Triggering probability Expected size

The PoCSverse Assortativity and Mixing 7 of 40

Definition

General mixing

Assortativity by degree

Contagion

Spreading condition Triggering probability Expected size

 \ref{A} Varying $e_{\mu\nu}$ allows us to move between the following:

> 1. Perfectly assortative networks where nodes only connect to like nodes, and the network breaks into subnetworks.

The PoCSverse Assortativity and Mixing 7 of 40

Definition

General mixing

Assortativity by degree

Spreading condition Triggering probability Expected size

\aleph Varying $e_{\mu\nu}$ allows us to move between the following:

1. Perfectly assortative networks where nodes only connect to like nodes, and the network breaks into subnetworks.

Requires $e_{\mu\nu}=0$ if $\mu\neq\nu$ and $\sum_{\mu}e_{\mu\mu}=1$.

The PoCSverse Assortativity and Mixing 7 of 40

Definition

General mixing

Assortativity by degree

Spreading condition Triggering probability Expected size

 \aleph Varying $e_{\mu\nu}$ allows us to move between the following:

> 1. Perfectly assortative networks where nodes only connect to like nodes, and the network breaks into subnetworks.

Requires $e_{\mu\nu}=0$ if $\mu\neq\nu$ and $\sum_{\mu}e_{\mu\mu}=1$.

2. Uncorrelated networks (as we have studied so far)

The PoCSverse Assortativity and Mixing 7 of 40

Definition

General mixing

Assortativity by degree

Spreading condition

Triggering probability Expected size

 $\ref{eq:constraint}$ Varying $e_{\mu\nu}$ allows us to move between the following:

> 1. Perfectly assortative networks where nodes only connect to like nodes, and the network breaks into subnetworks.

Requires $e_{\mu\nu}=0$ if $\mu\neq\nu$ and $\sum_{\mu}e_{\mu\mu}=1$.

2. Uncorrelated networks (as we have studied so far) For these we must have independence:

$$e_{\mu\nu} = a_{\mu}b_{\nu}.$$

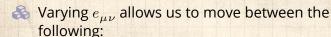
The PoCSverse Assortativity and Mixing 7 of 40

General mixing

Assortativity by degree

Spreading condition

Triggering probability Expected size



 Perfectly assortative networks where nodes only connect to like nodes, and the network breaks into subnetworks.

Requires $e_{\mu\nu}=0$ if $\mu\neq\nu$ and $\sum_{\mu}e_{\mu\mu}=1$.

2. Uncorrelated networks (as we have studied so far) For these we must have independence:

 $e_{\mu\nu} = a_{\mu}b_{\nu}.$

 Disassortative networks where nodes connect to nodes distinct from themselves. The PoCSverse Assortativity and Mixing 7 of 40

General mixing

Assortativity by

Assortativity by degree

Spreading condition

Triggering probability Expected size



1. Perfectly assortative networks where nodes only connect to like nodes, and the network breaks into subnetworks.

Requires $e_{\mu\nu}=0$ if $\mu\neq\nu$ and $\sum_{\mu}e_{\mu\mu}=1$.

2. Uncorrelated networks (as we have studied so far) For these we must have independence:

 $e_{\mu\nu}=a_{\mu}b_{\nu}$.

3. Disassortative networks where nodes connect to nodes distinct from themselves.

Disassortative networks can be hard to build and may require constraints on the $e_{\mu\nu}$.

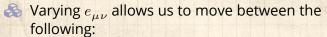
The PoCSverse Assortativity and Mixing 7 of 40

General mixing

Assortativity by degree

Spreading condition

Triggering probability Expected size



 Perfectly assortative networks where nodes only connect to like nodes, and the network breaks into subnetworks.

Requires $e_{\mu\nu}=0$ if $\mu\neq\nu$ and $\sum_{\mu}e_{\mu\mu}=1$.

2. Uncorrelated networks (as we have studied so far) For these we must have independence:

 $e_{\mu\nu} = a_{\mu}b_{\nu}.$

3. Disassortative networks where nodes connect to nodes distinct from themselves.

- $\ref{Disassortative}$ Disassortative networks can be hard to build and may require constraints on the $e_{\mu\nu}$.
- Basic story: level of assortativity reflects the degree to which nodes are connected to nodes within their group.

The PoCSverse Assortativity and Mixing 7 of 40

General mixing

Assortativity by degree

Contagio

Spreading condition Triggering probability Expected size

Quantify the level of assortativity with the following assortativity coefficient [6]:

$$r = \frac{\sum_{\mu} e_{\mu\mu} - \sum_{\mu} a_{\mu} b_{\mu}}{1 - \sum_{\mu} a_{\mu} b_{\mu}} = \frac{\operatorname{Tr} \mathbf{E} - ||E^2||_1}{1 - ||E^2||_1}$$

where $||\cdot||_1$ is the 1-norm = sum of a matrix's entries.

The PoCSverse Assortativity and Mixing 8 of 40

Definition

General mixing

Assortativity by degree

Spreading condition Triggering probability Expected size

Quantify the level of assortativity with the following assortativity coefficient [6]:

$$r = \frac{\sum_{\mu} e_{\mu\mu} - \sum_{\mu} a_{\mu} b_{\mu}}{1 - \sum_{\mu} a_{\mu} b_{\mu}} = \frac{\operatorname{Tr} \mathbf{E} - ||E^2||_1}{1 - ||E^2||_1}$$

where $||\cdot||_1$ is the 1-norm = sum of a matrix's entries.

Tr E is the fraction of edges that are within groups.

The PoCSverse Assortativity and Mixing 8 of 40

General mixing

Assortativity by degree

Contag

Spreading condition Triggering probability Expected size

Quantify the level of assortativity with the following assortativity coefficient [6]:

$$r = \frac{\sum_{\mu} e_{\mu\mu} - \sum_{\mu} a_{\mu} b_{\mu}}{1 - \sum_{\mu} a_{\mu} b_{\mu}} = \frac{\operatorname{Tr} \mathbf{E} - ||E^2||_1}{1 - ||E^2||_1}$$

where $||\cdot||_1$ is the 1-norm = sum of a matrix's entries.

- & Tr **E** is the fraction of edges that are within groups.
- $\|E^2\|_1$ is the fraction of edges that would be within groups if connections were random.

The PoCSverse Assortativity and Mixing 8 of 40

General mixing

Assortativity by degree

Contag

Spreading condition Triggering probability Expected size

Quantify the level of assortativity with the following assortativity coefficient [6]:

$$r = \frac{\sum_{\mu} e_{\mu\mu} - \sum_{\mu} a_{\mu} b_{\mu}}{1 - \sum_{\mu} a_{\mu} b_{\mu}} = \frac{\operatorname{Tr} \mathbf{E} - ||E^2||_1}{1 - ||E^2||_1}$$

where $||\cdot||_1$ is the 1-norm = sum of a matrix's entries.

- Tr E is the fraction of edges that are within groups.
- $||E^2||_1$ is the fraction of edges that would be within groups if connections were random.
- $3 1 ||E^2||_1$ is a normalization factor so $r_{\text{max}} = 1$.

The PoCSverse Assortativity and Mixing 8 of 40

Deminicion

General mixing

Assortativity by degree

Contag

Spreading condition Triggering probability Expected size

Quantify the level of assortativity with the following assortativity coefficient [6]:

$$r = \frac{\sum_{\mu} e_{\mu\mu} - \sum_{\mu} a_{\mu} b_{\mu}}{1 - \sum_{\mu} a_{\mu} b_{\mu}} = \frac{\operatorname{Tr} \mathbf{E} - ||E^2||_1}{1 - ||E^2||_1}$$

where $||\cdot||_1$ is the 1-norm = sum of a matrix's entries.

- Tr E is the fraction of edges that are within groups.
- $||E^2||_1$ is the fraction of edges that would be within groups if connections were random.
- $3 ||E^2||_1$ is a normalization factor so $r_{\text{max}} = 1$.
- \Re When Tr $e_{\mu\mu}=1$, we have r=1.

The PoCSverse Assortativity and Mixing 8 of 40

Delinition

General mixing

Assortativity by degree

Contag

Spreading condition Triggering probability Expected size

Quantify the level of assortativity with the following assortativity coefficient [6]:

$$r = \frac{\sum_{\mu} e_{\mu\mu} - \sum_{\mu} a_{\mu} b_{\mu}}{1 - \sum_{\mu} a_{\mu} b_{\mu}} = \frac{\operatorname{Tr} \mathbf{E} - ||E^2||_1}{1 - ||E^2||_1}$$

where $||\cdot||_1$ is the 1-norm = sum of a matrix's entries.

- Tr E is the fraction of edges that are within groups.
- $||E^2||_1$ is the fraction of edges that would be within groups if connections were random.
- $3 ||E^2||_1$ is a normalization factor so $r_{\text{max}} = 1$.
- $lap{N}$ When Tr $e_{\mu\mu}=1$, we have r=1.
- $\red{\$}$ When $e_{\mu\mu}=a_{\mu}b_{\mu}$, we have r=0. \checkmark

The PoCSverse Assortativity and Mixing 8 of 40

Definition

General mixing

Assortativity by degree

Contag

Spreading condition Triggering probability Expected size

Notes:

r = -1 is inaccessible if three or more types are present.

The PoCSverse Assortativity and Mixing 9 of 40

Definition

General mixing

Assortativity by degree

Spreading condition Triggering probability Expected size

Notes:

 $R_{\rm r} = -1$ is inaccessible if three or more types are present.

Disassortative networks simply have nodes connected to unlike nodes—no measure of how unlike nodes are.

The PoCSverse Assortativity and Mixing 9 of 40

Definition

General mixing

Assortativity by degree

Spreading condition Triggering probability Expected size

Notes:

 $R_{\rm r} = -1$ is inaccessible if three or more types are present.

Disassortative networks simply have nodes connected to unlike nodes—no measure of how unlike nodes are.

 \clubsuit Minimum value of r occurs when all links between non-like nodes: Tr $e_{\mu\mu} = 0$.

The PoCSverse Assortativity and Mixing 9 of 40

Definition

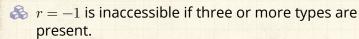
General mixing

Assortativity by degree

Spreading condition Triggering probability Expected size

Correlation coefficient:

Notes:



Disassortative networks simply have nodes connected to unlike nodes—no measure of how unlike nodes are.

Minimum value of r occurs when all links between non-like nodes: $\operatorname{Tr} e_{\mu\mu} = 0$.

$$r_{\min} = \frac{-||E^2||_1}{1 - ||E^2||_1}$$

where $-1 \le r_{\min} < 0$.

The PoCSverse Assortativity and Mixing 9 of 40

Definition

General mixing

Assortativity by degree

Contagi

Spreading condition Triggering probability Expected size

Watch your step

The PoCSverse Assortativity and Mixing 10 of 40

Definition

General mixing

Assortativity by degree

Contagion

Spreading condition Triggering probability Expected size

zzzhhhhwoooommmmmm

The PoCSverse Assortativity and Mixing 11 of 40 Definition

General mixing

Assortativity by degree

Contagion

Spreading condition Triggering probability Expected size

NuhnuhNuhnuhNuhnuhNuhnuhNuhnuh

...

The PoCSverse Assortativity and Mixing 12 of 40

Definition

General mixing

Assortativity by degree

Contagion

Spreading condition Triggering probability Expected size

Now consider nodes defined by a scalar integer quantity.

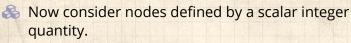
The PoCSverse Assortativity and Mixing 13 of 40

Definition

General mixing

Assortativity by degree

Spreading condition Triggering probability Expected size



Examples: age in years, height in inches, number of friends, ...

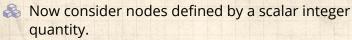
The PoCSverse Assortativity and Mixing 13 of 40

Definition
General mixing

Assortativity by degree

Contag

Spreading condition Triggering probability Expected size



Examples: age in years, height in inches, number of friends, ...

 e_{jk} = **Pr** (a randomly chosen edge connects a node with value j to a node with value k).

The PoCSverse Assortativity and Mixing 13 of 40

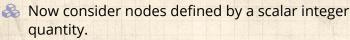
Definition

General mixing

Assortativity by degree

Contagi

Spreading condition
Triggering probability
Expected size



Examples: age in years, height in inches, number of friends, ...

 e_{jk} = **Pr** (a randomly chosen edge connects a node with value j to a node with value k).

 $\begin{cases} \&a_j \end{case}$ and b_k are defined as before.

The PoCSverse Assortativity and Mixing 13 of 40

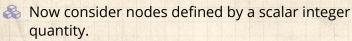
Definition

General mixing

Assortativity by degree

Contagi

Spreading condition Triggering probability Expected size



Examples: age in years, height in inches, number of friends, ...

 e_{jk} = **Pr** (a randomly chosen edge connects a node with value j to a node with value k).

 $\begin{cases} \&a_j \end{case}$ and b_k are defined as before.

Can now measure correlations between nodes based on this scalar quantity using standard Pearson correlation coefficient ☑: The PoCSverse Assortativity and Mixing 13 of 40

General mixing

Assortativity by degree

Contagio

Spreading condition Triggering probability Expected size

Now consider nodes defined by a scalar integer quantity.

Examples: age in years, height in inches, number of friends, ...

 e_{jk} = **Pr** (a randomly chosen edge connects a node with value j to a node with value k).

 $\begin{cases} \&a_j \end{case}$ and b_k are defined as before.

Can now measure correlations between nodes based on this scalar quantity using standard Pearson correlation coefficient ☑:

$$r = \frac{\sum_{j\,k} j\,k(e_{jk} - a_j b_k)}{\sigma_a\,\sigma_b} = \frac{\langle jk \rangle - \langle j \rangle_a \langle k \rangle_b}{\sqrt{\langle j^2 \rangle_a - \langle j \rangle_a^2} \sqrt{\langle k^2 \rangle_b - \langle k \rangle_b^2}}$$

The PoCSverse Assortativity and Mixing 13 of 40

General mixing

Assortativity by degree

Contagion
Spreading condition

Triggering probability Expected size

Now consider nodes defined by a scalar integer quantity.

Examples: age in years, height in inches, number of friends, ...

 e_{jk} = **Pr** (a randomly chosen edge connects a node with value j to a node with value k).

 $\begin{cases} \&a_j \end{case}$ and b_k are defined as before.

Can now measure correlations between nodes based on this scalar quantity using standard Pearson correlation coefficient ☑:

$$r = \frac{\sum_{j\,k} j\,k(e_{jk} - a_j b_k)}{\sigma_a\,\sigma_b} = \frac{\langle jk \rangle - \langle j \rangle_a \langle k \rangle_b}{\sqrt{\langle j^2 \rangle_a - \langle j \rangle_a^2} \sqrt{\langle k^2 \rangle_b - \langle k \rangle_b^2}}$$

A This is the observed normalized deviation from randomness in the product jk.

The PoCSverse Assortativity and Mixing 13 of 40

General mixing

Assortativity by degree

Contagi

Spreading condition Triggering probability Expected size

The PoCSverse Assortativity and Mixing 14 of 40

Definition

General mixing

Assortativity by degree

Contagion

Spreading condition Triggering probability Expected size

Natural correlation is between the degrees of connected nodes.

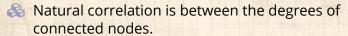
The PoCSverse Assortativity and Mixing 14 of 40

Definition

General mixing

Assortativity by degree

Spreading condition Triggering probability Expected size



 $\red {\Bbb R}$ Now define e_{jk} with a slight twist:

$$e_{jk} = \mathbf{Pr} \left(\begin{array}{c} \text{an edge connects a degree } j+1 \text{ node} \\ \text{to a degree } k+1 \text{ node} \end{array} \right)$$

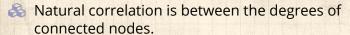
The PoCSverse Assortativity and Mixing 14 of 40

Definition
General mixing

Assortativity by degree

Contagio

Spreading condition
Triggering probability
Expected size



 $\red {\Bbb R}$ Now define e_{jk} with a slight twist:

$$e_{jk} = \mathbf{Pr} \left(\begin{array}{c} \mathsf{an} \ \mathsf{edge} \ \mathsf{connects} \ \mathsf{a} \ \mathsf{degree} \ j+1 \ \mathsf{node} \\ \mathsf{to} \ \mathsf{a} \ \mathsf{degree} \ k+1 \ \mathsf{node} \end{array} \right)$$

= **Pr** $\left(\begin{array}{c}$ an edge runs between a node of in-degree j and a node of out-degree k

The PoCSverse Assortativity and Mixing 14 of 40

General mixing

Assortativity by degree

Contagio

Spreading condition Triggering probability Expected size

Natural correlation is between the degrees of connected nodes.

 $\red {\Bbb R}$ Now define e_{jk} with a slight twist:

$$e_{jk} = \mathbf{Pr} \left(egin{array}{l} ext{an edge connects a degree } j+1 ext{ node} \\ ext{to a degree } k+1 ext{ node} \end{array}
ight)$$

 $= \mathbf{Pr} \left(\begin{array}{c} \text{an edge runs between a node of in-degree } j \\ \text{and a node of out-degree } k \end{array} \right)$

& Useful for calculations (as per R_k)

The PoCSverse Assortativity and Mixing 14 of 40

General mixing

Assortativity by degree

Contagio

Spreading condition Triggering probability Expected size

Natural correlation is between the degrees of connected nodes.

 $\red {\Bbb R}$ Now define e_{jk} with a slight twist:

$$e_{jk} = \Pr \left(\begin{array}{l} \text{an edge connects a degree } j+1 \text{ node} \\ \text{to a degree } k+1 \text{ node} \end{array} \right)$$

= **Pr** $\left(\begin{array}{c}$ an edge runs between a node of in-degree j and a node of out-degree k

& Useful for calculations (as per R_k)

Must separately define P_0 as the $\{e_{jk}\}$ contain no information about isolated nodes.

The PoCSverse Assortativity and Mixing 14 of 40

General mixing

Assortativity by degree

Contagio

Spreading condition Triggering probability Expected size

Natural correlation is between the degrees of connected nodes.

 $\red {\Bbb R}$ Now define e_{jk} with a slight twist:

$$e_{jk} = \mathbf{Pr} \left(\begin{array}{c} \text{an edge connects a degree } j+1 \text{ node} \\ \text{to a degree } k+1 \text{ node} \end{array} \right)$$

= **Pr** $\left(\begin{array}{c}$ an edge runs between a node of in-degree j and a node of out-degree k

- & Useful for calculations (as per R_k)
- Must separately define P_0 as the $\{e_{jk}\}$ contain no information about isolated nodes.
- $\ \ \,$ Directed networks still fine but we will assume from here on that $e_{jk}=e_{kj}.$

The PoCSverse Assortativity and Mixing 14 of 40

Denimon

General mixing

Assortativity by degree

Contagio

Spreading condition Triggering probability Expected size

Notation reconciliation for undirected networks:

$$r = \frac{\sum_{j\,k} j\,k(e_{jk} - R_j R_k)}{\sigma_R^2}$$

where, as before, R_k is the probability that a randomly chosen edge leads to a node of degree k+1, and

$$\sigma_R^2 = \sum_j j^2 R_j - \left[\sum_j j R_j\right]^2.$$

The PoCSverse Assortativity and Mixing 15 of 40

Definition

General mixing

Assortativity by degree

Spreading condition Triggering probability Expected size

Error estimate for *r*:

 \aleph Remove edge *i* and recompute *r* to obtain r_i .

The PoCSverse Assortativity and Mixing 16 of 40

Definition

General mixing

Assortativity by degree

Spreading condition Triggering probability Expected size

Error estimate for r:

 \mathbb{R} Remove edge i and recompute r to obtain r_i .

Repeat for all edges and compute using the jackknife method [3]

$$\sigma_r^2 = \sum_i (r_i - r)^2.$$

The PoCSverse Assortativity and Mixing 16 of 40

Definition General mixing

Assortativity by degree

Spreading condition Triggering probability Expected size

Error estimate for r:

& Remove edge i and recompute r to obtain r_i .

Repeat for all edges and compute using the jackknife method [3]

$$\sigma_r^2 = \sum_i (r_i - r)^2.$$

Mildly sneaky as variables need to be independent for us to be truly happy and edges are correlated... The PoCSverse Assortativity and Mixing 16 of 40

Definition

General mixing

Assortativity by degree

Contagio

Spreading condition Triggering probability Expected size

Measurements of degree-degree correlations

	Group	Network	Туре	Size n	Assortativity r	Error σ_r
	a	Physics coauthorship	undirected	52 909	0.363	0.002
	a	Biology coauthorship	undirected	1 520 251	0.127	0.0004
	b	Mathematics coauthorship	undirected	253 339	0.120	0.002
Social	c	Film actor collaborations	undirected	449 913	0.208	0.0002
	d	Company directors	undirected	7 673	0.276	0.004
	e	Student relationships	undirected	573	-0.029	0.037
	f	Email address books	directed	16 881	0.092	0.004
	g	Power grid	undirected	4 941	-0.003	0.013
Technological	h	Internet	undirected	10 697	-0.189	0.002
	i	World Wide Web	directed	269 504	-0.067	0.0002
	j	Software dependencies	directed	3 162	-0.016	0.020
	k	Protein interactions	undirected	2 115	-0.156	0.010
	1	Metabolic network	undirected	765	-0.240	0.007
Biological	m	Neural network	directed	307	-0.226	0.016
	n	Marine food web	directed	134	-0.263	0.037
	0	Freshwater food web	directed	92	-0.326	0.031

The PoCSverse Assortativity and Mixing 17 of 40

Definition

General mixing

Assortativity by degree

Spreading condition Triggering probability Expected size

References

disassortative

Social networks tend to be assortative (homophily) Technological and biological networks tend to be

The PoCSverse Assortativity and Mixing 18 of 40

Definition

General mixing

Assortativity by degree

Contagion

Spreading condition Triggering probability Expected size

"I like it"

The PoCSverse Assortativity and Mixing 19 of 40

Definition

General mixing

Assortativity by degree

Contagion

Spreading condition Triggering probability Expected size

Outline

Definition

General mixing

Assortativity by degree

Contagion
Spreading condition

Expected size

References

The PoCSverse Assortativity and Mixing 20 of 40

Definition

General mixing

Assortativity by degree

Contagion
Spreading condition
Triggering probability

Expected size

Next: Generalize our work for random networks to degree-correlated networks.

The PoCSverse Assortativity and Mixing 21 of 40

Definition

General mixing

Assortativity by degree

Spreading condition

Triggering probability Expected size

Next: Generalize our work for random networks to degree-correlated networks.

As before, by allowing that a node of degree k is activated by one neighbor with probability B_{k1} , we can handle various problems:

The PoCSverse Assortativity and Mixing 21 of 40

Definition

General mixing

Assortativity by degree

Contagion
Spreading condition
Triggering probability
Expected size

Next: Generalize our work for random networks to degree-correlated networks.

As before, by allowing that a node of degree k is activated by one neighbor with probability B_{k1} , we can handle various problems:

1. find the giant component size.

The PoCSverse Assortativity and Mixing 21 of 40

Definition

General mixing

Assortativity by degree

Contagion
Spreading condition
Triggering probability

Expected size
References

Next: Generalize our work for random networks to degree-correlated networks.

As before, by allowing that a node of degree k is activated by one neighbor with probability B_{k1} , we can handle various problems:

- 1. find the giant component size.
- 2. find the probability and extent of spread for simple disease models.

The PoCSverse Assortativity and Mixing 21 of 40

Definition

General mixing

Assortativity by degree

Contagion
Spreading condition
Triggering probability

Expected size
Reference

Assortativity and Mixing 21 of 40 Definition

The PoCSverse

Dellillition

General mixing

Assortativity by degree

Spreading condition
Triggering probability

Expected size

Next: Generalize our work for random networks to degree-correlated networks.

As before, by allowing that a node of degree k is activated by one neighbor with probability B_{k1} , we can handle various problems:

- 1. find the giant component size.
- 2. find the probability and extent of spread for simple disease models.
- 3. find the probability of spreading for simple threshold models.

 \mathfrak{S} Goal: Find $f_{n,j}$ = **Pr** an edge emanating from a degree j + 1 node leads to a finite active subcomponent of size n.

The PoCSverse Assortativity and Mixing 22 of 40

Definition

General mixing

Assortativity by degree

Spreading condition Triggering probability

Expected size

 \mathfrak{S} Goal: Find $f_{n,j}$ = **Pr** an edge emanating from a degree j + 1 node leads to a finite active subcomponent of size n.

 Repeat: a node of degree k is in the game with probability B_{k1} .

The PoCSverse Assortativity and Mixing 22 of 40

Definition General mixing

Assortativity by degree

Spreading condition Triggering probability Expected size

Goal: Find $f_{n,j}$ = \Pr an edge emanating from a degree j+1 node leads to a finite active subcomponent of size n.

Repeat: a node of degree k is in the game with probability B_{k1} .

Arr Define $\vec{B}_1 = [B_{k1}]$.

The PoCSverse Assortativity and Mixing 22 of 40

Definition

General mixing

Assortativity by degree

Contagion
Spreading condition
Triggering probability

Expected size
References

Goal: Find $f_{n,j}$ = \Pr an edge emanating from a degree j+1 node leads to a finite active subcomponent of size n.

Repeat: a node of degree k is in the game with probability B_{k1} .

 $lap{A}$ Define $\vec{B}_1 = [B_{k1}]$.

Plan: Find the generating function $F_j(x; \vec{B}_1) = \sum_{n=0}^{\infty} f_{n,j} x^n$.

The PoCSverse Assortativity and Mixing 22 of 40

Definition

General mixing

Assortativity by degree

Contagion
Spreading condition
Triggering probability
Expected size

Recursive relationship:

$$\begin{split} F_{j}(x;\vec{B}_{1}) &= x^{0} \sum_{k=0}^{\infty} \frac{e_{jk}}{R_{j}} (1 - B_{k+1,1}) \\ &+ x \sum_{k=0}^{\infty} \frac{e_{jk}}{R_{j}} B_{k+1,1} \left[F_{k}(x;\vec{B}_{1}) \right]^{k}. \end{split}$$

The PoCSverse Assortativity and Mixing 23 of 40

Definition

General mixing

Assortativity by degree

Spreading condition

Triggering probability Expected size

Recursive relationship:

$$\begin{split} F_j(x; \vec{B}_1) &= x^0 \sum_{k=0}^{\infty} \frac{e_{jk}}{R_j} (1 - B_{k+1,1}) \\ &+ x \sum_{k=0}^{\infty} \frac{e_{jk}}{R_j} B_{k+1,1} \left[F_k(x; \vec{B}_1) \right]^k. \end{split}$$

First term = Pr (that the first node we reach is not in the game). The PoCSverse Assortativity and Mixing 23 of 40

Definition

General mixing

Assortativity by degree

Contagion
Spreading condition

Triggering probability
Expected size

Recursive relationship:

$$\begin{split} F_j(x; \vec{B}_1) &= x^0 \sum_{k=0}^{\infty} \frac{e_{jk}}{R_j} (1 - B_{k+1,1}) \\ &+ x \sum_{k=0}^{\infty} \frac{e_{jk}}{R_j} B_{k+1,1} \left[F_k(x; \vec{B}_1) \right]^k. \end{split}$$

- First term = Pr (that the first node we reach is not in the game).
- Second term involves \mathbf{Pr} (we hit an active node which has k outgoing edges).

The PoCSverse Assortativity and Mixing 23 of 40

Definition

General mixing

Assortativity by degree

Contagior

Spreading condition Triggering probability Expected size

Recursive relationship:

$$\begin{split} F_j(x; \vec{B}_1) &= x^0 \sum_{k=0}^{\infty} \frac{e_{jk}}{R_j} (1 - B_{k+1,1}) \\ &+ x \sum_{k=0}^{\infty} \frac{e_{jk}}{R_j} B_{k+1,1} \left[F_k(x; \vec{B}_1) \right]^k. \end{split}$$

- First term = Pr (that the first node we reach is not in the game).
- Second term involves \mathbf{Pr} (we hit an active node which has k outgoing edges).
- Next: find average size of active components reached by following a link from a degree j+1 node = $F'_j(1; \vec{B}_1)$.

The PoCSverse Assortativity and Mixing 23 of 40

Definition

General mixing

Assortativity by degree

Contagion

Spreading condition Triggering probability Expected size

 \Longrightarrow Differentiate $F_i(x; \vec{B}_1)$, set x = 1, and rearrange.

The PoCSverse Assortativity and Mixing 24 of 40

Definition

General mixing

Assortativity by degree

Spreading condition

Triggering probability Expected size

 \Longrightarrow Differentiate $F_i(x; \vec{B}_1)$, set x = 1, and rearrange.

 \Re We use $F_k(1; \vec{B}_1) = 1$ which is true when no giant component exists.

The PoCSverse Assortativity and Mixing 24 of 40

Definition

General mixing

Assortativity by degree

Spreading condition Triggering probability

Expected size

 \Longrightarrow Differentiate $F_i(x; \vec{B}_1)$, set x = 1, and rearrange.

 \Re We use $F_{l_{\bullet}}(1; \vec{B}_{1}) = 1$ which is true when no giant component exists. We find:

The PoCSverse Assortativity and Mixing 24 of 40 Definition

General mixing

Assortativity by degree

Spreading condition Triggering probability Expected size

$$R_j F_j'(1; \vec{B}_1) = \sum_{k=0}^{\infty} e_{jk} B_{k+1,1} + \sum_{k=0}^{\infty} k e_{jk} B_{k+1,1} F_k'(1; \vec{B}_1)^{\text{References}}$$

 \Longrightarrow Differentiate $F_i(x; \vec{B}_1)$, set x = 1, and rearrange.

 \Re We use $F_k(1; \vec{B}_1) = 1$ which is true when no giant component exists. We find:

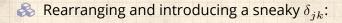
The PoCSverse Assortativity and Mixing 24 of 40 Definition

General mixing

Assortativity by degree

Spreading condition Triggering probability Expected size

$$R_j F_j'(1; \vec{B}_1) = \sum_{k=0}^{\infty} e_{jk} B_{k+1,1} + \sum_{k=0}^{\infty} k e_{jk} B_{k+1,1} F_k'(1; \vec{B}_1)^{\text{References}}$$



$$\sum_{k=0}^{\infty} \left(\delta_{jk} R_k - k B_{k+1,1} e_{jk} \right) F_k'(1; \vec{B}_1) = \sum_{k=0}^{\infty} e_{jk} B_{k+1,1}.$$

In matrix form, we have

$${\bf A}_{{\bf E},\vec{B}_1}\vec{F}'(1;\vec{B}_1)={\bf E}\vec{B}_1$$

where

$$\begin{split} \left[\mathbf{A}_{\mathbf{E},\vec{B}_1} \right]_{j+1,k+1} &= \delta_{jk} R_k - k B_{k+1,1} e_{jk}, \\ \left[\vec{F}'(1;\vec{B}_1) \right]_{k+1} &= F_k'(1;\vec{B}_1), \\ \left[\mathbf{E} \right]_{j+1,k+1} &= e_{jk}, \text{ and } \left[\vec{B}_1 \right]_{k+1} = B_{k+1,1}. \end{split}$$

The PoCSverse Assortativity and Mixing 25 of 40

Definition General mixing

Assortativity by degree

Spreading condition

Triggering probability Expected size

🚳 So, in principle at least:

$$\vec{F}'(1;\vec{B}_1) = \mathbf{A}_{\mathbf{E},\vec{B}_1}^{-1} \, \mathbf{E} \vec{B}_1.$$

The PoCSverse Assortativity and Mixing 26 of 40

Definition

General mixing

Assortativity by degree

Spreading condition Triggering probability

So, in principle at least:

$$\vec{F}'(1;\vec{B}_1) = \mathbf{A}_{\mathbf{E},\vec{B}_1}^{-1} \, \mathbf{E} \vec{B}_1.$$

Arr Now: as $\vec{F}'(1; \vec{B}_1)$, the average size of an active component reached along an edge, increases, we move towards a transition to a giant component.

The PoCSverse Assortativity and Mixing 26 of 40

Definition

General mixing

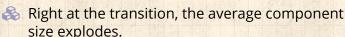
Assortativity by degree

Spreading condition Triggering probability

So, in principle at least:

$$\vec{F}'(1;\vec{B}_1) = \mathbf{A}_{\mathbf{E},\vec{B}_1}^{-1} \, \mathbf{E} \vec{B}_1.$$

Arr Now: as $\vec{F}'(1; \vec{B}_1)$, the average size of an active component reached along an edge, increases, we move towards a transition to a giant component.



The PoCSverse Assortativity and Mixing 26 of 40

Definition General mixing

Assortativity by degree

Spreading condition Triggering probability

So, in principle at least:

$$\vec{F}'(1;\vec{B}_1) = \mathbf{A}_{\mathbf{E},\vec{B}_1}^{-1} \, \mathbf{E} \vec{B}_1.$$

- Now: as $\vec{F}'(1; \vec{B}_1)$, the average size of an active component reached along an edge, increases, we move towards a transition to a giant component.
- Right at the transition, the average component size explodes.
- Exploding inverses of matrices occur when their determinants are 0.

The PoCSverse Assortativity and Mixing 26 of 40

Definition

General mixing

Assortativity by degree

Contagion Spreading condition

Triggering probability Expected size

🙈 So, in principle at least:

$$\vec{F}'(1;\vec{B}_1) = \mathbf{A}_{\mathbf{E},\vec{B}_1}^{-1} \, \mathbf{E} \vec{B}_1.$$

- Now: as $\vec{F}'(1; \vec{B}_1)$, the average size of an active component reached along an edge, increases, we move towards a transition to a giant component.
- Right at the transition, the average component size explodes.
- Exploding inverses of matrices occur when their determinants are 0.
- The condition is therefore:

$$\mathsf{det}\mathbf{A}_{\mathbf{E},\vec{B}_1} = 0$$

The PoCSverse Assortativity and Mixing 26 of 40

Definition

General mixing

Assortativity by degree

Contagio

Spreading condition
Triggering probability
Expected size

General condition details:

$$\det\!\mathbf{A}_{\mathbf{E},\vec{B}_1} = \det\left[\delta_{jk}R_{k-1} - (k-1)B_{k,1}e_{j-1,k-1}\right] = 0.$$

The PoCSverse Assortativity and Mixing 27 of 40

Definition

General mixing

Assortativity by degree

Spreading condition

Triggering probability Expected size

General condition details:

$$\det\!\mathbf{A}_{\mathbf{E},\vec{B}_1} = \det\left[\delta_{jk}R_{k-1} - (k-1)B_{k,1}e_{j-1,k-1}\right] = 0.$$

The above collapses to our standard contagion condition when $e_{ik} = R_i R_k$ (see next slide). [2]

The PoCSverse Assortativity and Mixing 27 of 40

Definition General mixing

Assortativity by degree

Spreading condition

Triggering probability Expected size

General condition details:

$$\det\!\mathbf{A}_{\mathbf{E},\vec{B}_1} = \det\left[\delta_{jk}R_{k-1} - (k-1)B_{k,1}e_{j-1,k-1}\right] = 0.$$

The above collapses to our standard contagion condition when $e_{ik} = R_i R_k$ (see next slide). [2]

3 When $\vec{B}_1 = B\vec{1}$, we have the condition for a simple disease model's successful spread

$$\det\left[\delta_{jk} R_{k-1} - B(k-1) e_{j-1,\,k-1}\right] = 0.$$

The PoCSverse Assortativity and Mixing 27 of 40 Definition

General mixing

Assortativity by degree

Spreading condition Triggering probability

General condition details:

$$\det\!\mathbf{A}_{\mathbf{E},\vec{B}_1} = \det\left[\delta_{jk}R_{k-1} - (k-1)B_{k,1}e_{j-1,k-1}\right] = 0.$$

 $\ref{eq:condition}$ The above collapses to our standard contagion condition when $e_{jk}=R_jR_k$ (see next slide). [2]

 \Re When $\vec{B}_1 = B\vec{1}$, we have the condition for a simple disease model's successful spread

$$\det \left[\delta_{jk} R_{k-1} - B(k-1) e_{j-1,k-1} \right] = 0.$$

When $\vec{B}_1 = \vec{1}$, we have the condition for the existence of a giant component:

$$\det\left[\delta_{jk} R_{k-1} - (k-1) e_{j-1,\,k-1}\right] = 0.$$

The PoCSverse Assortativity and Mixing 27 of 40

General mixing

Assortativity by degree

Contagion
Spreading condition
Triggering probability

General condition details:

$${\rm det} {\bf A}_{{\bf E},\vec{B}_1} = {\rm det} \left[\delta_{jk} R_{k-1} - (k-1) B_{k,1} e_{j-1,k-1} \right] = 0.$$

The above collapses to our standard contagion condition when $e_{jk}=R_jR_k$ (see next slide). [2]

When $\vec{B}_1 = B\vec{1}$, we have the condition for a simple disease model's successful spread

$$\det\left[\delta_{jk}R_{k-1} - B(k-1)e_{j-1,k-1}\right] = 0.$$

When $\vec{B}_1 = \vec{1}$, we have the condition for the existence of a giant component:

$$\det\left[\delta_{jk}R_{k-1}-(k-1)e_{j-1,k-1}\right]=0.$$

& Bonusville: We'll find a much better version of this set of conditions later...

The PoCSverse Assortativity and Mixing 27 of 40

General mixing

Assortativity by degree

Contagion
Spreading condition
Triggering probability

Retrieving the cascade condition for uncorrelated networks

The PoCSverse Assortativity and Mixing 28 of 40

Definition

General mixing

Assortativity by degree

Contagion
Spreading condition
Triggering probability

Expected size

Outline

Definition

General mixing

Assortativity by degree

Contagion

Spreading condition

Triggering probability

Expected size

References

The PoCSverse Assortativity and Mixing 29 of 40

Definition

General mixing

Assortativity by degree

Contagior

Spreading condition
Triggering probability
Expected size

We'll next find two more pieces:

1. P_{trig} , the probability of starting a cascade

The PoCSverse Assortativity and Mixing 30 of 40

Definition

General mixing

Assortativity by degree

Contagion
Spreading condition

Triggering probability Expected size

We'll next find two more pieces:

- 1. P_{trig} , the probability of starting a cascade
- 2. *S*, the expected extent of activation given a small seed.

The PoCSverse Assortativity and Mixing 30 of 40

Definition

General mixing

Assortativity by degree

Contagion
Spreading condition

Triggering probability
Expected size

We'll next find two more pieces:

- 1. P_{trig} , the probability of starting a cascade
- 2. S, the expected extent of activation given a small seed.

Triggering probability:

Generating function:

$$H(x; \vec{B}_1) = x \sum_{k=0}^{\infty} P_k \left[F_{k-1}(x; \vec{B}_1) \right]^k$$
.

The PoCSverse Assortativity and Mixing 30 of 40

Definition General mixing

Assortativity by

degree

Spreading condition

Triggering probability Expected size

We'll next find two more pieces:

- 1. P_{trig} , the probability of starting a cascade
- 2. *S*, the expected extent of activation given a small seed.

Triggering probability:

Generating function:

$$H(x; \vec{B}_1) = x \sum_{k=0}^{\infty} P_k \left[F_{k-1}(x; \vec{B}_1) \right]^k$$
.

Generating function for vulnerable component size is more complicated. The PoCSverse Assortativity and Mixing 30 of 40

Definition

General mixing

Assortativity by degree

Contagion
Spreading condition

Triggering probability
Expected size

Want probability of not reaching a finite component.

$$\begin{split} P_{\mathrm{trig}} &= S_{\mathrm{trig}} = & 1 - H(1; \vec{B}_1) \\ &= & 1 - \sum_{k=0}^{\infty} P_k \left[F_{k-1}(1; \vec{B}_1) \right]^k. \end{split}$$

The PoCSverse Assortativity and Mixing 31 of 40

Definition

General mixing

Assortativity by degree

Spreading condition

Triggering probability Expected size

Want probability of not reaching a finite component.

$$\begin{split} P_{\mathrm{trig}} &= S_{\mathrm{trig}} = & 1 - H(1; \vec{B}_1) \\ &= & 1 - \sum_{k=0}^{\infty} P_k \left[F_{k-1}(1; \vec{B}_1) \right]^k. \end{split}$$

 \clubsuit Last piece: we have to compute $F_{k-1}(1; \vec{B}_1)$.

The PoCSverse Assortativity and Mixing 31 of 40

Definition General mixing

Assortativity by

degree

Spreading condition

Triggering probability Expected size

Want probability of not reaching a finite component.

$$\begin{split} P_{\mathrm{trig}} &= S_{\mathrm{trig}} = & 1 - H(1; \vec{B}_1) \\ &= & 1 - \sum_{k=0}^{\infty} P_k \left[F_{k-1}(1; \vec{B}_1) \right]^k. \end{split}$$

 \clubsuit Last piece: we have to compute $F_{k-1}(1; \vec{B}_1)$.

Nastier (nonlinear)—we have to solve the recursive expression we started with when x = 1:

$$\begin{split} F_j(1;\vec{B}_1) &= \sum_{k=0}^{\infty} \frac{e_{jk}}{R_j} (1 - B_{k+1,1}) + \\ &\qquad \qquad \sum_{k=0}^{\infty} \frac{e_{jk}}{R_j} B_{k+1,1} \left[F_k(1;\vec{B}_1) \right]^k. \end{split}$$

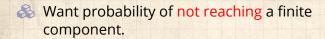
The PoCSverse Assortativity and Mixing 31 of 40

General mixing

Assortativity by degree

Spreading condition

Triggering probability Expected size



$$\begin{split} P_{\mathrm{trig}} &= S_{\mathrm{trig}} = & 1 - H(1; \vec{B}_1) \\ &= & 1 - \sum_{k=0}^{\infty} P_k \left[F_{k-1}(1; \vec{B}_1) \right]^k. \end{split}$$

- \clubsuit Last piece: we have to compute $F_{k-1}(1; \vec{B}_1)$.
- Nastier (nonlinear)—we have to solve the recursive expression we started with when x=1: $F_j(1;\vec{B}_1) = \sum_{k=0}^{\infty} \frac{e_{jk}}{R_{\star}} (1-B_{k+1,1}) +$

$$\sum_{k=0}^{\infty} \frac{e_{jk}}{R_j} B_{k+1,1} \left[F_k(1; \vec{B}_1) \right]^k.$$

Iterative methods should work here.

The PoCSverse Assortativity and Mixing 31 of 40

Definition

General mixing

Assortativity by degree

Contagio

Spreading condition
Triggering probability
Expected size

Outline

Definition

General mixing

Assortativity by degree

Contagion

Spreading condition
Triggering probability

Expected size

References

The PoCSverse Assortativity and Mixing 32 of 40

Definition
General mixing

Assortativity by

degree degree

Contag

Spreading condition Triggering probability Expected size

Truly final piece: Find final size using approach of Gleeson [4], a generalization of that used for uncorrelated random networks.

The PoCSverse Assortativity and Mixing 33 of 40 Definition

General mixing

Assortativity by degree

Spreading condition Triggering probability

Expected size

Truly final piece: Find final size using approach of Gleeson [4], a generalization of that used for uncorrelated random networks.

Need to compute $\theta_{j,t}$, the probability that an edge leading to a degree j node is infected at time t.

The PoCSverse Assortativity and Mixing 33 of 40

General mixing

Assortativity by degree

Contagio

Spreading condition
Triggering probability
Expected size

Truly final piece: Find final size using approach of Gleeson [4], a generalization of that used for uncorrelated random networks.

Need to compute $\theta_{j,t}$, the probability that an edge leading to a degree j node is infected at time t.

Evolution of edge activity probability:

$$\theta_{j,t+1} = G_j(\vec{\theta}_t) = \phi_0 + (1-\phi_0) \times$$

$$\sum_{k=1}^{\infty} \frac{e_{j-1,k-1}}{R_{j-1}} \sum_{i=0}^{k-1} {k-1 \choose i} \theta_{k,t}^{i} (1-\theta_{k,t})^{k-1-i} B_{ki}.$$

The PoCSverse Assortativity and Mixing 33 of 40

General mixing

Assortativity by degree

Contagio

Spreading condition Triggering probability Expected size

A Truly final piece: Find final size using approach of Gleeson [4], a generalization of that used for uncorrelated random networks.

 \Re Need to compute $\theta_{i,t}$, the probability that an edge leading to a degree j node is infected at time t.

Evolution of edge activity probability:

$$\theta_{j,t+1} = G_j(\vec{\theta}_t) = \phi_0 + (1-\phi_0) \times$$

$$\sum_{k=1}^{\infty} \frac{e_{j-1,k-1}}{R_{j-1}} \sum_{i=0}^{k-1} \binom{k-1}{i} \theta_{k,t}^{i} (1-\theta_{k,t})^{k-1-i} B_{ki}.$$

Overall active fraction's evolution:

$$\phi_{t+1} = \phi_0 + (1 - \phi_0) \sum_{k=0}^{\infty} P_k \sum_{i=0}^k \binom{k}{i} \theta_{k,t}^i (1 - \theta_{k,t})^{k-i} B_{ki}. \quad \text{Pocs} \\ \text{Projected Specimen Supervisors} \\ \text{Supervisors} \\ \text{Superviso$$

The PoCSverse Assortativity and Mixing 33 of 40

General mixing

Assortativity by degree

Spreading condition Triggering probability Expected size

As before, these equations give the actual evolution of ϕ_t for synchronous updates.

The PoCSverse Assortativity and Mixing 34 of 40

Definition

General mixing

Assortativity by degree

Spreading condition Triggering probability Expected size

As before, these equations give the actual evolution of ϕ_t for synchronous updates.

& Contagion condition follows from $\vec{\theta}_{t+1} = \vec{G}(\vec{\theta}_t)$.

The PoCSverse Assortativity and Mixing 34 of 40

General mixing

Assortativity by degree

Contagion
Spreading condition

Triggering probability

Expected size

References

As before, these equations give the actual evolution of ϕ_t for synchronous updates.

 $\red subseteq \begin{center} \red & \Leftrightarrow \end{center}$ Expand ec G around $ec heta_0 = ec 0.$

The PoCSverse Assortativity and Mixing 34 of 40

General mixing

Assortativity by degree

Contagion
Spreading condition
Triggering probability

As before, these equations give the actual evolution of ϕ_t for synchronous updates.

 $\red{8}$ Contagion condition follows from $\vec{\theta}_{t+1} = \vec{G}(\vec{\theta}_t)$.

 \clubsuit Expand \vec{G} around $\vec{\theta}_0 = \vec{0}$.

$$\theta_{j,t+1} = G_j(\vec{0}) + \sum_{k=1}^{\infty} \frac{\partial G_j(\vec{0})}{\partial \theta_{k,t}} \theta_{k,t} + \frac{1}{2!} \sum_{k=1}^{\infty} \frac{\partial^2 G_j(\vec{0})}{\partial \theta_{k,t}^2} \theta_{k,t}^2 + \dots$$

The PoCSverse Assortativity and Mixing 34 of 40

General mixing

Assortativity by degree

Contagion
Spreading condition
Triggering probability
Expected size

As before, these equations give the actual evolution of ϕ_t for synchronous updates.

 $\red {\Bbb S}$ Contagion condition follows from ${ec heta}_{t+1} = {ec G}({ec heta}_t).$

 \clubsuit Expand \vec{G} around $\vec{\theta}_0 = \vec{0}$.

$$\theta_{j,t+1} = G_j(\vec{0}) + \sum_{k=1}^{\infty} \frac{\partial G_j(\vec{0})}{\partial \theta_{k,t}} \theta_{k,t} + \frac{1}{2!} \sum_{k=1}^{\infty} \frac{\partial^2 G_j(\vec{0})}{\partial \theta_{k,t}^2} \theta_{k,t}^2 + \dots$$

Always have some infection. If $G_j(\vec{0}) \neq 0$ for at least one j, always have some infection.

The PoCSverse Assortativity and Mixing 34 of 40

General mixing

Assortativity by degree

Contagion
Spreading condition
Triggering probability
Expected size

As before, these equations give the actual evolution of ϕ_t for synchronous updates.

 $\red {\Bbb S}$ Contagion condition follows from ${ec heta}_{t+1} = {ec G}({ec heta}_t).$

 $ext{ } ext{ } ext{Expand } ec{G} ext{ around } ec{ heta}_0 = ec{0}. ext{ }$

$$\theta_{j,t+1} = G_j(\vec{0}) + \sum_{k=1}^{\infty} \frac{\partial G_j(\vec{0})}{\partial \theta_{k,t}} \theta_{k,t} + \frac{1}{2!} \sum_{k=1}^{\infty} \frac{\partial^2 G_j(\vec{0})}{\partial \theta_{k,t}^2} \theta_{k,t}^2 + \dots$$

Always have some infection. If $G_j(\vec{0}) \neq 0$ for at least one j, always have some infection.

Condition for spreading is therefore dependent on eigenvalues of this matrix:

$$\frac{\partial G_j(\vec{0})}{\partial \theta_{k,t}} = \frac{e_{j-1,k-1}}{R_{j-1}}(k-1)B_{k1}$$

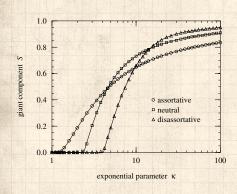
The PoCSverse Assortativity and Mixing 34 of 40

General mixing

Assortativity by degree

Contagion
Spreading condition
Triggering probability
Expected size

How the giant component changes with assortativity:



from Newman, 2002 [5]

More assortative networks percolate for lower average degrees

But
disassortative
networks end up
with higher
extents of
spreading.

The PoCSverse Assortativity and Mixing 35 of 40

Definition
General mixing

Assortativity by

degree degree

Contagion
Spreading condition

Triggering probability
Expected size

Toy guns don't pretend blow up things ...

The PoCSverse Assortativity and Mixing 36 of 40

Definition

General mixing

Assortativity by degree

Contagion

Spreading condition Triggering probability Expected size

Splsshht

The PoCSverse Assortativity and Mixing 37 of 40

Definition

General mixing

Assortativity by degree

Contagion

Spreading condition Triggering probability Expected size

Robust-yet-Fragileness of the Death Star

The PoCSverse Assortativity and Mixing 38 of 40

Definition

General mixing

Assortativity by degree

Contagion

Spreading condition Triggering probability Expected size

References I

[1] M. Boguñá and M. Ángeles Serrano. Generalized percolation in random directed networks. Phys. Rev. E, 72:016106, 2005. pdf

[2] P. S. Dodds and J. L. Payne. Analysis of a threshold model of social contagion on degree-correlated networks. Phys. Rev. E, 79:066115, 2009. pdf

[3] B. Efron and C. Stein.
The jackknife estimate of variance.
The Annals of Statistics, 9:586–596, 1981. pdf

The PoCSverse Assortativity and Mixing 39 of 40

Definition

General mixing

Assortativity by degree

Contagio

Spreading condition Triggering probability Expected size

References II

[5] M. Newman. Assortative mixing in networks. Phys. Rev. Lett., 89:208701, 2002. pdf

[6] M. E. J. Newman.

Mixing patterns in networks.

Phys. Rev. E, 67:026126, 2003. pdf

The PoCSverse Assortativity and Mixing 40 of 40

Definition

General mixing

Assortativity by degree

Contag

Spreading condition Triggering probability Expected size

