Assortativity and Mixing

Last updated: 2023/08/22, 11:48:21 EDT
Principles of Complex Systems, Vols. 1, 2, \& 3D CSYS/MATH 6701, 6713, \& a pretend number, 2023-2024| @pocsvox

Prof. Peter Sheridan Dodds \| @peterdodds
Computational Story Lab | Vermont Complex Systems Center Santa Fe Institute | University of Vermont

Licensed under the Creative Commons Attribution-Non Commercial-Sharealike 3.0 License.

Outline

Definition
General mixing

Assortativity by degree
Contagion
Spreading condition
Triggering probability
Expected size
References

Basic idea:
R Random networks with arbitrary degree distributions cover much territory but do not represent all networks.
Moving away from pure random networks was a key first step.
\& We can extend in many other directions and a natural one is to introduce correlations between different kinds of nodes.
Node attributes may be anything, e.g.:

1. degree

2. demographics (age, gender, etc.)
3. group affiliation
. We speak of mixing patterns, correlations, biases...
R Networks are still random at base but now have more global structure.
Build on work by Newman ${ }^{[5,6]}$, and Boguñá and Serano. ${ }^{[1]}$.

The Pocsverse
Assortativity and
Mixing General mixing Assortativity by
degre Contagion
Sperenongenonation

General mixing between node categories
Assume types of nodes are countable, and are assigned numbers 1, 2, 3, ...
Consider networks with directed edges.

$$
\begin{gathered}
e_{\mu \nu}=\operatorname{Pr}\binom{\text { an edge connects a node of type } \mu}{\text { to a node of type } \nu} \\
a_{\mu}=\mathbf{P r}(\text { an edge comes from a node of type } \mu) \\
b_{\nu}=\mathbf{P r}(\text { an edge leads to a node of type } \nu)
\end{gathered}
$$

Write $\mathbf{E}=\left[e_{\mu \nu}\right], \vec{a}=\left[a_{\mu}\right]$, and $\vec{b}=\left[b_{\nu}\right]$.
Requirements:

$$
\sum_{\mu \nu} e_{\mu \nu}=1, \sum_{\nu} e_{\mu \nu}=a_{\mu}, \text { and } \sum_{\mu} e_{\mu \nu}=b_{\nu}
$$

e Pocsverse

sortativity and | Assortativy |
| :---: |
| Miring |
| of 38 | Definition Seneral mixing Assortativity b

degree | Cortagion |
| :---: |
| Soreasars ondition |

 ferences ?

Correlation coefficient
The Pocsserse
Assorativivity and

Notes:

$r=-1$ is inaccessible if three or more types are present.
. Disassortative networks simply have nodes connected to unlike nodes-no measure of how unlike nodes are
. Minimum value of r occurs when all links between non-like nodes: $\operatorname{Tr} e_{\mu \mu}=0$

8

$$
r_{\min }=\frac{-\left\|E^{2}\right\|_{1}}{1-\left\|E^{2}\right\|_{1}}
$$

where $-1 \leq r_{\text {min }}<0$.

Scalar quantities

Now consider nodes defined by a scalar integer quantity.
Examples: age in years, height in inches, number of friends, ...
$e_{j k}=\operatorname{Pr}$ (a randomly chosen edge connects a node with value j to a node with value k).
㿽 a_{j} and b_{k} are defined as before.
\& Can now measure correlations between nodes based on this scalar quantity using standard Pearson correlation coefficient $[$:
$r=\frac{\sum_{j k} j k\left(e_{j k}-a_{j} b_{k}\right)}{\sigma_{a} \sigma_{b}}=\frac{\langle j k\rangle-\langle j\rangle_{a}\langle k\rangle_{b}}{\sqrt{\left\langle j^{2}\right\rangle_{a}-\langle j\rangle_{a}^{2}} \sqrt{\left\langle k^{2}\right\rangle_{b}-\langle k\rangle_{b}^{2}}}$
This is the observed normalized deviation from randomness in the product $j k$.

he PocSverse assortativity and Mixing of 38 of
 eneral mixing
 Assortativity by Slegre

where $\|\cdot\|_{1}$ is the 1 -norm = sum of a matrix's entries.

- $\operatorname{Tr} \mathbf{E}$ is the fraction of edges that are within groups

的 $\left\|E^{2}\right\|_{1}$ is the fraction of edges that would be within groups if connections were random.
$1-\left\|E^{2}\right\|_{1}$ is a normalization factor so $r_{\max }=1$.
When $\operatorname{Tr} e_{\mu \mu}=1$, we have $r=1$. V
When $e_{\mu \mu}=a_{\mu} b_{\mu}$, we have $r=0$.

Degree-degree correlations

Natural correlation is between the degrees of connected nodes
\& Now define $e_{j k}$ with a slight twist:

$$
e_{j k}=\operatorname{Pr}\binom{\text { an edge connects a degree } j+1 \text { node }}{\text { to a degree } k+1 \text { node }}
$$

The Pocssverse
Assortativity and

Mxing
120 of 38
General mixing
$=\operatorname{Pr}\binom{$ an edge runs between a node of in-degree $j}{$ and a node of out-degree $k}$
B Useful for calculations (as per R_{k})
\& Important: Must separately define P_{0} as the $\left\{e_{j k}\right\}$ contain no information about isolated nodes
Directed networks still fine but we will assume from here on that $e_{j k}=e_{k j}$.

Degree-degree correlations
The Pocssverse
Assorataivity and
where, as before, R_{k} is the probability that a randomly chosen edge leads to a node of degree $k+1$, and

$$
\sigma_{R}^{2}=\sum_{j} j^{2} R_{j}-\left[\sum_{j} j R_{j}\right]^{2}
$$

Degree-degree correlations

Error estimate for r :
Remove edge i and recompute r to obtain r_{i}.
Repeat for all edges and compute using the jackknife method[* ${ }^{[3]}$

$$
\sigma_{r}^{2}=\sum_{i}\left(r_{i}-r\right)^{2} .
$$

Mildly sneaky as variables need to be independent for us to be truly happy and edges are correlated...

Measurements of degree-degree correlations

	Group	Network	Type	Size n	Assorativity r	Error σ_{r}
Social	a	Physics coauthorship	undirected	52909	${ }^{0.363}$	0.002
	a	Biology coauthorship	undirected	1520251	0.127	0.0004
	b	Mattematics couthorship	undirected	253339	0.120	0.002
	c	Film actor collaborations	undirected	449913	0.208	0.0002
		Company directors	undirected	7673	0.276	0.004
		Student reationships	undirected	573	-0.029	0.037
	f	Email address books	directed	16881	0.992	0.004
Tecthological		Power grid	undirected		-0.003	
	${ }_{\text {h }}$	Internet	undirected	10697	-0.189	0.002
	i	World Wide Web	directed	269504	-0.067	0.0002
	j	Software dependencies	directed	3162	-0.016	0.020
Biological	k	Protein interactions	undirected	2115	-0.156	0.010
	1	Metabolic network	undirected	765	-0.240	0.007
	m	Neural network	directed	307	-0.226	0.016
	,	Marine food web	directed	134	-0.263	0.037
	。	Freshwater food web	directed	92	-0.326	0.031

Social networks tend to be assortative (homophily)
Rechnological and biological networks tend to be disassortative

Next: Generalize our work for random networks to degree-correlated networks
As before, by allowing that a node of degree k is activated by one neighbor with probability $B_{k 1}$ we can handle various problems:

1. find the giant component size.
2. find the probability and extent of spread for simple disease models.
3. find the probability of spreading for simple threshold models.

$\operatorname{Mixing}_{140+38}$ efinition ssortativity by

The PocSverse
Assortativity and Assoratativy
Mixing
Min
nem 15 of 38
General mixing Asportativity by

Spreading on degree-correlated networks

Goal: Find $f_{n, j}=\mathbf{P r}$ an edge emanating from a degree $j+1$ node leads to a finite active subcomponent of size n.
Repeat: a node of degree k is in the game with probability $B_{k 1}$.
\& Define $\vec{B}_{1}=\left[B_{k 1}\right]$.
Plan: Find the generating function $F_{j}\left(x ; \vec{B}_{1}\right)=\sum_{n=0}^{\infty} f_{n, j} x^{n}$.

Spreading on degree-correlated networks
Recursive relationship:

$$
\begin{aligned}
F_{j}\left(x ; \vec{B}_{1}\right) & =x^{0} \sum_{k=0}^{\infty} \frac{e_{j k}}{R_{j}}\left(1-B_{k+1,1}\right) \\
& +x \sum_{k=0}^{\infty} \frac{e_{j k}}{R_{j}} B_{k+1,1}\left[F_{k}\left(x ; \vec{B}_{1}\right)\right]^{k}
\end{aligned}
$$

8irst term $=\mathbf{P r}$ (that the first node we reach is not in the game)
Second term involves Pr (we hit an active node which has k outgoing edges).
Next: find average size of active components reached by following a link from a degree $j+1$ node $=F_{j}^{\prime}\left(1 ; \vec{B}_{1}\right)$.

$$
\mathbf{A}_{\mathbf{E}, \vec{B}_{1}} \vec{F}^{\prime}\left(1 ; \vec{B}_{1}\right)=\mathbf{E} \vec{B}_{1}
$$

where

$$
\begin{gathered}
{\left[\mathbf{A}_{\mathbf{E}, \vec{B}_{1}}\right]_{j+1, k+1}=\delta_{j k} R_{k}-k B_{k+1,1} e_{j k}} \\
{\left[\vec{F}^{\prime}\left(1 ; \vec{B}_{1}\right)\right]_{k+1}=F_{k}^{\prime}\left(1 ; \vec{B}_{1}\right)} \\
{[\mathbf{E}]_{j+1, k+1}=e_{j k}, \text { and }\left[\vec{B}_{1}\right]_{k+1}=B_{k+1,1} .}
\end{gathered}
$$

\section*{ssoratavivity and | Mixing |
| :--- |
| 21 |
| 2l 38 | defintion ssorrativity by

derree
 , fpeferes sise}

Spreading on degree-correlated networks So, in principle at least:

$$
\vec{F}^{\prime}\left(1 ; \vec{B}_{1}\right)=\mathbf{A}_{\mathbf{E}, \vec{B}_{1}}^{-1} \mathbf{E} \vec{B}_{1}
$$

R Now: as $\vec{F}^{\prime}\left(1 ; \vec{B}_{1}\right)$, the average size of an active component reached along an edge, increases, we move towards a transition to a giant component.

Right at the transition, the average component size explodes.
Exploding inverses of matrices occur when their determinants are 0

The condition is therefore

$$
\operatorname{det} \mathbf{A}_{\mathbf{E}, \vec{B}_{1}}=0
$$

Spreading on degree-correlated networks
General condition details:
$\operatorname{det} \boldsymbol{A}_{\mathbf{E}, \vec{B}_{1}}=\operatorname{det}\left[\delta_{j k} R_{k-1}-(k-1) B_{k, 1} e_{j-1, k-1}\right]=0$.
The above collapses to our standard contagion condition when $e_{j k}=R_{j} R_{k}$ (see next slide). ${ }^{[2]}$
When $\vec{B}_{1}=B \overrightarrow{1}$, we have the condition for a simple disease model's successful spread

$$
\operatorname{det}\left[\delta_{j k} R_{k-1}-B(k-1) e_{j-1, k-1}\right]=0 .
$$

When $\vec{B}_{1}=\overrightarrow{1}$, we have the condition for the existence of a giant component:

$$
\operatorname{det}\left[\delta_{j k} R_{k-1}-(k-1) e_{j-1, k-1}\right]=0
$$

Bonusville: We'll find a much better version of this set of conditions later..

Spreading on degree-correlated networks

We'll next find two more pieces:

1. $P_{\text {trig, }}$, the probability of starting a cascade
2. S, the expected extent of activation given a small seed.

Triggering probability:
Generating function:

$$
H\left(x ; \vec{B}_{1}\right)=x \sum_{k=0}^{\infty} P_{k}\left[F_{k-1}\left(x ; \vec{B}_{1}\right)\right]^{k} .
$$

Generating function for vulnerable component size is more complicated.

Spreading on degree-correlated networks

Want probability of not reaching a finite component.

$$
\begin{aligned}
P_{\text {trig }}=S_{\text {trig }} & =1-H\left(1 ; \vec{B}_{1}\right) \\
& =1-\sum_{k=0}^{\infty} P_{k}\left[F_{k-1}\left(1 ; \vec{B}_{1}\right)\right]^{k} .
\end{aligned}
$$

Last piece: we have to compute $F_{k-1}\left(1 ; \vec{B}_{1}\right)$.
Nastier (nonlinear)-we have to solve the

$$
\begin{aligned}
& \text { recursive expression we started with when } x=1 \text { : } \\
& F_{j}\left(1 ; \vec{B}_{1}\right)=\sum_{k=0}^{\infty} \frac{e_{k j}}{R_{j}}\left(1-B_{k+1,1}\right)+ \\
& \qquad \sum_{k=0}^{\infty} \frac{e_{j k}}{R_{j}} B_{k+1,1}\left[F_{k}\left(1 ; \vec{B}_{1}\right)\right]^{k} .
\end{aligned}
$$

\& Iterative methods should work here.

Spreading on degree-correlated networks
Truly final piece: Find final size using approach of Gleeson ${ }^{[4]}$, a generalization of that used for uncorrelated random networks.
Need to compute $\theta_{j, t}$, the probability that an edge leading to a degree j node is infected at time t.
Evolution of edge activity probability:

$$
\theta_{j, t+1}=G_{j}\left(\vec{\theta}_{t}\right)=\phi_{0}+\left(1-\phi_{0}\right) \times
$$

$$
\sum_{k=1}^{\infty} \frac{e_{j-1, k-1}}{R_{j-1}} \sum_{i=0}^{k-1}\binom{k-1}{i} \theta_{k, t}^{i}\left(1-\theta_{k, t}\right)^{k-1-i} B_{k i}
$$

Overall active fraction's evolution:

$$
\phi_{t+1}=\phi_{0}+\left(1-\phi_{0}\right) \sum_{k=0}^{\infty} P_{k} \sum_{i=0}^{k}\binom{k}{i} \theta_{k, t}^{i}\left(1-\theta_{k, t}\right)^{k-i} B_{k i} .
$$

The Pocsserse
Assortativity and
Mixing

Mixing
28
of 38

$\begin{gathered}\text { Assortativity by } \\ \text { degree }\end{gathered}$ Contagion
 keferences

Spreading on degree-correlated networks As before, these equations give the actual evolution of ϕ_{t} for synchronous updates.

- Contagion condition follows from $\vec{\theta}_{t+1}=\vec{G}\left(\vec{\theta}_{t}\right)$.

Expand \vec{G} around $\vec{\theta}_{0}=\overrightarrow{0}$.

$$
\theta_{j, t+1}=G_{j}(\overrightarrow{0})+\sum_{k=1}^{\infty} \frac{\partial G_{j}(\overrightarrow{0})}{\partial \theta_{k, t}} \theta_{k, t}+\frac{1}{2!} \sum_{k=1}^{\infty} \frac{\partial^{2} G_{j}(\overrightarrow{0})}{\partial \theta_{k, t}^{2}} \theta_{k, t}^{2}+\ldots
$$

If $G_{j}(\overrightarrow{0}) \neq 0$ for at least one j, always have some infection.
If If $G_{j}(\overrightarrow{0})=0 \forall j$, want largest eigenvalue $\left[\frac{\partial G_{j}(\overrightarrow{0})}{\partial \theta_{k, t}}\right]>1$.
\& Condition for spreading is therefore dependent on eigenvalues of this matrix:

$$
\frac{\partial G_{j}(\overrightarrow{0})}{\partial \theta_{k, t}}=\frac{e_{j-1, k-1}}{R_{j-1}}(k-1) B_{k 1}
$$

Insert assignment question [

How the giant component changes with assortativity:

$$
\text { exponential parameter } \mathrm{k}
$$

${ }^{2}{ }^{[5]}$

- More assortative networks percolate for lower average degrees
\& But
disassortative
networks end up
with higher
extents of
spreading.

The Poçverse Assortativity and

 \begin{tabular}{c} Mixing

31

10 of 38

\hline
\end{tabular}

References
[1] M. Boguñá and M. Ángeles Serrano. Generalized percolation in random directed networks.
Phys. Rev. E, 72:016106, 2005. pdf[天
[2] P. S. Dodds and J. L. Payne.
Analysis of a threshold model of social contagion on degree-correlated networks.
Phys. Rev. E, 79:066115, 2009. pdf■
[3] B. Efron and C. Stein.
The jackknife estimate of variance
The Annals of Statistics, 9:586-596, 1981. pdf[
[4] J. P. Gleeson.
Cascades on correlated and modular random networks.
Phys. Rev. E, 77:046117, 2008. pdf[天

References II
The PoCSverse
Assortativity and
Assortativity and
Mixing
380 g
38.3 of 38
Defition

General mixing
General mixing

He Pocsverse
Assorativity and

Assortative mixing in networks.
Phys. Rev. Lett., 89:208701, 2002. pdf[^
[6] M. E. J. Newman.
Mixing patterns in networks.
Phys. Rev. E, 67:026126, 2003. pdf[

