# Linguistic Pollyanna Principle: The positivity bias of language

Last updated: 2025/10/30, 18:27:29 EDT

Principles of Complex Systems, Vols. 1, 2, 3D, 4 Fourever, V for Vendetta

Prof. Peter Sheridan Dodds

Computational Story Lab | Vermont Complex Systems Institute University of Vermont | Santa Fe Institute



Pollyanna Principle 1 of 53

Pollyanna Principle English is happy

10 languages

Extras

Pollyanna Principle

Outline

English is happy

10 languages

Extras

Corpora Text parsing Corpus generation

References

Pollyanna Principle 2 of 53

Pollyanna Principle English is happy

10 languages



"Human language reveals a universal positivity bias"

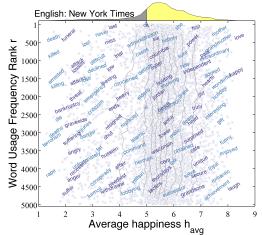
Dodds et al.,

Proc. Natl. Acad. Sci., 112, 2389-2394, 2015. [2]

# Who are we?

- Stories we tell about how we should/could/must behave vary enormously.
- Jainism to Rand's Objectivism.

### Basic observations:


- Language is our great social technology.
- And we convey stories through language.

## Basic question:

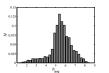
What's the distribution of emotional content of the atoms of language?

# Data:

- English plus nine other languages.
- Key: incorporate word usage frequency (= size).



### The PoCSverse Pollyanna Principle Pollyanna Principle


English is happy

10 languages

The PoCSverse

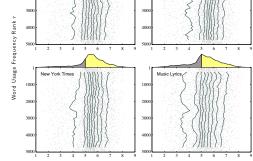
Pollyanna Principle

# English's scale-invariant, positive bias: [8]



Top 100 altmetric article, 2015

- Social organism story manifested in
- Pollyanna Hypothesis: Interactions are predominantly positive
- Positive anchor of concepts: Unhappy but not unsad.
- Many ways for things to go wrong: "All happy families are alike; each unhappy family is unhappy in its own way."
- 🙈 Guns, Germs, and Steel [1] invokes the Anna Karenina Principle 🗹
- But: must account for frequency of word usage ...


# Jellyfish plots:

English

Pollyanna Principle Pollyanna Principle

The PoCSverse

English is happy 10 languages



# Average happiness $h_{\mathrm{avg}}$ Good buzz according to Altmetric ... (report is no

# As of May 7, 2015:

longer findable):

- Altmetric Score: 772.
- Ranked 3rd out of 933 articles published in PNAS surrounding 12 weeks.
- Ranked 24nd out of 34,050 articles in PNAS all time. (Mean
- Ranked 60th out of all 109,841 tracked articles published in surrounding 12 weeks.
- Ranked 459th out of 3,724,005 tracked articles all time.

This doesn't mean it's a good article ... but it is.

The PoC Sverse Pollyanna Principle Pollyanna Principle

Pollyanna Principle 3 of 53

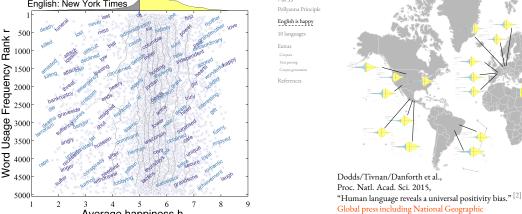
Pollyanna Principle

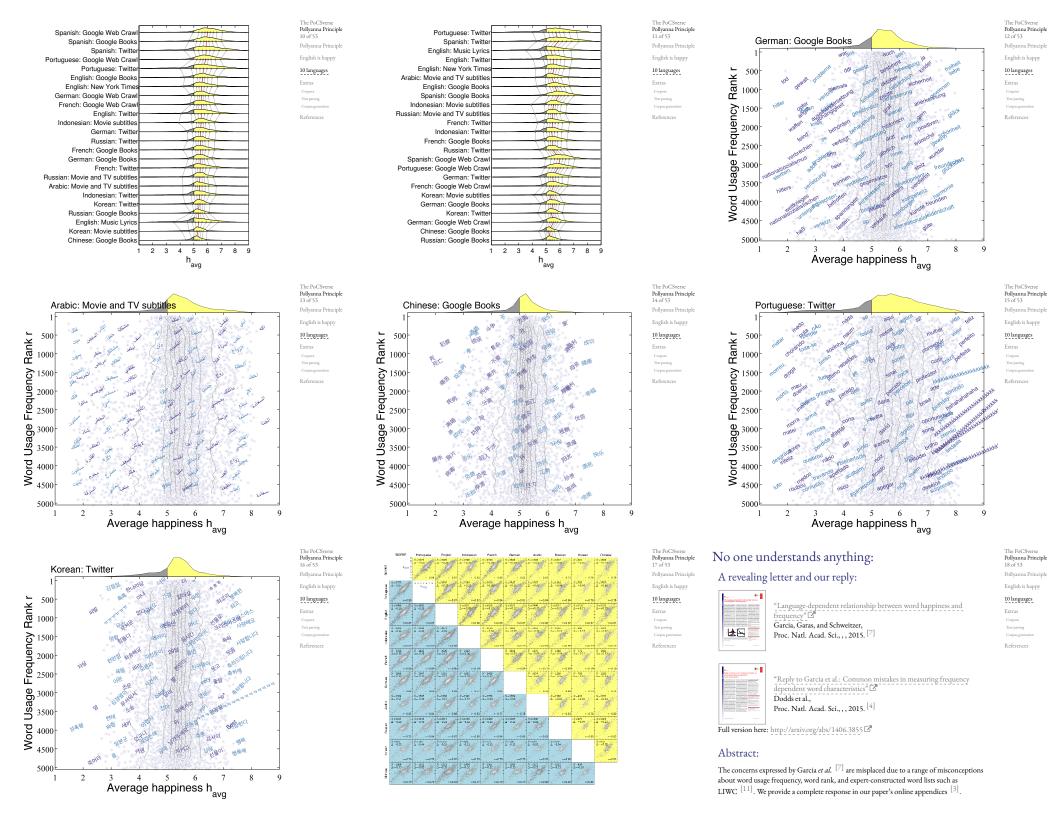
English is happy

The PoCSverse

Pollyanna Principle

Pollyanna Principle


English is happy


10 languages

Extras

English is happy

10 languages





## LIWC function words are not neutral:

 $\Leftrightarrow$  "greatest" ( $h_{\text{avg}}$ =7.26),

& "best" ( $h_{avg}$ =7.26),

& "unique" ( $h_{avg}$ =6.98),

 $\Leftrightarrow$  "negative" ( $h_{avg}$ =2.42),

& "worst" ( $h_{avg}$ =2.10).

# Common scientific sense for text analysis:

Always look at the words.

### Nutshell:

- Linguistic positivity bias holds for 10 major languages.
- Spread across 24 corpora: books, news, social media, movie titles, ...
- 🚵 Languages and evaluating groups spread around the world.
- Diverse in language origins.
- Language appears to reflect social, cooperative tendency of
- Negative emotion is more variable—must be specific, Tolstoyfully.

We used the services of Appen Butler Hill (http://www.appen.com) for all word evaluations excluding English, for which we had earlier employed Mechanical Turk (https://www.mturk.com/ [9]).

English instructions were translated to all other languages and given to participants along with survey questions, and an example of the English instruction page is below. Non-english language experiments were conducted through a custom interactive website built by Appen Butler Hill, and all participants were required to pass a stringent aural proficiency test in their own language.

#### Pollyanna Principle 19 of 53 More LIWC function words: Pollyanna Principle

| High      | $h_{\scriptscriptstyle 	ext{avg}}$ | Neutral    | $h_{	ext{avg}}$ | Low       | $h_{ m avg}$ |
|-----------|------------------------------------|------------|-----------------|-----------|--------------|
| billion   | 7.56                               | been       | 5.04            | wouldnt   | 3.86         |
| million   | 7.38                               | other      | 5.04            | not       | 3.86         |
| couple    | 7.30                               | into       | 5.04            | shouldn't | 3.84         |
| millions  | 7.26                               | theyre     | 5.04            | none      | 3.84         |
| greatest  | 7.26                               | it         | 5.02            | haven't   | 3.82         |
| rest      | 7.18                               | some       | 5.02            | wouldn't  | 3.78         |
| best      | 7.18                               | where      | 5.02            | fewer     | 3.72         |
| equality  | 7.08                               | themselves | 5.02            | lacking   | 3.71         |
| unique    | 6.98                               | im         | 5.02            | won't     | 3.70         |
| plenty    | 6.98                               | quarterly  | 5.02            | wasnt     | 3.70         |
| truly     | 6.86                               | ive        | 5.02            | dont      | 3.70         |
| hopefully | 6.84                               | because    | 5.00            | don't     | 3.70         |
| first     | 6.82                               | whereas    | 5.00            | down      | 3.66         |
| plus      | 6.76                               | id         | 5.00            | nobody    | 3.64         |
| well      | 6.68                               | til        | 5.00            | doesn't   | 3.62         |
| greater   | 6.68                               | the        | 4.98            | couldnt   | 3.58         |
| highly    | 6.60                               | to         | 4.98            | without   | 3.54         |
| me        | 6.58                               | by         | 4.98            | no        | 3.48         |
| done      | 6.54                               | or         | 4.98            | cant      | 3.48         |
| extra     | 6.52                               | part       | 4.98            | zero      | 3.44         |
| infinite  | 6.44                               | rather     | 4.98            | against   | 3.40         |
| simply    | 6.42                               | its        | 4.96            | never     | 3.34         |
| equally   | 6.40                               | when       | 4.96            | cannot    | 3.32         |
| sixteen   | 6.39                               | perhaps    | 4.96            | lack      | 3.16         |
| we        | 6.38                               | yall       | 4.96            | negative  | 2.42         |
| soon      | 6.34                               | of         | 4.94            | worst     | 2.10         |

Corpus:

English: Twitter

English: Music lyrics

English: Google Books Project

English: The New York Times

#### The PoCSverse Pollyanna Principle

The PoCSvers

English is happy

10 languages

Extras

English is happy

## 10 languages

The PoC Sverse

Pollyanna Principle

Pollyanna Principle

English is happy

10 languages

Corpora

| Portuguese: Google Web Crawl    | 7133  |
|---------------------------------|-------|
| Portuguese: Twitter             | 7119  |
| Spanish: Google Web Crawl       | 7189  |
| Spanish: Twitter                | 6415  |
| Spanish: Google Books Project   | 6379  |
| French: Google Web Crawl        | 7056  |
| French: Twitter                 | 6569  |
| French: Google Books Project    | 6192  |
| Arabic: Movie and TV subtitles  | 9999  |
| Indonesian: Twitter             | 7044  |
| Indonesian: Movie subtitles     | 6726  |
| Russian: Twitter                | 6575  |
| Russian: Google Books Project   | 5980  |
| Russian: Movie and TV subtitles | 6186  |
| German: Google Web Crawl        | 6902  |
| German: Twitter                 | 6459  |
| German: Google Books Project    | 6097  |
| Korean: Twitter                 | 6728  |
| Korean: Movie subtitles         | 5389  |
| Chinese: Google Books Project   | 10000 |

Our overall aim is to assess how people feel about individual words. With this particular survey, we are focusing on the dual emotions of sadness and happiness. You are to rate 100 individual words on a 9 point unhappy-happy scale.

Please consider each word carefully. If we determine that your ratings are randomly or otherwise inappropriately selected, or that any questions are left unanswered, we may not approve your work. These words were chosen based on their common usage. As a result, a small portion of words may be offensive to some people, written in a different

# Words

5000

5000

5000

5000

[10]

[5]

[?]

[?]

[?]

[?]

[?]

[10] MITRE

MITRE

[10]

[?]

[?]

[?]

[10]

[?]

MITRE [10]

Before completing the word ratings, we ask that you answer a few short demographic questions. We expect the entire survey to require 10 minutes of your time. Thank you for participating!





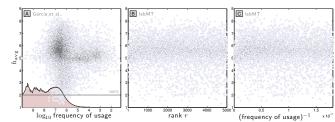











#### Demographic Questions

- 1. What is your gender? (Male/Female)
- 2. What is your age? (Free text)
- Which of the following best describes your highest achieved education level?
   Some High School, High School Graduate, Some college, no degree, Assoc degree, Bachelors degree, Graduate degree (Masters, Doctorate, etc.)
- 5. Where are you from originally
- 6. Where do you live currently?
- Is \_\_\_\_\_ your first language? (Yes/No) If it is not, please specify what your first language is.
- 8. Do you have any comments or suggestions? (Free text)

#### The jellyfish knows: Pollyanna Principle 20 of 53

Pollyanna Principle English is happy

10 languages



Scatterplot of  $h_{xvg}$  as a function of word usage frequency for the English Google Books word list generated by Garcia et al.. Uncontrolled subsampling of lower frequency words yields a lexicon that is not statistically representative of any natural language corpus. The lower curve provides a coarse estimate of cumulative lexicon coverage as a function of usage frequency f using Zipf's law  $f_r \sim f_1 r^{-1}$  inverted as  $r \sim f_1/f_r$ . The rapid drop off begins at around rank 5000, the involved lexicon size for Google Books in labMT [3, 6]. B. and Scatterplot of  $h_{ave}$  as a function of rank r for the 5000 words for Google Books contributing to labMT, the basis of our jellyfish plots [3]. C. Same data as **B** plotted against f. Linear regression fits for the first two scatterplots are  $h_{\text{avg}}\simeq 0.089\log_{10}f+4.85$  and  $h_{\text{avg}}\simeq -3.04\times 10^{-5}r+5.62$  (as reported in  $^{\left[3\right]}$  ). Note difference in signs, and the far weaker trend for the statistically appropriate regression against rank in B. Pearson correlation coefficients: +0.105, -0.042, and -0.043 with p-values  $6.15 \times 10^{-26}$ ,  $3.03 \times 10^{-3}$ , and  $2.57 \times 10^{-3}$ . Spearman correlation coefficients: +0.201, -0.013, and -0.013 with p-values  $6.37 \times 10^{-92}$ , 0.350, and 0.350.

| Language           | Participants' location(s) | # of participants | Average words scored |
|--------------------|---------------------------|-------------------|----------------------|
| English            | US, India                 | 384               | 1302                 |
| German             | Germany                   | 196               | 2551                 |
| Indonesian         | Indonesia                 | 146               | 3425                 |
| Russian            | Russia                    | 125               | 4000                 |
| Arabic             | Egypt                     | 185               | 2703                 |
| French             | France                    | 179               | 2793                 |
| Spanish            | Mexico                    | 236               | 2119                 |
| Portuguese         | Brazil                    | 208               | 2404                 |
| Simplified Chinese | China                     | 128               | 3906                 |
| Korean             | Korea, US                 | 109               | 4587                 |

Number and main country/countries of location for participants evaluating the 10,000 common words for each of the 10 languages we studied. Also recorded is the average number of words evaluated by each participant (rounded to the nearest integer). We note that each word received 50 evaluations from distinct individuals. The English word list was evaluated via Mechanical Turk for our initial study [9]. The nine languages evaluated through Appen-Butler Hill yielded a higher participation rate likely due to better pay and the organization's

The PoC Suers Pollyanna Principle Pollyanna Principle

English is happy

10 languages Corpora

Of our 24 corpora, we received 17 already parsed by the source: the Google Books Project (6 corpora), the Google Web Crawl (8 corpora), and Movie and TV subtitles (3 corpora). For the other 7 corpora (Twitter, New York Times, and Music Lyrics), we extracted words by standard white space separation (more on Twitter below). We acknowledge the many complications with inflections and variable orthography. We have found merit in not collapsing related words, which would require a more sophisticated treatment going beyond the present paper's bounds. Moreover, we have observed that allowing, say, different conjugation of verbs to stand in our corpora is valuable as human evaluations of such have proved to be distinguishable (e.g., present versus past tense [6]).

The PoC Sverse Pollyanna Principle Pollyanna Principle

English is happy 10 language

Extras

Twitter was easily the most variable and unruly of our text sources and required additional treatment. We first checked if a string contains at least one valid utf8 letter, discarding if not. Next we filtered out strings containing invisible control characters, as these symbols can be problematic. We ignored all strings that start with < and end with > (generally html code). We ignored strings with a leading @ or &, or either preceded with standard punctuation (e.g., Twitter ID's), but kept hashtags. We also removed all strings starting with www. or http: or end in .com (all websites). We stripped the remaining strings of standard punctuation, and we replaced all double quotes (") by single quotes ('). Finally, we converted all Latin alphabet letters to lowercase.

The PoCSvers Pollyanna Principle 30 of 53 Pollyanna Principle

English is happy 10 languages

Extras Text parsing

Tokenization example:

| Term   | count |               |        |       |
|--------|-------|---------------|--------|-------|
| love   | 10    |               |        |       |
| LoVE   | 5     |               | Term   | count |
| love!  | 2     | ,             | love   | 19    |
| #love  | 3     | $\rightarrow$ | #love  | 3     |
| .love  | 2     |               | love87 | 1     |
| @love  | 1     |               |        |       |
| love87 | 1     |               |        |       |

The term '@love' is discarded, and all other terms map to either 'love' or 'love87'.

The PoCSverse Pollyanna Principle 31 of 53 Pollyanna Principle

English is happy

10 languages Text parsing

There is no single, principled way to merge corpora to create an ordered list of words for a given language. For example, it is impossible to weight the most commonly used words in the New York Times against those of Twitter. Nevertheless, we are obliged to choose some method for doing so to facilitate comparisons across languages and for the purposes of building adaptable linguistic instruments.

For each language where we had more than one corpus, we created a single quasi-ranked word list by finding the smallest integer r such that the union of all words with rank  $\leq r$  in at least one corpus formed a set of at least 10,000 words.

Pollyanna Principle English is happy 10 languages Extras

The PoCSverse

Pollyanna Principle 33 of 53

Corpus generation

|            | Spanish     | Portuguese | English     | Indonesian  | French      | German      | Arabic      | Russian     |
|------------|-------------|------------|-------------|-------------|-------------|-------------|-------------|-------------|
| Spanish    | 1.00, 0.00  | 1.01, 0.03 | 1.06, -0.07 | 1.22, -0.88 | 1.11, -0.24 | 1.22, -0.84 | 1.13, -0.22 | 1.31, -1.16 |
| Portuguese | 0.99, -0.03 | 1.00, 0.00 | 1.04, -0.03 | 1.22, -0.97 | 1.11, -0.33 | 1.21, -0.86 | 1.09, -0.08 | 1.26, -0.95 |
| English    | 0.94, 0.06  | 0.96, 0.03 | 1.00, 0.00  | 1.13, -0.66 | 1.06, -0.23 | 1.16, -0.75 | 1.05, -0.10 | 1.21, -0.91 |
| Indonesian | 0.82, 0.72  | 0.82, 0.80 | 0.88, 0.58  | 1.00, 0.00  | 0.92, 0.48  | 0.99, 0.06  | 0.89, 0.71  | 1.02, 0.04  |
| French     | 0.90, 0.22  | 0.90, 0.30 | 0.94, 0.22  | 1.09, -0.52 | 1.00, 0.00  | 1.08, -0.44 | 0.99, 0.12  | 1.12, -0.50 |
| German     | 0.82, 0.69  | 0.83, 0.71 | 0.86, 0.65  | 1.01, -0.06 | 0.92, 0.41  | 1.00, 0.00  | 0.91, 0.61  | 1.07, -0.25 |
| Arabic     | 0.88, 0.19  | 0.92, 0.08 | 0.95, 0.10  | 1.12, -0.80 | 1.01, -0.12 | 1.10, -0.68 | 1.00, 0.00  | 1.12, -0.63 |
| Russian    | 0.76, 0.88  | 0.80, 0.75 | 0.83, 0.75  | 0.98, -0.04 | 0.89, 0.45  | 0.93, 0.24  | 0.89, 0.56  | 1.00, 0.00  |
| Korean     | 0.62, 1.70  | 0.62, 1.81 | 0.66, 1.67  | 0.77, 1.17  | 0.73, 1.37  | 0.78, 1.12  | 0.71, 1.53  | 0.79, 1.10  |
| Chinese    | 0.63, 1.46  | 0.63, 1.51 | 0.68, 1.43  | 0.75, 1.07  | 0.71, 1.26  | 0.76, 1.03  | 0.70, 1.41  | 0.80, 0.84  |

Reduced Major Axis (RMA) regression fits for row language as a linear function of the column language  $h_{\text{avg}}^{(\text{row})}(w) = m \, h_{\text{avg}}^{(\text{column})}(w) + c$  where w indicates a translation-stable word. Each entry in the table contains the coefficient pair m and c. We use RMA regression, also known as Standardized Major Axis linear regression, because of its accommodation of errors in both variables.

|            | Spanish | Portuguese | English | Indonesian | French | German | Arabic | Russian | Korean | Cl |
|------------|---------|------------|---------|------------|--------|--------|--------|---------|--------|----|
| Spanish    | 1.00    | 0.89       | 0.87    | 0.82       | 0.86   | 0.82   | 0.83   | 0.73    | 0.79   | (  |
| Portuguese | 0.89    | 1.00       | 0.87    | 0.82       | 0.84   | 0.81   | 0.84   | 0.84    | 0.79   | (  |
| English    | 0.87    | 0.87       | 1.00    | 0.88       | 0.86   | 0.82   | 0.86   | 0.87    | 0.82   | (  |
| Indonesian | 0.82    | 0.82       | 0.88    | 1.00       | 0.79   | 0.77   | 0.83   | 0.85    | 0.79   | (  |
| French     | 0.86    | 0.84       | 0.86    | 0.79       | 1.00   | 0.84   | 0.77   | 0.84    | 0.79   | (  |
| German     | 0.82    | 0.81       | 0.82    | 0.77       | 0.84   | 1.00   | 0.76   | 0.80    | 0.73   | (  |
| Arabic     | 0.83    | 0.84       | 0.86    | 0.83       | 0.77   | 0.76   | 1.00   | 0.83    | 0.79   | (  |
| Russian    | 0.73    | 0.84       | 0.87    | 0.85       | 0.84   | 0.80   | 0.83   | 1.00    | 0.80   | (  |
| Korean     | 0.79    | 0.79       | 0.82    | 0.79       | 0.79   | 0.73   | 0.79   | 0.80    | 1.00   | (  |
| Chinese    | 0.79    | 0.76       | 0.81    | 0.77       | 0.76   | 0.74   | 0.80   | 0.82    | 0.81   |    |

Pearson correlation coefficients for translation-stable words for all language pairs. All p-values are  $< 10^{-118}$ .

|            | Spanish | Portuguese | English | Indonesian | French | German | Arabic | Russian | Korean | C |
|------------|---------|------------|---------|------------|--------|--------|--------|---------|--------|---|
| Spanish    | 1.00    | 0.85       | 0.83    | 0.77       | 0.81   | 0.77   | 0.75   | 0.74    | 0.74   |   |
| Portuguese | 0.85    | 1.00       | 0.83    | 0.77       | 0.78   | 0.77   | 0.77   | 0.81    | 0.75   |   |
| English    | 0.83    | 0.83       | 1.00    | 0.82       | 0.80   | 0.78   | 0.78   | 0.81    | 0.75   | İ |
| Indonesian | 0.77    | 0.77       | 0.82    | 1.00       | 0.72   | 0.72   | 0.76   | 0.77    | 0.71   | İ |
| French     | 0.81    | 0.78       | 0.80    | 0.72       | 1.00   | 0.80   | 0.67   | 0.79    | 0.71   | İ |
| German     | 0.77    | 0.77       | 0.78    | 0.72       | 0.80   | 1.00   | 0.69   | 0.76    | 0.64   | İ |
| Arabic     | 0.75    | 0.77       | 0.78    | 0.76       | 0.67   | 0.69   | 1.00   | 0.74    | 0.69   | İ |
| Russian    | 0.74    | 0.81       | 0.81    | 0.77       | 0.79   | 0.76   | 0.74   | 1.00    | 0.70   | İ |
| Korean     | 0.74    | 0.75       | 0.75    | 0.71       | 0.71   | 0.64   | 0.69   | 0.70    | 1.00   | İ |
| Chinese    | 0.68    | 0.66       | 0.70    | 0.71       | 0.64   | 0.62   | 0.68   | 0.66    | 0.71   |   |
|            |         |            |         |            |        | •      |        | •       |        |   |

Spearman correlation coefficients for translation-stable words. All p-values are  $< 10^{-82}$ .

|            | Spanish 845             | Portuguese             | English              | Indonesian              | French                   | German                 | Arabic                 | Russian               | Korean                                             | Chinese                 |
|------------|-------------------------|------------------------|----------------------|-------------------------|--------------------------|------------------------|------------------------|-----------------------|----------------------------------------------------|-------------------------|
| Spanish    | E 0.10                  | 4 = 1201<br>4 = 1 0.40 | E - 100K             | 07 = 2384<br>8 = 1 0 34 | 07 = 3330<br>04 = 4 0 30 | 4 - 344                | E - 100E               | W -163                |                                                    | 07 = 1600<br>04 = 18.71 |
| Portiguese | W = 120%<br>A = . 2. 10 | -0-1 6 1 2<br>/barg    | 6 - 1003<br>8 - 2 20 | 9 - 2000<br>d , 6 20    | X = 2616<br>de v c 6 26  | K =3427<br>A = 40.31   | 4 = 1340<br>A = +0.40  |                       |                                                    | 1                       |
| Engleh     | W = 104K<br>A = 3.12    | W = 1042<br>A = 0.20   |                      | 9 -3871<br>2 - 8 54     | V - MAN                  | # =1166<br># = 0.12    | K = 1000<br>A = -0.17  | 6 - 2655<br>A 0.26    | 4-1430                                             | 4-18 M                  |
| Indonesian | 1-200                   | 1                      | 1                    |                         | 1.18                     | 1                      | 4 - 10 13              | W = 1264<br>d = 10-12 | 1                                                  | 07 -1464<br>A- +2 33    |
| Fench      | V-100<br>4-100          |                        | F - R.H<br>1 - 4 13  | 1.20                    |                          | # = 2468<br>A = = 0.00 | H = 1200<br>A = 10.00  | W-1486<br>Accobit     | 1 - 703<br>1 - 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | dh.                     |
| German     | W = 264K<br>4 + -0.54   | 6 - 3 ST               |                      | 0 - 1041<br>4 - 4 41    | X = 2410<br>A = .4 40    |                        | N - 1200<br>A 0.00     | 6 -1266<br>h = -0.16  | 1.20                                               | E-196                   |
| Arabio     |                         | 6 -1367<br>4 - 3 60    | 1                    | # +180<br>4 + # 12      | 4-49                     | 4 - 2474               |                        | 6 - 1360<br>hr - 0.00 | 1                                                  | # - 1811<br>18 28       |
| Resian     | 1                       | # = 1 mm<br>4 = -0 mi  | 4 - 3611<br>4 - 8 21 | # +13e<br>4 - 6 13      | K = 1680<br>dv -0 H      | # =186°<br>4×4 H       | N = 1100<br>da = -0.00 |                       | W = 604                                            | N -1420<br>A3 21        |
| Yorean     |                         | 4                      | <u></u>              | 1                       | f = 332<br>4 = -4.12     | E =386<br>A = 0.15     |                        |                       |                                                    | 37 - 18 in<br>da 18 in  |
| Chinese    | V - MAR<br>A - A 73     | 4-100                  |                      | 110                     | 1:36                     | K =1361<br>4 × -0.13   | 4-100                  | W =1803<br>4 = -0.23  | 1.                                                 |                         |

Histograms of the change in average happiness for translation-stable words between each language pair. The largest deviations correspond to strong changes in a word's perceived primary meaning (e.g., "lying' and 'acostado"). The inset quantities are N, the number of translation-stable words, and  $\Delta$  is the average difference in translation-stable word happiness between the row language and column language.

| The PoCSverse       |
|---------------------|
| Pollyanna Principle |
| 37 of 53            |
| Pollyanna Principle |
|                     |

Corpus generatio

| Language: Corpus                | $\rho_{\rm p}$ | p-value                | $\rho_s$ | p-value                | α                      | F  |
|---------------------------------|----------------|------------------------|----------|------------------------|------------------------|----|
| Spanish: Google Web Crawl       | -0.114         | $3.38 \times 10^{-22}$ | -0.090   | $1.85 \times 10^{-14}$ | -5.55×10 <sup>-5</sup> | 6. |
| Spanish: Google Books           | -0.040         | $1.51 \times 10^{-3}$  | -0.016   | $1.90 \times 10^{-1}$  | $-2.28 \times 10^{-5}$ | 5. |
| Spanish: Twitter                | -0.048         | $1.14 \times 10^{-4}$  | -0.032   | $1.10 \times 10^{-2}$  | $-3.10 \times 10^{-5}$ | 5. |
| Portuguese: Google Web Crawl    | -0.085         | $6.33 \times 10^{-13}$ | -0.060   | $3.23 \times 10^{-7}$  | $-3.98 \times 10^{-5}$ | 5. |
| Portuguese: Twitter             | -0.041         | $5.98 \times 10^{-4}$  | -0.030   | $1.15 \times 10^{-2}$  | $-2.40 \times 10^{-5}$ | 5. |
| English: Google Books           | -0.042         | $3.03 \times 10^{-3}$  | -0.013   | $3.50 \times 10^{-1}$  | $-3.04 \times 10^{-5}$ | 5. |
| English: New York Times         | -0.056         | 6.93×10 <sup>-5</sup>  | -0.044   | $1.99 \times 10^{-3}$  | $-4.17 \times 10^{-5}$ | 5. |
| German: Google Web Crawl        | -0.096         | $1.11 \times 10^{-15}$ | -0.082   | $6.75 \times 10^{-12}$ | $-3.67 \times 10^{-5}$ | 5. |
| French: Google Web Crawl        | -0.105         | $9.20 \times 10^{-19}$ | -0.080   | $1.99 \times 10^{-11}$ | $-4.50 \times 10^{-5}$ | 5. |
| English: Twitter                | -0.097         | $6.56 \times 10^{-12}$ | -0.103   | $2.37 \times 10^{-13}$ | $-7.78 \times 10^{-5}$ | 5. |
| Indonesian: Movie subtitles     | -0.039         | $1.48 \times 10^{-3}$  | -0.063   | $2.45 \times 10^{-7}$  | $-2.04 \times 10^{-5}$ | 5. |
| German: Twitter                 | -0.054         | $1.47 \times 10^{-5}$  | -0.036   | $4.02 \times 10^{-3}$  | $-2.51 \times 10^{-5}$ | 5. |
| Russian: Twitter                | -0.052         | $2.38 \times 10^{-5}$  | -0.028   | $2.42 \times 10^{-2}$  | $-2.55 \times 10^{-5}$ | 5. |
| French: Google Books            | -0.043         | $6.80 \times 10^{-4}$  | -0.030   | $1.71 \times 10^{-2}$  | $-2.31 \times 10^{-5}$ | 5. |
| German: Google Books            | -0.003         | $8.12 \times 10^{-1}$  | +0.014   | $2.74 \times 10^{-1}$  | $-1.38 \times 10^{-6}$ | 5. |
| French: Twitter                 | -0.049         | $6.08 \times 10^{-5}$  | -0.023   | $6.31 \times 10^{-2}$  | $-2.54 \times 10^{-5}$ | 5. |
| Russian: Movie and TV subtitles | -0.029         | $2.36 \times 10^{-2}$  | -0.033   | $9.17 \times 10^{-3}$  | -1.57×10 <sup>-5</sup> | 5. |
| Arabic: Movie and TV subtitles  | -0.045         | $7.10 \times 10^{-6}$  | -0.029   | $4.19 \times 10^{-3}$  | $-1.66 \times 10^{-5}$ | 5. |
| Indonesian: Twitter             | -0.051         | $2.14 \times 10^{-5}$  | -0.018   | $1.24 \times 10^{-1}$  | $-2.50 \times 10^{-5}$ | 5. |
| Korean: Twitter                 | -0.032         | $8.29 \times 10^{-3}$  | -0.016   | $1.91 \times 10^{-1}$  | $-1.24 \times 10^{-5}$ | 5. |
| Russian: Google Books           | +0.030         | $2.09 \times 10^{-2}$  | +0.070   | $5.08 \times 10^{-8}$  | $+1.20 \times 10^{-5}$ | 5. |
| English: Music Lyrics           | -0.073         | $2.53 \times 10^{-7}$  | -0.081   | $1.05 \times 10^{-8}$  | $-6.12 \times 10^{-5}$ | 5. |
| Korean: Movie subtitles         | -0.187         | $8.22 \times 10^{-44}$ | -0.180   | $2.01 \times 10^{-40}$ | $-9.66 \times 10^{-5}$ | 5. |
| Chinese: Google Books           | -0.067         | $1.48 \times 10^{-11}$ | -0.050   | $5.01 \times 10^{-7}$  | $-1.72 \times 10^{-5}$ | 5. |

Pearson correlation coefficients and p-values, Spearman correlation coefficients and p-values, and linear fit coefficients, for average word happiness  $h_{
m avg}$  as a function of word usage frequency rank r. We use the fit is  $h_{avg} = \alpha r + \beta$  for the most common 5000 words in each corpora, determining  $\alpha$  and  $\beta$  via ordinary least squares, and order languages by the median of their average word happiness scores (descending). We note that stemming of words may affect these estimates.

| Language: Corpus                | $\rho_{\rm p}$ | p-value                | $\rho_{s}$ | p-value                | $\alpha$              | β    |
|---------------------------------|----------------|------------------------|------------|------------------------|-----------------------|------|
| Portuguese: Twitter             | +0.090         | $2.55 \times 10^{-14}$ | +0.095     | $1.28 \times 10^{-15}$ | $1.19 \times 10^{-5}$ | 1.29 |
| Spanish: Twitter                | +0.097         | $8.45 \times 10^{-15}$ | +0.104     | $5.92 \times 10^{-17}$ | $1.47 \times 10^{-5}$ | 1.26 |
| English: Music Lyrics           | +0.129         | $4.87 \times 10^{-20}$ | +0.134     | $1.63 \times 10^{-21}$ | $2.76 \times 10^{-5}$ | 1.33 |
| English: Twitter                | +0.007         | $6.26 \times 10^{-1}$  | +0.012     | $4.11 \times 10^{-1}$  | $1.47 \times 10^{-6}$ | 1.35 |
| English: New York Times         | +0.050         | $4.56 \times 10^{-4}$  | +0.044     | $1.91 \times 10^{-3}$  | $9.34 \times 10^{-6}$ | 1.32 |
| Arabic: Movie and TV subtitles  | +0.101         | $7.13 \times 10^{-24}$ | +0.101     | $3.41 \times 10^{-24}$ | $9.41 \times 10^{-6}$ | 1.01 |
| English: Google Books           | +0.180         | $1.68 \times 10^{-37}$ | +0.176     | $4.96 \times 10^{-36}$ | $3.36 \times 10^{-5}$ | 1.27 |
| Spanish: Google Books           | +0.066         | $1.23 \times 10^{-7}$  | +0.062     | 6.53×10 <sup>-7</sup>  | $9.17 \times 10^{-6}$ | 1.26 |
| Indonesian: Movie subtitles     | +0.026         | $3.43 \times 10^{-2}$  | +0.027     | $2.81 \times 10^{-2}$  | $2.87 \times 10^{-6}$ | 1.12 |
| Russian: Movie and TV subtitles | +0.083         | $7.60 \times 10^{-11}$ | +0.075     | $3.28 \times 10^{-9}$  | $1.06 \times 10^{-5}$ | 0.89 |
| French: Twitter                 | +0.072         | $4.77 \times 10^{-9}$  | +0.076     | $8.94 \times 10^{-10}$ | $1.07 \times 10^{-5}$ | 1.05 |
| Indonesian: Twitter             | +0.072         | $1.17 \times 10^{-9}$  | +0.072     | $1.73 \times 10^{-9}$  | $8.16 \times 10^{-6}$ | 1.12 |
| French: Google Books            | +0.090         | $1.02 \times 10^{-12}$ | +0.085     | $1.67 \times 10^{-11}$ | $1.25 \times 10^{-5}$ | 1.02 |
| Russian: Twitter                | +0.055         | $6.83 \times 10^{-6}$  | +0.053     | $1.67 \times 10^{-5}$  | $7.39 \times 10^{-6}$ | 0.91 |
| Spanish: Google Web Crawl       | +0.119         | $4.45 \times 10^{-24}$ | +0.106     | $2.60 \times 10^{-19}$ | $1.45 \times 10^{-5}$ | 1.23 |
| Portuguese: Google Web Crawl    | +0.093         | $4.06 \times 10^{-15}$ | +0.083     | $2.91 \times 10^{-12}$ | $1.07 \times 10^{-5}$ | 1.26 |
| German: Twitter                 | +0.051         | $4.45 \times 10^{-5}$  | +0.050     | 5.15×10 <sup>-5</sup>  | $7.39 \times 10^{-6}$ | 1.15 |
| French: Google Web Crawl        | +0.104         | $2.12 \times 10^{-18}$ | +0.088     | $9.64 \times 10^{-14}$ | $1.27 \times 10^{-5}$ | 1.01 |
| Korean: Movie subtitles         | +0.171         | $1.39 \times 10^{-36}$ | +0.185     | $8.85 \times 10^{-43}$ | $2.58 \times 10^{-5}$ | 0.88 |
| German: Google Books            | +0.157         | $6.06 \times 10^{-35}$ | +0.162     | $4.96 \times 10^{-37}$ | $2.17 \times 10^{-5}$ | 1.03 |
| Korean: Twitter                 | +0.056         | $4.07 \times 10^{-6}$  | +0.062     | $4.25 \times 10^{-7}$  | $6.98 \times 10^{-6}$ | 0.93 |
| German: Google Web Crawl        | +0.099         | $2.05 \times 10^{-16}$ | +0.085     | $1.18 \times 10^{-12}$ | $1.20 \times 10^{-5}$ | 1.07 |
| Chinese: Google Books           | +0.099         | $3.07 \times 10^{-23}$ | +0.097     | $3.81 \times 10^{-22}$ | $8.70 \times 10^{-6}$ | 1.16 |
| Russian: Google Books           | +0.187         | $5.15 \times 10^{-48}$ | +0.177     | $2.24 \times 10^{-43}$ | $2.28 \times 10^{-5}$ | 0.81 |

Pearson correlation coefficients and p-values, Spearman correlation coefficients and p-values, and linear fit coefficients for standard deviation of word happiness  $h_{
m std}$  as a function of word usage frequency rank r . We consider the fit is  $h_{
m std}=lpha\,r+eta$  for the most common 5000 words in each corpora, determining lpha and eta via ordinary least squares, and order corpora according to their emotional variance (descending).



# References I

[1] J. M. Diamond. Guns, Germs, and Steel.

W. W. Norton & Company, 1997.

[2] P. S. Dodds, E. M. Clark, S. Desu, M. R. Frank, A. J. Reagan, J. R. Williams, L. Mitchell, K. D. Harris, I. M. Kloumann, J. P. Bagrow, K. Megerdoomian, M. T. McMahon, B. F. Tivnan, and C. M. Danforth. Human language reveals a universal positivity bias. Proc. Natl. Acad. Sci., 112(8):2389-2394, 2015. Available online at

http://www.pnas.org/content/112/8/2389.pdf

# References IV

[7] D. Garcia, A. Garas, and F. Schweitzer. Language-dependent relationship between word happiness and frequency.

Proc. Natl. Acad. Sci., 2015. doi: 10.1073/pnas.1502909112. pdf

- [8] I. M. Kloumann, C. M. Danforth, K. D. Harris, C. A. Bliss, and P. S. Dodds. Positivity of the English language. PLoS ONE, 7:e29484, 2012. pdf
- [9] I. M. Kloumann, C. M. Danforth, K. D. Harris, C. A. Bliss, and P. S. Dodds. Positivity of the English language. PLoS ONE, 7:e29484, 2012. pdf

### The PoCSverse Pollyanna Principle 49 of 53

Pollyanna Principle English is happy 10 languages

Extras

References

The PoCSverse

Pollyanna Principle

Pollyanna Principle

English is happy

10 languages

Extras

References

# References II

[3] P. S. Dodds, E. M. Clark, S. Desu, M. R. Frank, A. J. Reagan, J. R. Williams, L. Mitchell, K. D. Harris, I. M. Kloumann, J. P. Bagrow, K. Megerdoomian, M. T. McMahon, B. F. Tivnan, and C. M. Danforth. Human language reveals a universal positivity bias. Proc. Natl. Acad. Sci., 112(8):2389-2394, 2015. Available online at http://www.pnas.org/content/112/8/2389; online

[4] P. S. Dodds, E. M. Clark, S. Desu, M. R. Frank, A. J. Reagan, J. R. Williams, L. Mitchell, K. D. Harris, I. M. Kloumann, J. P. Bagrow, K. Megerdoomian, M. T. McMahon, B. F. Tivnan, and C. M. Danforth. Reply to garcia et al.: Common mistakes in measuring frequency dependent word characteristics.

http://compstorylab.org/share/papers/dodds2014a/.

## References V

appendices:

[10] J.-B. Michel, Y. K. Shen, A. P. Aiden, A. Veres, M. K. Gray, The Google Books Team, J. P. Pickett, D. Hoiberg, D. Clancy, P. Norvig, J. Orwant, S. Pinker, M. A. Nowak, and E. A. Lieberman.

Quantitative analysis of culture using millions of digitized books.

Science Magazine, 331:176–182, 2011. pdf

- [11] J. W. Pennebaker, R. J. Booth, and M. E. Francis. Linguistic Inquiry and Word Count: LIWC 2007. at http://bit.ly/S1Dk2L, accessed May 15, 2014., 2007.
- [12] E. Sandhaus.

The New York Times Annotated Corpus. Linguistic Data Consortium, Philadelphia, 2008. Available online at: https://doi.org/10.35111/77ba-9x74.

# Pollyanna Principle 50 of 53

Pollyanna Principle

English is happy

10 languages

Extras Corpora Text parsing

References

The PoCSverse

Pollyanna Principle

Pollyanna Principle

English is happy

10 languages

References

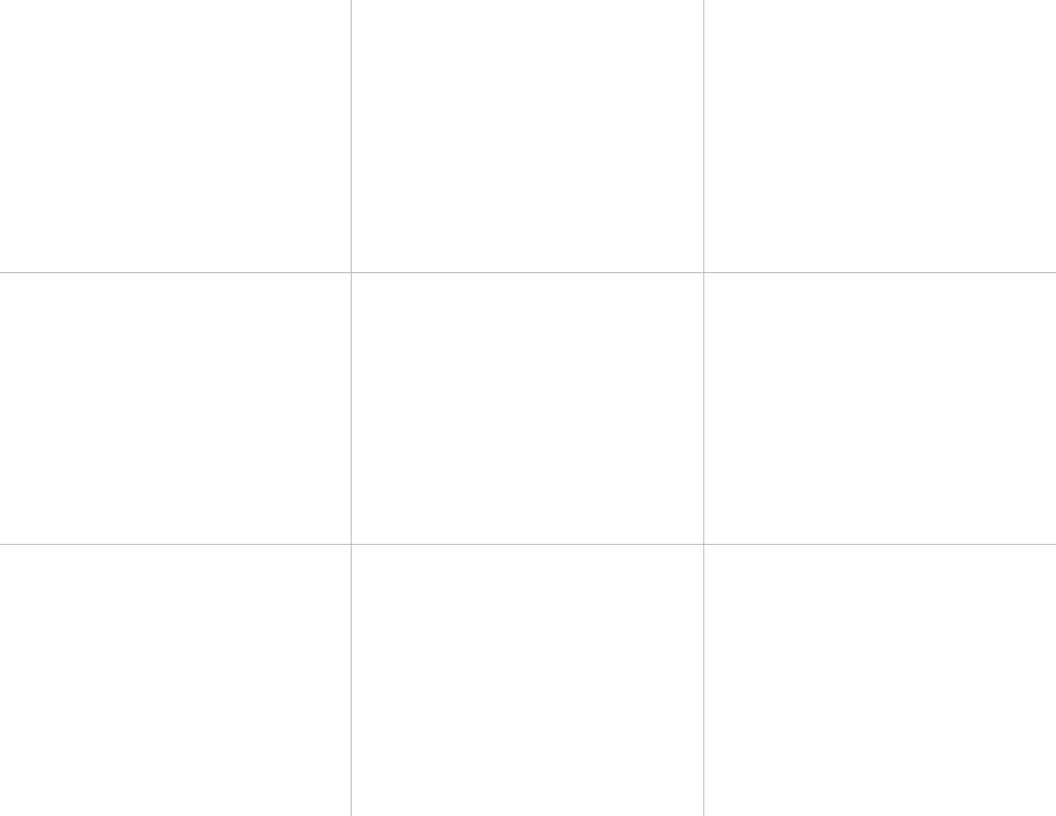
## References III

Proc. Natl. Acad. Sci., 2015. Available online at http: //www.pnas.org/content/early/2015/05/20/1505647112. pdf 🖸

[5] P. S. Dodds and C. M. Danforth. Measuring the happiness of large-scale written expression: songs, blogs, and presidents. Journal of Happiness Studies, 2009. doi:10.1007/s10902-009-9150-9. pdf

[6] P. S. Dodds, K. D. Harris, I. M. Kloumann, C. A. Bliss, and C. M. Danforth. Temporal patterns of happiness and information in a global

social network: Hedonometrics and Twitter.


PLoS ONE, 6:e26752, 2011. pdf

The PoCSverse Pollyanna Principle 51 of 53 Pollyanna Principle

English is happy 10 languages

Extras

References

