Optimal Supply Networks III: Redistribution

Last updated: 2024/10/15, 18:19:26 EDT

Principles of Complex Systems, Vols. 1, 2, & 3D CSYS/MATH 6701, 6713, & a pretend number, 2024-2025

Prof. Peter Sheridan Dodds

Computational Story Lab | Vermont Complex Systems Center Santa Fe Institute | University of Vermont

Licensed under the Creative Commons Attribution 4.0 International

1 of 49

Public versus Private

These slides are brought to you by:

The PoCSverse Optimal Supply Networks III 2 of 49

Distributed Sources

Distributed Sources

Cartograms

A reasonable

Global redistribution Public versus Private

These slides are also brought to you by:

Special Guest Executive Producer

On Instagram at pratchett_the_cat

The PoCSverse Optimal Supply Networks III 3 of 49

Distributed Sources

Size-density law

Cartograms

A reasonable

Public versus Private

Outline

Distributed Sources

Size-density law
Cartograms
A reasonable derivation
Global redistribution
Public versus Private

References

The PoCSverse Optimal Supply Networks III 4 of 49

Distributed Sources

Size-density law

Cartogram

Global redistributio

Public versus Private

Many sources, many sinks

How do we distribute sources?

- Focus on 2-d (results generalize to higher dimensions).
- Sources = hospitals, post offices, pubs, ...
- Key problem: How do we cope with uneven population densities?
- Obvious: if density is uniform then sources are best distributed uniformly.
- Mhich lattice is optimal? The hexagonal lattice
- Q2: Given population density is uneven, what do we do?
- We'll follow work by Stephan (1977, 1984) [4, 5], Gastner and Newman (2006) [2], Um *et al.* (2009) [6], and work cited by them.

The PoCSverse Optimal Supply Networks III 5 of 49

Distributed Sources

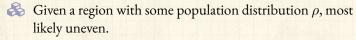
Cartograms

A reasonable de

Public versus Private

The PoCSverse Optimal Supply Networks III

6 of 49


Distributed Sources

Public versus Private

Optimal source allocation: Size-density law

Solidifying the basic problem

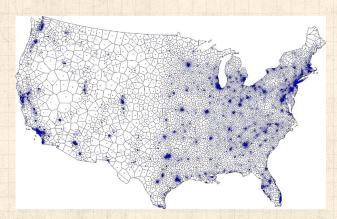
Given resources to build and maintain N facilities.

Q: How do we locate these N facilities so as to minimize the average distance between an individual's residence and the nearest facility?

The PoCSverse Optimal Supply Networks III 7 of 49

Distributed Sources

Cartogram


A reasonable d

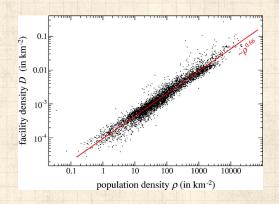
Public versus Private

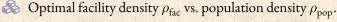
"Optimal design of spatial distribution networks" Gastner and Newman, Phys. Rev. E, 74, 016117, 2006. [2]

Approximately optimal location of 5000 facilities.

Based on 2000 Census data.

Simulated annealing + Voronoi tessellation.


The PoCSverse Optimal Supply Networks III


Distributed Sources

8 of 49

Public versus Private

 \Leftrightarrow Fit is $ho_{
m fac} \propto
ho_{
m pop}^{0.66}$ with $r^2=0.94$.

🙈 Looking good for a 2/3 power ...

The PoCSverse Optimal Supply Networks III 9 of 49

Distributed Sources

Cartogram

A reasonab

Public versus Private

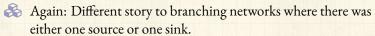
Networks III 11 of 49

Size-density law

The PoCSverse

Optimal Supply

Public versus Private


References

Size-density law:

$$ho_{
m fac} \propto
ho_{
m pop}^{2/3}$$

Now sources & sinks are distributed throughout region.

"Territorial division: The least-time constraint behind the formation of subnational boundaries" G. Edward Stephan, Science, **196**, 523–524, 1977. [4]

& We first examine Stephan's treatment (1977) [4, 5]

Zipf-like approach: invokes principle of minimal effort.

Also known as the Homer Simpson principle.

The PoCSverse Optimal Supply Networks III 12 of 49

Distributed Sources

Size-density law

Cartograms

Global redistribution

Public versus Private

- Consider a region of area A and population P with a single functional center that everyone needs to access every day.
- Build up a general cost function based on time expended to access and maintain center.
- Write average travel distance to center as $\langle d \rangle$ and assume average speed of travel is $\langle v \rangle$.
- Assume isometry: average travel distance $\langle d \rangle$ will be on the length scale of the region which is $\sim A^{1/2}$
- Average time expended per person in accessing facility is therefore

$$\left\langle d\right\rangle /\left\langle v\right\rangle =cA^{1/2}/\left\langle v\right\rangle$$

where c is an unimportant shape factor.

The PoCSverse Optimal Supply Networks III 13 of 49

Distributed Sources

Size-density law

A reasonable de

Public versus Private

Next assume facility requires regular maintenance (person-hours per day).

& Call this quantity au.

If burden of mainenance is shared then average cost per person is τ/P where P = population.

 $\red{\&}$ Replace P by $ho_{
m pop}A$ where $ho_{
m pop}$ is density.

Important assumption: uniform density.

Total average time cost per person:

$$T = \langle d \rangle / \langle v \rangle + \tau / (\rho_{\text{pop}} A) = c A^{1/2} / \langle v \rangle + \tau / (\rho_{\text{pop}} A).$$

 $\red {f \$}$ Now Minimize with respect to A ...

The PoCSverse Optimal Supply Networks III 14 of 49

Distributed Source

Size-density law Cartograms

A resconsble d

Global redistribution
Public versus Private

Differentiating ...

$$\begin{split} \frac{\partial T}{\partial A} &= \frac{\partial}{\partial A} \left(c A^{1/2} / \left< v \right> + \tau / (\rho_{\rm pop} A) \right) \\ &= \frac{c}{2 \left< v \right> A^{1/2}} - \frac{\tau}{\rho_{\rm pop} A^2} = 0 \end{split}$$

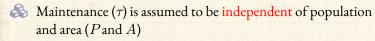
Rearrange:

$$A = \left(\frac{2 \left\langle v \right\rangle \tau}{c \rho_{\text{pop}}}\right)^{2/3} \propto \rho_{\text{pop}}^{-2/3}$$

 \Leftrightarrow # facilities per unit area ρ_{fac} :

$$ho_{
m fac} \propto A^{-1} \propto
ho_{
m pop}^{2/3}$$

Groovy ...



The PoCSverse Optimal Supply Networks III 15 of 49

Size-density law

Public versus Private

An issue:

- Stephan's online book "The Division of Territory in Society" is here

 ...
- \Leftrightarrow (It used to be here \square .)
- The Readme
 is well worth reading (1995).

The PoCSverse Optimal Supply Networks III 16 of 49

Distributed Sources

Size-density law

A reasonable d

Public versus Private

Standard world map:

The PoCSverse Optimal Supply Networks III 18 of 49

Distributed Sources

Size-density law

Cartograms

A reasonable d

Public versus Private

Cartogram of countries 'rescaled' by population:

The PoCSverse Optimal Supply Networks III 19 of 49

Distributed Sources

Cartograms

A resconsble

A reasonable

Public versus Private

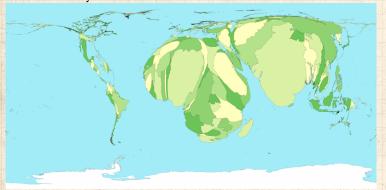
Diffusion-based cartograms:

- All Idea of cartograms is to distort areas to more accurately represent some local density $\rho_{\rm pop}$ (e.g. population).
- Many methods put forward—typically involve some kind of physical analogy to spreading or repulsion.
- Algorithm due to Gastner and Newman (2004) [1] is based on standard diffusion:

$$\nabla^2 \rho_{\rm pop} - \frac{\partial \rho_{\rm pop}}{\partial t} = 0. \label{eq:poppop}$$

- Allow density to diffuse and trace the movement of individual elements and boundaries.
- $\ \,$ Diffusion is constrained by boundary condition of surrounding area having density $\left\langle \rho\right\rangle_{\mathrm{pop}}.$

The PoCSverse Optimal Supply Networks III 20 of 49


Distributed Sources

Cartograms

A reasonable derivatio Global redistribution Public versus Private

Child mortality:

The PoCSverse Optimal Supply Networks III 21 of 49

Distributed Sources

Size-density law

Cartograms

A reasonable

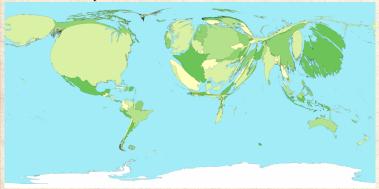
Public versus Private

Energy consumption:

The PoCSverse Optimal Supply Networks III 22 of 49

Distributed Sources

Size-density law


Cartograms

A reasonable

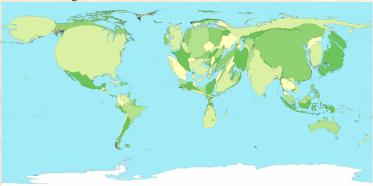
Public versus Private

Gross domestic product:

The PoCSverse Optimal Supply Networks III 23 of 49

Distributed Sources

Size-density law


Cartograms

A reasonable d

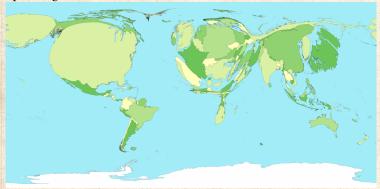
Public versus Private

Greenhouse gas emissions:

The PoCSverse Optimal Supply Networks III 24 of 49

Distributed Sources

Size-density


Cartograms

A reasonable

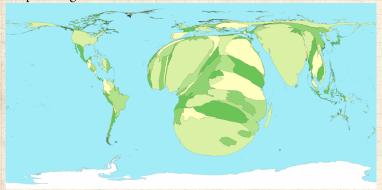
Public versus Private

Spending on healthcare:

The PoCSverse Optimal Supply Networks III 25 of 49

Distributed Sources

Size-density law


Cartograms

A reasonable d

Public versus Private

People living with HIV:

The PoCSverse Optimal Supply Networks III 26 of 49

Distributed Sources

Size-density law

Cartograms

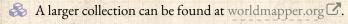
A reasonable

Public versus Private

The PoCSverse Optimal Supply Networks III 27 of 49

Distributed Sources

Size-density

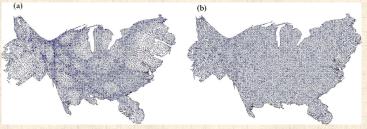

Cartograms

A reasonable

Public versus Private

References

The preceding sampling of Gastner & Newman's cartograms lives here .

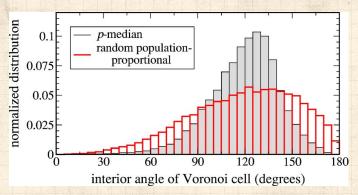


"Optimal design of spatial distribution networks"

Gastner and Newman, Phys. Rev. E, 74, 016117, 2006. [2]

& Left: population density-equalized cartogram.

 $\stackrel{\text{light:}}{\Leftrightarrow}$ Right: (population density)^{2/3}-equalized cartogram.


 $\mbox{\ensuremath{\ensuremath{\belowdellimits}}}$ Facility density is uniform for $ho_{pop}^{2/3}$ cartogram.

The PoCSverse Optimal Supply Networks III 28 of 49

Cartograms

Public versus Private

From Gastner and Newman (2006) [2]

Cartogram's Voronoi cells are somewhat hexagonal.

The PoCSverse Optimal Supply Networks III 29 of 49

Distributed Sources

Carronne

Cartograms

Clobal sodieselbur

Public versus Private

Deriving the optimal source distribution:

- Basic idea: Minimize the average distance from a random individual to the nearest facility. [2]
- Assume given a fixed population density $\rho_{\rm pop}$ defined on a spatial region $\Omega.$
- Formally, we want to find the locations of n sources $\{\vec{x}_1,\dots,\vec{x}_n\}$ that minimizes the cost function

$$F(\{\vec{x}_1,\ldots,\vec{x}_n\}) = \int_{\Omega} \frac{\rho_{\mathrm{pop}}(\vec{x}) \min_i ||\vec{x} - \vec{x}_i|| \mathrm{d}\vec{x} \,.$$

- Also known as the p-median problem, and connected to cluster analysis.
- Not easy ...in fact this one is an NP-hard problem. [2]
- Approximate solution originally due to Gusein-Zade [3].

The PoCSverse Optimal Supply Networks III 31 of 49

Distributed Sources

Size-density law

A reasonable derivation

Public versus Private

Size-density law

Approximations:

For a given set of source placements $\{\vec{x}_1,\ldots,\vec{x}_n\}$, the region Ω is divided up into Voronoi cells \mathcal{O} , one per source.

 $\ensuremath{ \gtrless}$ Define $A(\vec{x})$ as the area of the Voronoi cell containing \vec{x} .

As per Stephan's calculation, estimate typical distance from \vec{x} to the nearest source (say i) as

$$c_i A(\vec{x})^{1/2}$$

where c_i is a shape factor for the ith Voronoi cell.

 $\begin{cases} \& \& \end{cases}$ Approximate c_i as a constant c.

The PoCSverse Optimal Supply Networks III 32 of 49

Distributed Sources

Size-density law

A reasonable derivation

Public versus Private

Size-density law

Carrying on:

The cost function is now

$$F = c \int_{\Omega} \rho_{\rm pop}(\vec{x}) A(\vec{x})^{1/2} \mathrm{d}\vec{x} \,. \label{eq:F_pop}$$

- We also have that the constraint that Voronoi cells divide up the overall area of Ω : $\sum_{i=1}^{n} A(\vec{x}_i) = A_{\Omega}$.
- Sneakily turn this into an integral constraint:

$$\int_{\Omega} \frac{\mathrm{d}\vec{x}}{A(\vec{x})} = n.$$

- \Leftrightarrow Within each cell, $A(\vec{x})$ is constant.
- So ...integral over each of the n cells equals 1.

The PoCSverse Optimal Supply Networks III 33 of 49

Distributed Sources

Size-density law

A reasonable derivation

Global redistribution

Public versus Private

Now a Lagrange multiplier story:

 $\mbox{\ensuremath{\ensuremath{\&}}} \mbox{\ensuremath{\ensuremath{By}}} \mbox{\ensuremath{\ensuremath{ava}}} \mbox{\ensuremath{\ensuremath{ava}}} \{\vec{x}_1,\ldots,\vec{x}_n\},$ minimize

$$G(A) = c \int_{\Omega} \rho_{\mathrm{pop}}(\vec{x}) A(\vec{x})^{1/2} \mathrm{d}\vec{x} - \lambda \left(n - \int_{\Omega} \left[A(\vec{x}) \right]^{-1} \mathrm{d}\vec{x} \right)$$

A I Can Haz Calculus of Variations
 ✓?

 $Rightarrow Compute <math>\delta G/\delta A$, the functional derivative C of the functional G(A).

This gives

$$\int_{\Omega} \left[\frac{c}{2} \rho_{\mathrm{pop}}(\vec{x}) A(\vec{x})^{-1/2} - \lambda \left[A(\vec{x}) \right]^{-2} \right] \mathrm{d}\vec{x} \, = 0.$$

Setting the integrand to be zilch, we have:

$$\rho_{\rm pop}(\vec{x}) = 2\lambda c^{-1} A(\vec{x})^{-3/2}.$$

The PoCSverse Optimal Supply Networks III 34 of 49

Distributed Sources

Size-density law

A reasonable derivation Global redistribution

Public versus Private
References

Size-density law

Now a Lagrange multiplier story:

Rearranging, we have

$$A(\vec{x}) = (2\lambda c^{-1})^{2/3} \rho_{\text{pop}}^{-2/3}.$$

- Finally, we indentify $1/A(\vec{x})$ as $\rho_{\rm fac}(\vec{x})$, an approximation of the local source density.
- $\ensuremath{\mathfrak{S}}$ Substituting $ho_{\mathrm{fac}}=1/A$, we have

$$ho_{
m fac}(ec{x}) = \left(rac{c}{2\lambda}
ho_{
m pop}
ight)^{2/3}.$$

 \aleph Normalizing (or solving for λ):

$$\rho_{\rm fac}(\vec{x}) = n \frac{[\rho_{\rm pop}(\vec{x})]^{2/3}}{\int_{\Omega} [\rho_{\rm pop}(\vec{x})]^{2/3} {\rm d}\vec{x}} \propto [\rho_{\rm pop}(\vec{x})]^{2/3}.$$

The PoCSverse Optimal Supply Networks III 35 of 49

Distributed Sources

Size-density law

A reasonable derivation

Public versus Private

Global redistribution networks

One more thing:

How do we supply these facilities?

How do we best redistribute mail? People?

How do we get beer to the pubs?

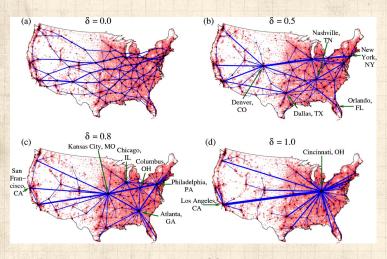
Gastner and Newman model: cost is a function of basic maintenance and travel time:

$$C_{\mathrm{maint}} + \gamma C_{\mathrm{travel}}.$$

Reference of the state of the s nodes to be a composite of shortest path distance ℓ_{ij} and number of legs to journey:

$$(1-\delta)\ell_{ij} + \delta(\# \mathrm{hops}).$$

When $\delta = 1$, only number of hops matters.


The PoCSverse Optimal Supply Networks III 37 of 49

Global redistribution

Public versus Private

Global redistribution networks

From Gastner and Newman (2006) [2]

The PoCSverse Optimal Supply Networks III 38 of 49

Distributed Sources

Size-density law

A reasonable of

Global redistribution Public versus Private

The PoCSverse Optimal Supply Networks III 39 of 49

Global redistribution Public versus Private

Public versus private facilities

Beyond minimizing distances:

- Scaling laws between population and facility densities" by Um *et al.*, Proc. Natl. Acad. Sci., 2009. [6]
- With the connection between facility and argue theoretically that the connection between facility and population density

$$ho_{
m fac} \propto
ho_{
m pop}^{lpha}$$

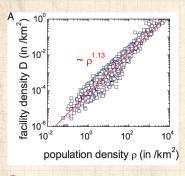
does not universally hold with $\alpha = 2/3$.

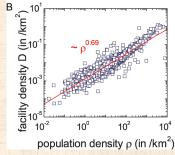
- Two idealized limiting classes:
 - 1. For-profit, commercial facilities: $\alpha = 1$;
 - 2. Pro-social, public facilities: $\alpha = 2/3$.
- With the United States and South Korea.

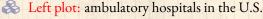
The PoCSverse Optimal Supply Networks III 41 of 49

Distributed Sources

Classification


Cartograms


A reasonable de


Public versus Private

Public versus private facilities: evidence

Right plot: public schools in the U.S.

Note: break in scaling for public schools. Transition from $\alpha\simeq 2/3$ to $\alpha=1$ around $\rho_{\rm pop}\simeq 100$.

The PoCSverse Optimal Supply Networks III 42 of 49

Distributed Sources

Size-density law

A reasonable of

Public versus Private

Public versus private facilities: evidence

US facility	α (SE)	R ²	
Ambulatory hospital	1.13(1)	0.93	
Beauty care	1.08(1)	0.86	
Laundry	1.05(1)	0.90	
Automotive repair	0.99(1)	0.92	
Private school	0.95(1)	0.82	
Restaurant	0.93(1)	0.89	
Accommodation	0.89(1)	0.70	
Bank	0.88(1)	0.89	
Gas station	0.86(1)	0.94	
Death care	0.79(1)	0.80	
* Fire station	0.78(3)	0.93	
* Police station	0.71(6)	0.75	
Public school	0.69(1)	0.87	
SK facility	α (SE)	R ²	
Bank	1.18(2)	0.96	
Parking place	1.13(2)	0.91	
* Primary clinic	1.09(2)	1.00	
* Hospital	0.96(5)	0.97	
* University/college	0.93(9)	0.89	
Market place	0.87(2)	0.90	
* Secondary school	0.77(3)	0.98	
* Primary school	0.77(3)	0.97	
Social welfare org.	0.75(2)	0.84	
* Police station	0.71(5)	0.94	
Government office	0.70(1)	0.93	
* Fire station	0.60(4)	0.93	
* Public health center	0.09(5)	0.19	

Rough transition between public and private at $\alpha \simeq 0.8$.

Note: * indicates analysis is at state/province level; otherwise county level. The PoCSverse Optimal Supply Networks III 43 of 49

Distributed Sources

Cartograms

Global redistribution Public versus Private

Public versus private facilities: evidence

A, C: ambulatory hospitals in the U.S.; B, D: public schools in the U.S.; A, B: data; C, D: Voronoi diagram from model simulation.

The PoCSverse
Optimal Supply
Networks III
44 of 49
Distributed Sources
Size-density law
Cartograms
A reasonable derivation
Global redistribution
Public versus Private

Public versus private facilities: the story

So what's going on?

- Social institutions seek to minimize distance of travel.
- & Commercial institutions seek to maximize the number of visitors.
- \clubsuit Defns: For the ith facility and its Voronoi cell V_i , define
 - n_i = population of the *i*th cell;
 - $\langle r_i \rangle$ = the average travel distance to the *i*th facility.
 - A_i = area of ith cell (s_i in Um et al. $^{[6]}$)
- Objective function to maximize for a facility (highly constructed):

$$v_i = n_i \langle r_i \rangle^\beta \text{ with } 0 \leq \beta \leq 1.$$

- $\beta = 0$: purely commercial.
- $\beta = 1$: purely social.

The PoCSverse Optimal Supply Networks III 45 of 49

Distributed Sources

Size-density law

Cartograms

Global redistributio

Public versus Private

recierences

Public versus private facilities: the story

Either proceeding as per the Gastner-Newman-Gusein-Zade calculation or, as Um *et al.* do, observing that the cost for each cell should be the same, we have:

$$\rho_{\rm fac}(\vec{x}) = n \frac{[\rho_{\rm pop}(\vec{x})]^{2/(\beta+2)}}{\int_{\Omega} [\rho_{\rm pop}(\vec{x})]^{2/(\beta+2)} {\rm d}\vec{x}} \propto [\rho_{\rm pop}(\vec{x})]^{2/(\beta+2)}.$$

 $\mbox{\ensuremath{\&}}\mbox{\ensuremath{B}}\mbox{\ensuremath{For}}\mbox{\ensuremath{\beta}}=1, \alpha=2/3$: social scaling is sublinear.

The PoCSverse Optimal Supply Networks III 46 of 49

Distributed Sources

Size-density la

A reasonable d

Public versus Private

System type:	Dominant cost/benefit scaling:	Dominant constraint scaling:	Scaling of number of events per partition:	Density scaling:	Quantity equalized across partitions:
General form	$ ho_{ m event} V^{lpha}$ $0 < lpha \le 1$	$V^{-\beta}$ $1-\alpha \leq \beta \leq 1$	$N \propto V^{1-\alpha-eta}$	$ ho_{ m partition} \propto ho_{ m event}^{1/(lpha+eta)}$	$NV^{\alpha+\beta-1}$
I. Event rate equalizing with partition number constrained (for-profit)	$\sim ho_{ m event} \ln V$	V^{-1}	$N \propto V^0$	$ ho_{ m partition} \propto ho_{ m event}^1$	N
II. Minimizing average event access time with partition number constrained (p-median problem, pro-social)	$ ho_{ m event} V^{1/d}$	V^{-1}	$N \propto V^{-1/d}$	$ ho_{ m partition} \propto ho_{ m event}^{d/(d+1)}$	$NV^{1/d}$
III. System under stochastic threat with partition boundary constrained (HOT model)	$ ho_{ m event} V^1$	$V^{-1/d}$	$N \propto V^{-1/d}$	$ ho_{ m partition} \propto ho_{ m event}^{d/(d+1)}$	$NV^{1/d}$
IV. System under stochastic threat with partition number constrained	$ ho_{ m event} V^1$	V^{-1}	$N \propto V^{-1}$	$ ho_{ m partition} \propto ho_{ m event}^{1/2}$	NV

The PoCSverse Optimal Supply Networks III 47 of 49

Distributed Sources

Cartograms

A reasonable derivation

Public versus Private

References I

[1] M. T. Gastner and M. E. J. Newman.

Diffusion-based method for producing density-equalizing maps.

Proc. Natl. Acad. Sci., 101:7499-7504, 2004. pdf

- [2] M. T. Gastner and M. E. J. Newman.

 Optimal design of spatial distribution networks.

 Phys. Rev. E, 74:016117, 2006. pdf
- [3] S. M. Gusein-Zade.

 Bunge's problem in central place theory and its generalizations.

 Geogr. Anal., 14:246–252, 1982. pdf
- [4] G. E. Stephan.

 Territorial division: The least-time constraint behind the formation of subnational boundaries.

 Science, 196:523–524, 1977. pdf

The PoCSverse Optimal Supply Networks III 48 of 49

Distributed Sources

Size-density law

Cartograms

Global redistribution

Public versus Private

References II

[5] G. E. Stephan. Territorial subdivision. Social Forces, 63:145–159, 1984. pdf

[6] J. Um, S.-W. Son, S.-I. Lee, H. Jeong, and B. J. Kim. Scaling laws between population and facility densities. Proc. Natl. Acad. Sci., 106:14236–14240, 2009. pdf The PoCSverse Optimal Supply Networks III 49 of 49

Distributed Source

Size-density

Cartograms

Global redistribution

Public versus Private

