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Robustness

Many complex systems are prone to cascading catastrophic
failure: exciting!!!

Blackouts

Disease outbreaks

Wildfires

Earthquakes

Organisms, individuals and societies

Ecosystems

Cities

Myths: Achilles.
But complex systems also show persistent robustness (not as
exciting but important...)

Robustness and Failure may be a power-law story...
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Our emblem of Robust-Yet-Fragile:

Robustness

System robustness may result from

1. Evolutionary processes
2. Engineering/Design

Idea: Explore systems optimized to perform under uncertain
conditions.

The handle:

‘Highly Optimized Tolerance’ (HOT) 14 ¢ 10)
The catchphrase: Robust yet Fragile

The people: Jean Carlson and John Doyle ("

Great abstracts of the world #73: “There aren’t any.” !

Robustness

Features of HOT systems: (5.6l

High performance and robustness

Designed/evolved to handle known stochastic environmental
variability

Fragile in the face of unpredicted environmental signals
Highly specialized, low entropy configurations

Power-law distributions appear (of course...)
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Robustness

HOT combines things we’ve seen:

Variable transformation

Constrained optimization

Need power law transformation between variables:
( )/ — ‘X —Q )

Recall PLIPLO is bad...

MIWO is good: Mild In, Wild Out

X has a characteristic size but Y'does not
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Forest fire example: )
Square N x N grid!
Sites contain a tree with probability p = density
Sites are empty with probability 1 — p
Fires start at location (3, j) according to some distribution P;;
Fires spread from tree to tree (nearest neighbor only)
Connected clusters of trees burn completely
Empty sites block fire
Best case scenario:
Build firebreaks to maximize average # trees left intact given
one spark

This is bad notation. Would be better to have N = L x L
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Robustness

Forest fire example: 5]
Build a forest by adding one tree at a time
Test D ways of adding one tree
D = design parameter
Average over P;; = spark probability
D = 1: random addition
D = N2: testall possibilities

Measure average area of forest left untouched

f(c) = distribution of fire sizes ¢ (= cost)
Yield=Y = p— (¢)
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Robustness

Specifics:
Fij = Pia, b, Fja, b,
where
Pioy X e—l(ita)/b]?

In the original work, by >b,

Distribution has more width in y direction.

HOT Forests I°!
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Optimized forests do well on average (robustness)

But rare, extreme events occur (fragility)
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Density Density
FIG. 2. Yield vs density Y(p): (a) for design parameters D =
1 (dotted curve), 2 (dot-dashed), N (long dashed), and N (solid)
with N = 64, and (b) for D =2 and N = 2,22,...,27 run-
ning from the bottom to top curve. The results have been av-
eraged over 100 runs. The inset to (a) illustrates corresponding
loss functions L = log[{f)/(1 — (f))], on a scale which more
clearly differentiates between the curves. [s]
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HOT Forests:

Y = ‘the average density of trees left unburned in a
configuration after a single spark hits.” bl

(b)

Cumulative probability F(c)

T

107 10
Event size ¢

o 10

10° 10° 10 107 10f

Event size ¢
FIG. 3. Cumulative distributions of events F(c): (a) at peak
yield for D =1, 2, N, and N? with N = 64, and (b) for D =
N?,and N = 64 at equal density increments of 0.1, ranging at
p = 0.1 (bottom curve) to p = 0.9 (top curve).

Variable density story does not hold up:

HOT model simulations for:?
N=64,D = N? = 4,096

Density measure should be for forested part only.3
Distribution is missing spike for size zero forests.

Distribution tail grows with tree addition.

2Simulations and videos by David Matthews, PoCS 2020
*And it would be high, far above p,

Random Forests

D = 1: Random forests = Percolation '/
Randomly add trees.
Below critical density p,, no fires take off.
Above critical density p., percolating cluster of trees burns.

Only at p, the critical density, is there a power-law
distribution of tree cluster sizes.

Forest is random and featureless.
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HOT forests nutshell:

Highly structured.

Claim power law distribution of tree cluster sizes for a broad
range of p, including below p_ (but model’s dynamic growth
path is odd).

Claim: No specialness of p. (oops).
Forest states are tolerant.
Uncertainty is okay if well characterized.

If P, is characterized poorly or changes too fast, failure
becomes highly likely.

Growth is key to toy model which is both algorithmic and
physical.

HOT theory is more general than just this toy model.

HOT forests—Real data:

“Complexity and Robustness,” Carlson & Dolye lel

PLR =
probability-loss-resource.

Minimize cost subject to

C= Zl Pl

given
l; = f(r;)and Y r; < R.
DC = Data Compression.

Horror: log. Screaming: “The

base! What is the base!? You

»

These are CCDFs (Eek:
P P(>1;))

monsters

HOT theory:

The abstract story, using figurative forest fires:

Given some measure of failure size y; and correlated resource
size z; with relationship y; = 7%, ¢ =1, ..., Ny,.

Design system to minimize ()

subject to a constraint on the x;.

Minimize cost:

. N,
Subject to Y=z, = constant.
=1 "t

resource (barrier) constraints:
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1. Cost: Expected size of fire:

N,

sites

Clre Z pia;.
i1

a; = area of ith site’s region, and p; = avg. prob. of fire at ith site
over some time frame.

2. Constraint: building and maintaining firewalls.
Per unit area, and over same time frame:

N,

sites

1/2 4
CﬁrewallsCXE a;” a; .

i=1

& We are assuming isometry.
& Ind dimensions, 1/2 is replaced by (d — 1)/d

ignment question (7 to find:

Continuum version:

1. Cost function:
(© = [ c@m@az

where C'is some cost to be evaluated at each point in space Z
(e.g., V(Z)%), and p(Z) is the probability an Ewok jabs
position Z with a sharpened stick (or equivalent).
2. Constraint:
/ R(Z)dZ =c
where ¢ is a constant.

& Claim/observation is that typically [*
V(@) ~ R79(3)

& For spatial systems with barriers: 3 = d.

SOC theory

SOC = Self-Organized Criticality

Idea: natural dissipative systems exist at ‘critical states’;
Analogy: Ising model with temperature somehow self-tuning;
Power-law distributions of sizes and frequencies arise ‘for
free’s

Introduced in 1987 by Bak, Tang, and Weisenfeld 32,81,

“Self-organized criticality - an explanation of 1/f noise” (PRL,
1987);

Problem: Critical state is a very specific point;

o HOP

Self-tuning not always possible;

o

Much criticism and arguing...
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Self Organized Critcality

HOT versus SOC

& Both produce power laws

“Complexity and robustness” =

Carlson and Doyle,
Proc. Natl. Acad. Sci., 99, 2538-2545, 2002. ¢

& Optimization versus self—tuning
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“How Nature Works: the Science of Self-Organized Ho
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&> Claim: HOT systems viable over a wide range of high

densities (false)

& True: SOC systems have one special density

& HOT systems produce specialized structures

&% SOC systems produce generic structures

HOT theory—Summary of designed tolerance )

Table 1. Characteristics of SOC, HOT, and data
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Property Neld HOT and Data Self Organiaed Cridaly
1 Internal Generic, Structured,
configuration homogeneous, heterogeneous, Reference
self-similar self-dissimilar
2 Robustness Generic Robust, yet
fragile
3 Density and yield Low High
4 Max event size Infinitesimal Large
5 Large event shape Fractal Compact
6 Mechanism for Critical internal Robust
power laws fluctuations performance
7 Exponent « Small Large
8 a vs. dimension d a=(d-1)/10 a=1/d
9 DDOFs Small (1) Large (=)
10 Increase model No change New structures,
resolution new sensitivities
1" Response to Homogeneous Variable

forcing

COLD forests

Avoidance of large-scale failures

& Constrained Optimization with Limited Deviations |’
< Weight cost of larges losses more strongly

& Increases average cluster size of burned trees...

& ... but reduces chances of catastrophe

&% Power law distribution of fire sizes is truncated

Cutoffs

Observed:

&% Power law distributions often have an exponential cutoff
P(x) ~a Ve %/

where . is the approximate cutoff scale.

o May be Weibull distributions:

P(z) ~ g emar 7

Robustness

We’ll return to this later on (maybe):

& Network robustness.

&5 Albert et al., Nature, 2000:
“Error and attack tolerance of complex networks” tl

&% General contagion processes acting on complex
IS
networks. [ 17

&% Similar robust-yet-fragile stories ...
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