Random Networks Nutshell

Last updated: 2025/01/11, 13:46:55 EST

Principles of Complex Systems, Vols. 1, 2, & 3D CSYS/MATH 6701, 6713, & a pretend number, 2024–2025

Prof. Peter Sheridan Dodds

Computational Story Lab | Vermont Complex Systems Center Santa Fe Institute | University of Vermont

Licensed under the Creative Commons Attribution 4.0 International

The PoCSverse Random Networks Nutshell

1 of 74

Pure random networks

Definition

low to build theoreticall

Clustering

Degree distrib

Generalized Random Networks

Configuration model

How to build in pract

Strange friends

argest component

These slides are brought to you by:

The PoCSverse Random Networks Nutshell 2 of 74

Pure random networks

Definition

How to build theoretica

Clustering

Degree distributions

Generalized Random Networks

Configuration model

How to build in practice

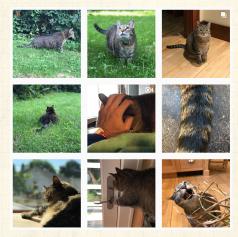
Monife

Strange friends

Largest component

These slides are also brought to you by:

Special Guest Executive Producer



On Instagram at pratchett_the_cat

The PoCSverse Random Networks Nutshell 3 of 74

Pure random networks

Definitions

How to build theoretical

Clustering

Degree distributions

Generalized Random Networks

Configuration model

How to build in practice

Strange friends

Largest component

Outline

Pure random networks

Definitions
How to build theoretically
Some visual examples
Clustering
Degree distributions

Generalized Random Networks

Configuration model
How to build in practice
Motifs
Strange friends
Largest component

References

The PoCSverse Random Networks Nutshell 4 of 74

Pure random networks

Definition

How to build theoretica

Clustering

Degree distributions

Generalized Random Networks

Configuration model

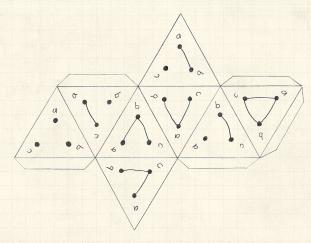
How to build in practic

Strange friends

Largest component



Random network generator for N=3:



Get your own exciting generator here .

 $As N \nearrow$, polyhedral die rapidly becomes a ball...

The PoCSverse Random Networks Nurshell 6 of 74

Pure random networks

Degree distributions

Generalized Random Networks

Strange friends

Largest component

Random networks

Pure, abstract random networks:

- Consider set of all networks with N labelled nodes and m edges.
- Standard random network = one randomly chosen network from this set.
- To be clear: each network is equally probable.
- Sometimes equiprobability is a good assumption, but it is always an assumption.
- & Known as Erdős-Rényi random networks or ER graphs.

The PoCSverse Random Networks Nutshell 8 of 74

Pure random networks

Definitions

How to build the

Clustering

Degree distrib

Generalized Random Networks

Configuration model

How to build in prac

Strange friends

Random networks—basic features:

Number of possible edges:

$$0 \le m \le \binom{N}{2} = \frac{N(N-1)}{2}$$

- Limit of m = 0: empty graph.
- \mathbb{R} Limit of $m = \binom{N}{2}$: complete or fully-connected graph.
- Number of possible networks with N labelled nodes:

$$2^{\binom{N}{2}} \sim e^{\frac{\ln 2}{2}N(N-1)}.$$

- Siven m edges, there are $\binom{\binom{N}{2}}{2}$ different possible networks.
- Real world: links are usually costly so real networks are almost always sparse.

The PoCSverse Random Networks Nurshell

9 of 74

Pure random networks

Definitions

Generalized Random Networks

Strange friends Largest component

Random networks

How to build standard random networks:

- \clubsuit Given N and m.
- Two probablistic methods (we'll see a third later on)
 - 1. Connect each of the $\binom{N}{2}$ pairs with appropriate probability p.
 - Useful for theoretical work.
 - 2. Take N nodes and add exactly m links by selecting edges without replacement.
 - Algorithm: Randomly choose a pair of nodes i and j, $i \neq j$, and connect if unconnected; repeat until all m edges are allocated.
 - Best for adding relatively small numbers of links (most cases).
 - \bigcirc 1 and 2 are effectively equivalent for large N.

The PoCSverse Random Networks Nutshell 11 of 74

Pure random networks

Definitions

How to build theoretically

Clustering

Generalized Random Networks

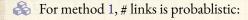
Configuration model

Motifs

Strange friends

Random networks

A few more things:

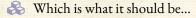


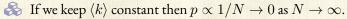
$$\langle m \rangle = p \binom{N}{2} = p \frac{1}{2} N(N-1)$$

So the expected or average degree is

$$\langle k \rangle = \frac{2 \langle m \rangle}{N}$$

$$=\frac{2}{N}p\frac{1}{2}N(N-1)=\underbrace{\mathcal{D}}{\mathcal{H}}p\frac{1}{\mathcal{D}}\mathcal{N}(N-1)=p(N-1).$$





The PoCSverse Random Networks Nutshell 12 of 74

Pure random networks

Definitions

How to build theoretically

Clustering

Generalized Random

Networks

Configuration model

Motifs Strange friends

Largest compone

Random networks: examples

Next slides:

Example realizations of random networks

& Vary m, the number of edges from 100 to 1000.

Average degree $\langle k \rangle$ runs from 0.4 to 4.

& Look at full network plus the largest component.

The PoCSverse Random Networks Nutshell 14 of 74

Pure random networks

Definitions

How to build theoretically Some visual examples

Clustering

Degree distrib

Generalized Random Networks

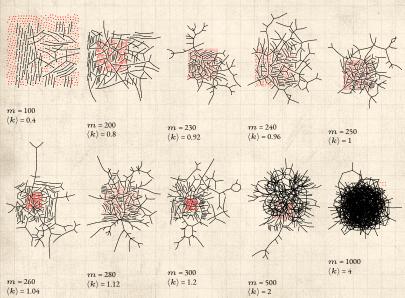
Configuration model

How to build in practic

Strange friends

Largest compor

Random networks: examples for N=500



The PoCSverse Random Networks Nutshell 15 of 74

Some visual examples

Degree distributions

Generalized Random

Networks Configuration model

Strange friends Largest component

Random networks: largest components m = 230m = 100 $\langle k \rangle = 0.92$ (k) = 0.4m = 240m = 250 $\langle k \rangle = 0.96$ $\langle k \rangle = 1$ m = 200 $\langle k \rangle = 0.8$ m = 1000 $\langle k \rangle = 4$ m = 500

m = 300

 $\langle k \rangle = 2$

The PoCSverse Random Networks Nutshell

16 of 74 Pure random

Some visual examples

Clustering Degree distributions

Generalized Random

Networks Configuration model

Motifs

Strange friends Largest component

Random networks: examples for N=500

Some visual examples

The PoCSverse

Random Networks Nutshell 17 of 74 Pure random

References

m = 250 $\langle k \rangle = 1$ m = 250 $\langle k \rangle = 1$

m = 250

 $\langle k \rangle = 1$

 $\langle k \rangle = 1$

m = 250

m = 250

 $\langle k \rangle = 1$

 $\langle k \rangle = 1$

m = 250

 $\langle k \rangle = 1$

$$m$$
 = 250 $\langle k \rangle$ = 1

m = 250 $\langle k \rangle = 1$

m = 250

$$m = 250$$
 $\langle k \rangle = 1$

m = 250

Random networks: largest components

Pure random

Some visual examples

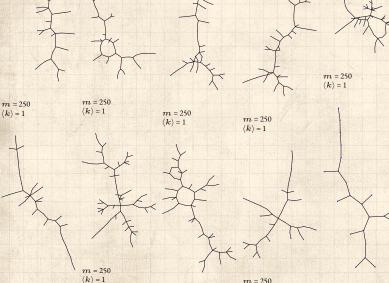
Degree distributions Generalized Random

Networks Configuration model

Motifs

Strange friends Largest component

References

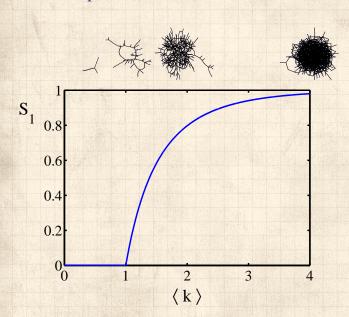


m = 250 $\langle k \rangle = 1$

m = 250

m = 250

Giant component



The PoCSverse Random Networks Nutshell 19 of 74

Pure random networks

Definition

How to build theoreticall

Some visual examples

Degree distributions

Generalized Random Networks

Configuration model

How to build in pract Motifs

Strange friends

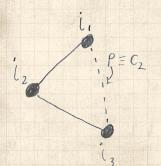
Largest component

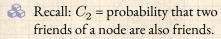
Clustering in random networks:

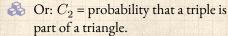
For construction method 1, what is the clustering coefficient for a finite network?

Consider triangle/triple clustering coefficient: [6]

$$C_2 = rac{3 imes ext{\#triangles}}{ ext{\#triples}}$$







A For standard random networks, we have simply that

$$C_2 = p$$
.

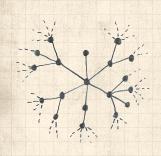
The PoCSverse Random Networks Nurshell 21 of 74

networks

Clustering

Generalized Random Networks

Clustering in random networks:



- So for large random networks $(N \to \infty)$, clustering drops to zero.
- Key structural feature of random networks is that they locally look like pure branching networks
- No small loops.

The PoCSverse Random Networks Nutshell 22 of 74

Pure random networks

Definitions

How to build theoretically

Clustering

Degree distrib

Generalized Random Networks

Configuration model

How to build in prac

Strange friends

Largest compo

Degree distribution:

- Recall P_k = probability that a randomly selected node has degree k.
- Representation of the constructing and the consider method 1 for constructing random networks: each possible link is realized with probability p.
- Now consider one node: there are 'N-1 choose k' ways the node can be connected to k of the other N-1 nodes.
- \clubsuit Each connection occurs with probability p, each non-connection with probability (1-p).
- Therefore have a binomial distribution ::

 $P(k; p, N) = \binom{N-1}{k} p^k (1-p)^{N-1-k}.$

The PoCSverse Random Networks Nurshell 24 of 74

networks

Degree distributions

Generalized Random Networks

Strange friends

Largest component

Limiting form of P(k; p, N):

- Our degree distribution: $P(k; p, N) = {\binom{N-1}{k}} p^k (1-p)^{N-1-k}.$
- \Longrightarrow What happens as $N \to \infty$?
- We must end up with the normal distribution right?
- If p is fixed, then we would end up with a Gaussian with average degree $\langle k \rangle \simeq pN \to \infty$.
- \Longrightarrow But we want to keep $\langle k \rangle$ fixed...
- $A \Rightarrow So$ examine limit of P(k; p, N) when $p \to 0$ and $N \to \infty$ with $\langle k \rangle = p(N-1) = \text{constant}$.

$$P(k;p,N) \simeq \frac{\langle k \rangle^k}{k!} \left(1 - \frac{\langle k \rangle}{N-1}\right)^{N-1-k} \to \frac{\langle k \rangle^k}{k!} e^{-\langle k \rangle}$$

 $\red{\$}$ This is a Poisson distribution $\red{\&}$ with mean $\langle k \rangle$.

The PoCSverse Random Networks Nurshell 25 of 74

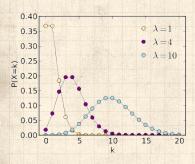
networks

Degree distributions

Generalized Random Networks

Poisson basics:

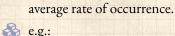
$$P(k;\lambda) = \frac{\lambda^k}{k!} e^{-\lambda}$$



 $\lambda > 0$

Representation of the contract an event occurs k times in a

k = 0, 1, 2, 3, ...



备 e.g.:

phone calls/minute, horse-kick deaths.

& 'Law of small numbers'

given time period, given an

Pure random networks

Degree distributions

Generalized Random Networks

Strange friends

Poisson basics:

- The variance of degree distributions for random networks turns out to be very important.
- Using calculation similar to one for finding $\langle k \rangle$ we find the second moment to be:

$$\langle k^2 \rangle = \langle k \rangle^2 + \langle k \rangle.$$

Variance is then

$$\sigma^2 = \langle k^2 \rangle - \langle k \rangle^2 = \langle k \rangle^2 + \langle k \rangle - \langle k \rangle^2 = \langle k \rangle.$$

- $\red solution \delta$ is equal to $\sqrt{\langle k \rangle}$.
- Note: This is a special property of Poisson distribution and can trip us up...

The PoCSverse Random Networks Nutshell 27 of 74

networks

Definitions

How to build they

How to build theoretically Some visual examples

Clustering

Degree distributions

Degree distril

Generalized Random Networks

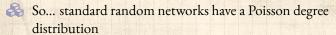
Configuration model

How to build in practice

Motifs Strange friends

Largest component

General random networks



 $\ensuremath{\mathfrak{S}}$ Generalize to arbitrary degree distribution P_k .

Also known as the configuration model. [6]

Can generalize construction method from ER random networks.

Assign each node a weight w from some distribution P_w and form links with probability

 $P(\text{link between } i \text{ and } j) \propto w_i w_j.$

But we'll be more interested in

- Randomly wiring up (and rewiring) already existing nodes with fixed degrees.
- 2. Examining mechanisms that lead to networks with certain degree distributions.

The PoCSverse Random Networks Nutshell 29 of 74

Pure randon networks

efinitions

How to build theoretically

Clustering

Generalized Random

Networks
Configuration model

How to build in practice

Strange friends

Largest compo

Random networks: examples

Coming up:

Example realizations of random networks with power law degree distributions:

- N = 1000.
- \Re Set $P_0 = 0$ (no isolated nodes).
- \red Vary exponent γ between 2.10 and 2.91.
- Again, look at full network plus the largest component.
- Apart from degree distribution, wiring is random.

The PoCSverse Random Networks Nutshell 30 of 74

Pure random networks

Definitions

How to build theoretic

Clustering

Degree distribu

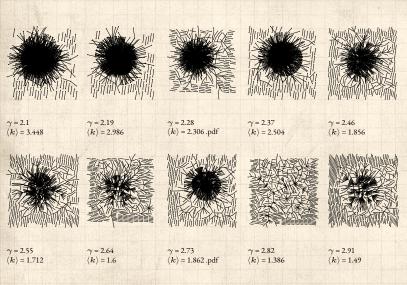
Generalized Random Networks

Configuration model

Motifs

Strange friends

Random networks: examples for N=1000



The PoCSverse Random Networks Nutshell

31 of 74

ure random etworks

Definitions

How to build theoreti

Clustering

Degree distributions

Generalized Random Networks

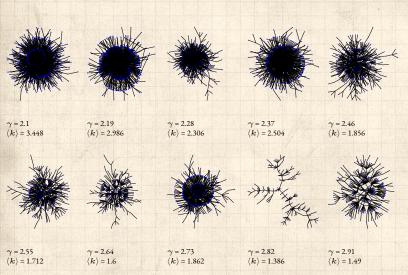
Configuration model

How to build in practice

Strange friends

Largest component

Random networks: largest components



The PoCSverse Random Networks Nutshell 32 of 74

Clustering Degree distributions

Generalized Random Networks

Configuration model

Strange friends Largest component

Models

Generalized random networks:

Arbitrary degree distribution P_k .

& Create (unconnected) nodes with degrees sampled from P_k .

Wire nodes together randomly.

Reate ensemble to test deviations from randomness.

The PoCSverse Random Networks Nurshell 34 of 74

networks

Generalized Random Networks

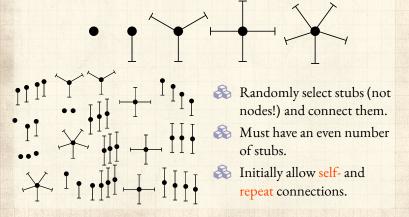
How to build in practice

Strange friends

Building random networks: Stubs

Phase 1:

Idea: start with a soup of unconnected nodes with stubs (half-edges):



The PoCSverse Random Networks Nurshell 35 of 74

networks

Generalized Random Networks

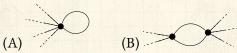
How to build in practice

Strange friends

Building random networks: First rewiring

Phase 2:

Now find any (A) self-loops and (B) repeat edges and randomly rewire them.



Being careful: we can't change the degree of any node, so we can't simply move links around.

Simplest solution: randomly rewire two edges at a time.

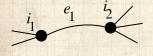
The PoCSverse Random Networks Nurshell 36 of 74

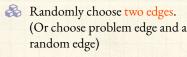
networks

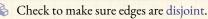
Generalized Random Networks

How to build in practice

General random rewiring algorithm



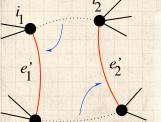




networks

Generalized Random Networks

How to build in practice



- Rewire one end of each edge.
- Node degrees do not change.
- Works if e_1 is a self-loop or repeated edge.
- Same as finding on/off/on/off 4-cycles. and rotating them.

Sampling random networks

Phase 2:

Use rewiring algorithm to remove all self and repeat loops.

Phase 3:

Randomize network wiring by applying rewiring algorithm liberally.

Rule of thumb: # Rewirings $\simeq 10 \times \# \text{ edges}^{[4]}$.

The PoCSverse Random Networks Nurshell 38 of 74

networks

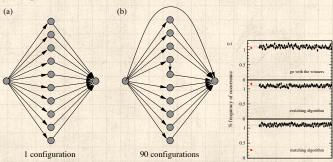
Generalized Random Networks

How to build in practice

Random sampling

Problem with only joining up stubs is failure to randomly sample from all possible networks.

Example from Milo et al. (2003) [4]:



The PoCSverse Random Networks Nutshell 39 of 74

Pure randor networks

Definition

How to build theoretica

Clustering

Degree distributions

Generalized Random Networks

Configuration model

How to build in practice Motifs

Strange friends

Sampling random networks

- Must now create nodes before start of the construction algorithm.
- $\ensuremath{\&}$ Generate N nodes by sampling from degree distribution P_k .
- & Easy to do exactly numerically since k is discrete.
- Note: not all P_k will always give nodes that can be wired together.

The PoCSverse Random Networks Nutshell 40 of 74

Pure random networks

Definitions

How to build theoretica

Clustering

Degree distril

Generalized Random Networks

How to build in practice

Strange friends

Largest componer

Network motifs

- A Idea of motifs [7] introduced by Shen-Orr, Alon et al. in 2002.
- Looked at gene expression within full context of transcriptional regulation networks.
- Specific example of Escherichia coli.
- Directed network with 577 interactions (edges) and 424 operons (nodes).
- Used network randomization to produce ensemble of alternate networks with same degree frequency N_k .
- Looked for certain subnetworks (motifs) that appeared more or less often than expected

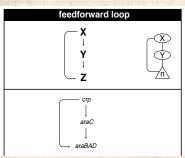
The PoCSverse Random Networks Nurshell 42.of 74

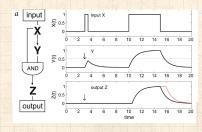
networks

Generalized Random Networks

Strange friends Largest component

Network motifs





The PoCSverse Random Networks Nutshell 43 of 74

Pure random networks

Definitions

How to build theo

Clustering

Degree distributions

Generalized Random Networks

Configuration model

How to build in practice

Motifs Strange friends

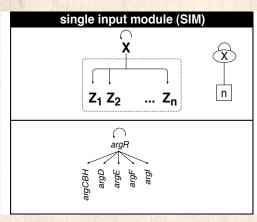
Strange triends

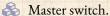
Largest component

References

Analogy to elevator doors.

Network motifs





The PoCSverse Random Networks Nutshell 44 of 74

Pure random networks

Definitions

How to build theoretic

Clustering

Degree distributions

Generalized Random Networks

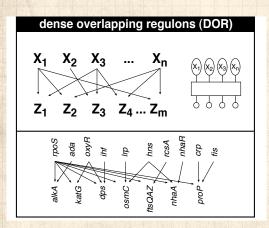
Configuration model

How to build in practic

Motifs

Strange friends Largest component

Network motifs



The PoCSverse Random Networks Nutshell 45 of 74

Pure randon networks

Definitions

How to build theore

Clustering

Degree distributions

Generalized Random Networks

Configuration model

How to build in practice

Motifs

Strange friends Largest component

Network motifs

The PoCSverse Random Networks Nurshell 46 of 74

Pure random networks

Degree distributions

Generalized Random Networks

Motifs

Strange friends

Largest component

References

Note: selection of motifs to test is reasonable but nevertheless ad-hoc.

For more, see work carried out by Wiggins et al. at Columbia.

- $\ensuremath{ \leqslant \! } \ensuremath{ \; }$ Again: P_k is the degree of randomly chosen node.
- A second very important distribution arises from choosing randomly on edges rather than on nodes.
- Define Q_k to be the probability the node at a random end of a randomly chosen edge has degree k.
- Now choosing nodes based on their degree (i.e., size):

$$Q_k \propto k P_k$$

Normalized form:

$$Q_k = \frac{kP_k}{\sum_{k'=0}^{\infty} k' P_{k'}} = \frac{kP_k}{\langle k \rangle}.$$

Big deal: Rich-get-richer mechanism is built into this selection process.

The PoCSverse Random Networks Nutshell 48 of 74

Pure rand networks

Pefinitions

How to build theoretic

Clustering

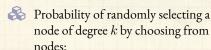
Generalized Random Networks

Configuration model

How to build in practice

Strange friends

200



$$P_1 = 3/7, P_2 = 2/7, P_3 = 1/7, P_6 = 1/7.$$

Probability of landing on a node of degree *k* after randomly selecting an edge and then randomly choosing one direction to travel:

$$Q_1 = 3/16, Q_2 = 4/16, Q_3 = 3/16, Q_6 = 6/16.$$

Probability of finding # outgoing edges = k after randomly selecting an edge and then randomly choosing one direction to travel:

$$R_0 = 3/16 R_1 = 4/16,$$

 $R_2 = 3/16, R_5 = 6/16.$

The PoCSverse Random Networks Nutshell 49 of 74

Pure rando networks

efinitions

How to build theoretically

Chestorian

Degree distrib

Generalized Random Networks

Configuration model

Motifs

Strange friends

For random networks, Q_k is also the probability that a friend (neighbor) of a random node has k friends.

 $\begin{cases} \& \& \end{cases}$ Useful variant on Q_k :

 R_k = probability that a friend of a random node has k other friends.

$$R_k = \frac{(k+1)P_{k+1}}{\sum_{k'=0}(k'+1)P_{k'+1}} = \frac{(k+1)P_{k+1}}{\langle k \rangle}$$

- \clubsuit Equivalent to friend having degree k+1.
- Natural question: what's the expected number of other friends that one friend has?

The PoCSverse Random Networks Nutshell 50 of 74

Pure random networks

Definitions

How to build theoretic

Clustering

Generalized Random Networks

Configuration model

Motifs

Strange friends

Largest compone

Given R_k is the probability that a friend has k other friends, then the average number of friends' other friends is

$$\begin{split} \left\langle k \right\rangle_R &= \sum_{k=0}^\infty k R_k = \sum_{k=0}^\infty k \frac{(k+1)P_{k+1}}{\left\langle k \right\rangle} \\ &= \frac{1}{\left\langle k \right\rangle} \sum_{k=1}^\infty k(k+1)P_{k+1} \\ &= \frac{1}{\left\langle k \right\rangle} \sum_{k=1}^\infty \left((k+1)^2 - (k+1)\right) P_{k+1} \end{split}$$

(where we have sneakily matched up indices)

$$\begin{split} &=\frac{1}{\langle k\rangle}\sum_{j=0}^{\infty}(j^2-j)P_j \quad \text{(using j = k+1)} \\ &=\frac{1}{\langle k\rangle}\left(\langle k^2\rangle-\langle k\rangle\right) \end{split}$$

The PoCSverse Random Networks Nurshell 51 of 74

networks

Generalized Random Networks

Strange friends

- Note: our result, $\langle k \rangle_R = \frac{1}{\langle k \rangle} \left(\langle k^2 \rangle \langle k \rangle \right)$, is true for all random networks, independent of degree distribution.
- 🗞 For standard random networks, recall

$$\langle k^2 \rangle = \langle k \rangle^2 + \langle k \rangle.$$

A Therefore:

$$\langle k \rangle_R = \frac{1}{\langle k \rangle} \left(\langle k \rangle^2 + \langle k \rangle - \langle k \rangle \right) = \langle k \rangle$$

- Again, neatness of results is a special property of the Poisson distribution.
- $\ \,$ So friends on average have $\langle k \rangle$ other friends, and $\langle k \rangle + 1$ total friends...

The PoCSverse Random Networks Nutshell 52 of 74

Pure random networks

Definitions

How to build theoretically

Degree distribut

Generalized Random Networks

Configuration model

How to build in practice

Motifs Strange friends

Largest compos

 \mathfrak{F} In fact, R_k is rather special for pure random networks ...

Substituting

$$P_k = \frac{\langle k \rangle^k}{k!} e^{-\langle k \rangle}$$

into

$$R_k = \frac{(k+1)P_{k+1}}{\langle k \rangle}$$

we have

$$R_k = \frac{(k+1)}{\langle k \rangle} \frac{\langle k \rangle^{(k+1)}}{(k+1)!} e^{-\langle k \rangle} = \underbrace{\frac{\langle k+1 \rangle}{\langle k \rangle}}_{\langle k \rangle} \underbrace{\frac{\langle k \rangle^{(k+1)}}{\langle k+1 \rangle k!}} e^{-\langle k \rangle}$$

$$= \frac{\langle k \rangle^k}{k!} e^{-\langle k \rangle} \equiv P_k.$$

The PoCSverse Random Networks Nurshell 53 of 74

networks

Generalized Random Networks

Strange friends

#samesies.

Two reasons why this matters

Reason #1:

Average # friends of friends per node is

$$\langle k_2 \rangle = \langle k \rangle \times \langle k \rangle_R = \langle k \rangle \frac{1}{\langle k \rangle} \left(\langle k^2 \rangle - \langle k \rangle \right) \, = \langle k^2 \rangle - \langle k \rangle.$$

- $\ \ \,$ Key: Average depends on the 1st and 2nd moments of P_k and not just the 1st moment.
- Three peculiarities:
 - 1. We might guess $\langle k_2 \rangle = \langle k \rangle (\langle k \rangle 1)$ but it's actually $\langle k(k-1) \rangle$.
 - 2. If P_k has a large second moment, then $\langle k_2 \rangle$ will be big. (e.g., in the case of a power-law distribution)
 - 3. Your friends really are different from you... [3, 5]
 - 4. See also: class size paradoxes (nod to: Gelman)

The PoCSverse Random Networks Nutshell 54 of 74

Pure random networks

Definitions

How to build theoretica

Clustering

Generalized Random

Networks

Configuration model

Motifs

Strange friends

Two reasons why this matters

More on peculiarity #3:

 \clubsuit A node's average # of friends: $\langle k \rangle$

Friend's average # of friends: $\frac{\langle k^2 \rangle}{\langle k \rangle}$

de Comparison:

$$\frac{\langle k^2 \rangle}{\langle k \rangle} = \langle k \rangle \frac{\langle k^2 \rangle}{\langle k \rangle^2} = \langle k \rangle \frac{\sigma^2 + \langle k \rangle^2}{\langle k \rangle^2} = \langle k \rangle \left(1 + \frac{\sigma^2}{\langle k \rangle^2} \right) \ge \langle k \rangle$$

- So only if everyone has the same degree (variance= $\sigma^2 = 0$) can a node be the same as its friends.
- Intuition: for random networks, the more connected a node, the more likely it is to be chosen as a friend.

The PoCSverse Random Networks Nurshell 55 of 74

networks

Generalized Random Networks

Strange friends

"Generalized friendship paradox in complex networks: The case of scientific collaboration" Eom and Jo,
Nature Scientific Reports, 4, 4603, 2014. [2]

Your friends really are monsters #winners:1

- Go on, hurt me: Friends have more coauthors, citations, and publications.
- Other horrific studies: your connections on Twitter have more followers than you, your sexual partners more partners than you, ...
- The hope: Maybe they have more enemies and diseases too.

The PoCSverse Random Networks Nutshell 56 of 74

Pure randor networks

Definitions

low to build theoretically

Clustering

Degree distribu

Generalized Random Networks

Configuration model

Motifs

Strange friends

Two reasons why this matters

(Big) Reason #2:

- $\langle k \rangle_R$ is key to understanding how well random networks are connected together.
- e.g., we'd like to know what's the size of the largest component within a network.
- $\mbox{\&}$ As $N \to \infty$, does our network have a giant component?
- Defn: Component = connected subnetwork of nodes such that ∃ path between each pair of nodes in the subnetwork, and no node outside of the subnetwork is connected to it.
- Defn: Giant component = component that comprises a non-zero fraction of a network as $N \to \infty$.
- Note: Component = Cluster

The PoCSverse Random Networks Nutshell 57 of 74

Pure random networks

Definitions

How to build theoreticall

Clustering

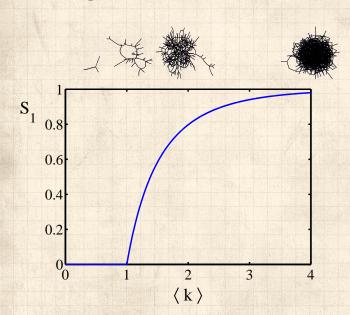
Degree distribu

Generalized Random Networks

Configuration model

Motifs

Strange friends



The PoCSverse Random Networks Nutshell 59 of 74

Pure random networks

Definition

How to build theoretica

Clustering

Degree distributions

Generalized Random Networks

Configuration model

How to build in practice Motifs

Strange friends

Largest component
References

Structure of random networks

Giant component:

- A giant component exists if when we follow a random edge, we are likely to hit a node with at least 1 other outgoing edge.
- Equivalently, expect exponential growth in node number as we move out from a random node.
- \clubsuit All of this is the same as requiring $\langle k \rangle_R > 1$.
- Giant component condition (or percolation condition):

$$\langle k \rangle_R = \frac{\langle k^2 \rangle - \langle k \rangle}{\langle k \rangle} > 1$$

- Again, see that the second moment is an essential part of the story.
- \Leftrightarrow Equivalent statement: $\langle k^2 \rangle > 2 \langle k \rangle$

The PoCSverse Random Networks Nutshell 60 of 74

Pure random networks

Definitions

How to build theoretica

Clustering

Generalized Random Networks

Configuration model

Motifs

Strange friends

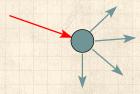
Largest component

Spreading on Random Networks

For random networks, we know local structure is pure branching.

Successful spreading is : contingent on single edges infecting nodes.

Success



Focus on binary case with edges and nodes either infected or not.

First big question: for a given network and contagion process, can global spreading from a single seed occur?

The PoCSverse Random Networks Nurshell 61 of 74

Pure random networks

Generalized Random Networks

Strange friends

Largest component

Global spreading condition

& We need to find: [1]

R = the average # of infected edges that one random infected edge brings about.

& Call **R** the gain ratio.

 $\ \ \ \ \ \ \ \ \ \ \$ Define B_{k1} as the probability that a node of degree k is infected by a single infected edge.

$$\mathbf{R} = \sum_{k=0}^{\infty} \underbrace{\frac{kP_k}{\langle k \rangle}}_{\text{prob. of}} \quad \bullet \quad \underbrace{(k-1)}_{\text{# outgoing infected edges}} \quad \bullet \quad \underbrace{B_{k1}}_{\text{Prob. of infection edges}}$$

$$+ \sum_{k=0}^{\infty} \frac{\widehat{kP_k}}{\langle k \rangle} \bullet \underbrace{0}_{\substack{\text{\# outgoing infected} \\ \text{edges}}} \bullet \underbrace{(1 - B_{k1})}_{\substack{\text{Prob. of } \\ \text{no infection}}}$$

The PoCSverse Random Networks Nutshell 62 of 74

Pure random networks

efinitions

How to build theoreticall

Clustering

Degree distribu

Generalized Random Networks

Configuration model

Motifs Strange friends

Strange friends

Largest component

Global spreading condition

Our global spreading condition is then:

$$\mathbf{R} = \sum_{k=0}^{\infty} \frac{k P_k}{\langle k \rangle} \bullet (k-1) \bullet B_{k1} > 1.$$

Case 1-Rampant spreading: If $B_{k1} = 1$ then

$$\mathbf{R} = \sum_{k=0}^{\infty} \frac{k P_k}{\langle k \rangle} \bullet (k-1) = \frac{\langle k(k-1) \rangle}{\langle k \rangle} > 1.$$

Sood: This is just our giant component condition again.

The PoCSverse Random Networks Nurshell 63 of 74

networks

Generalized Random Networks

Largest component

Global spreading condition

 \red{a} Case 2—Simple disease-like: If $B_{k1}=eta<1$ then

$$\mathbf{R} = \sum_{k=0}^{\infty} \frac{k P_k}{\langle k \rangle} \bullet (k-1) \bullet \beta > 1.$$

- $\mbox{\&}$ A fraction (1- β) of edges do not transmit infection.
- Analogous phase transition to giant component case but critical value of $\langle k \rangle$ is increased.
- Aka bond percolation .
- $\ref{eq:constraint}$ Resulting degree distribution \tilde{P}_k :

$$\tilde{P}_k = \beta^k \sum_{i=k}^{\infty} \binom{i}{k} (1-\beta)^{i-k} P_i.$$

The PoCSverse Random Networks Nutshell 64 of 74

Pure random networks

Definitions

How to build theoreti

Clustering

Degree distribu

Generalized Random Networks

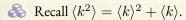
Configuration model

Motifs

Strange friends

Largest component

Giant component for standard random networks:



Determine condition for giant component:

$$\langle k \rangle_R = \frac{\langle k^2 \rangle - \langle k \rangle}{\langle k \rangle} = \frac{\langle k \rangle^2 + \langle k \rangle - \langle k \rangle}{\langle k \rangle} = \langle k \rangle$$

- \Leftrightarrow Therefore when $\langle k \rangle > 1$, standard random networks have a giant component.
- $\mbox{\&}$ When $\langle k \rangle < 1$, all components are finite.
- & Fine example of a continuous phase transition \checkmark .
- \Leftrightarrow We say $\langle k \rangle = 1$ marks the critical point of the system.

The PoCSverse Random Networks Nutshell 65 of 74

networks

Definitions

How to build theoretically

Clustering

Degree distribu

Generalized Random Networks

Configuration model

Motifs

Strange friends

Largest component

Random networks with skewed P_k :

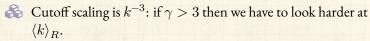
 $\mbox{\&}$ e.g, if $P_k=ck^{-\gamma}$ with $2<\gamma<3, k\geq 1,$ then

$$\langle k^2 \rangle = c \sum_{k=1}^{\infty} k^2 k^{-\gamma}$$

$$\sim \int_{x=1}^{\infty} x^{2-\gamma} \mathrm{d}x$$

$$\propto \left. x^{3-\gamma} \right|_{x=1}^{\infty} = \infty \quad (\gg \langle k \rangle).$$

So giant component always exists for these kinds of networks.



The PoCSverse Random Networks Nutshell

66 of 74

Pure random networks

Definitions

How to build theoretic

Clustering

Degree distrib

Generalized Random Networks

Configuration model

How to build in prac

Strange friends

Strange friends

Largest component

And how big is the largest component?

- \clubsuit Define S_1 as the size of the largest component.
- & Consider an infinite ER random network with average degree $\langle k \rangle$.
- & Let's find S_1 with a back-of-the-envelope argument.
- Befine δ as the probability that a randomly chosen node does not belong to the largest component.
- Simple connection: $\delta = 1 S_1$.
- Dirty trick: If a randomly chosen node is not part of the largest component, then none of its neighbors are.
- 🚜 So

$$\delta = \sum_{k=0}^{\infty} P_k \delta^k$$

Substitute in Poisson distribution...

The PoCSverse Random Networks Nutshell 67 of 74

Pure random networks

Definitions

How to build theoreticall

Clustering

Degree distribu

Generalized Random Networks

Configuration model

Motifs

Strange friends

Largest component

Carrying on:

$$\begin{split} & \delta = \sum_{k=0}^{\infty} P_k \delta^k = \sum_{k=0}^{\infty} \frac{\langle k \rangle^k}{k!} e^{-\langle k \rangle} \delta^k \\ & = e^{-\langle k \rangle} \sum_{k=0}^{\infty} \frac{(\langle k \rangle \delta)^k}{k!} \\ & = e^{-\langle k \rangle} e^{\langle k \rangle \delta} = e^{-\langle k \rangle (1 - \delta)}. \end{split}$$

Now substitute in $\delta = 1 - S_1$ and rearrange to obtain:

$$S_1 = 1 - e^{-\langle k \rangle S_1}.$$

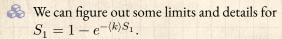
The PoCSverse Random Networks Nurshell 68 of 74

Pure random networks

Generalized Random Networks

Strange friends

Largest component



 $\mbox{\ensuremath{\&}}\mbox{\ensuremath{Birst}},$ we can write $\langle k \rangle$ in terms of S_1 :

$$\langle k \rangle = \frac{1}{S_1} {\rm ln} \frac{1}{1-S_1}. \label{eq:lambda}$$

$$\Leftrightarrow$$
 As $\langle k \rangle \to 0, S_1 \to 0.$

$$\Leftrightarrow$$
 As $\langle k \rangle \to \infty$, $S_1 \to 1$.

Notice that at
$$\langle k \rangle = 1$$
, the critical point, $S_1 = 0$.

$$\ensuremath{\mathfrak{S}}$$
 Only solvable for $S_1>0$ when $\langle k \rangle>1$.

Really a transcritical bifurcation. [8]

The PoCSverse Random Networks Nutshell 69 of 74

Pure random networks

Definitions

How to build theoretically

Clustering

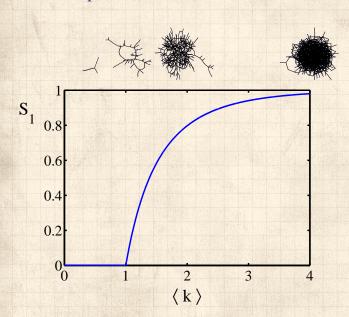
Generalized Random Networks

Configuration model

How to build in practice

Motifs

Largest component



The PoCSverse Random Networks Nutshell 70 of 74

Pure random networks

Definitio

How to build theoretically

Clustering

Degree distributions

Generalized Random Networks

Configuration model

How to build in practi Motifs

Strange friends

Largest component

Turns out we were lucky...



The problem: We assumed that neighbors have the same probability δ of belonging to the largest component.

But we know our friends are different from us...

& Works for ER random networks because $\langle k \rangle = \langle k \rangle_R$.

We need a separate probability δ' for the chance that an edge leads to the giant (infinite) component.

We can sort many things out with sensible probabilistic arguments...

More detailed investigations will profit from a spot of Generating function ology. [9]

The PoCSverse Random Networks Nutshell 71 of 74

Pure random networks

Definitions

How to build theore

Clustering

Degree distrib

Generalized Random Networks

Configuration model

Motifs

Strange friends

Largest component

References I

[1] P. S. Dodds, K. D. Harris, and J. L. Payne. Direct, phyiscally motivated derivation of the contagion condition for spreading processes on generalized random networks.

Phys. Rev. E, 83:056122, 2011. pdf

[2] Y.-H. Eom and H.-H. Jo. Generalized friendship paradox in complex networks: The case of scientific collaboration.

Nature Scientific Reports, 4:4603, 2014. pdf

[3] S. L. Feld. Why your friends have more friends than you do. Am. J. of Sociol., 96:1464-1477, 1991. pdf

The PoCSverse Random Networks Nurshell 72. of 74

networks

Generalized Random Networks

Strange friends

References II

[4] R. Milo, N. Kashtan, S. Itzkovitz, M. E. J. Newman, and U. Alon.

On the uniform generation of random graphs with prescribed degree sequences, 2003. pdf \square

- [5] M. E. J. Newman.
 Ego-centered networks and the ripple effect,.
 Social Networks, 25:83–95, 2003. pdf
- [6] M. E. J. Newman.

 The structure and function of complex networks.

 SIAM Rev., 45(2):167–256, 2003. pdf
- [7] S. S. Shen-Orr, R. Milo, S. Mangan, and U. Alon.

 Network motifs in the transcriptional regulation network of

 Escherichia coli.

Nature Genetics, 31:64-68, 2002. pdf

The PoCSverse Random Networks Nutshell 73 of 74

Pure random networks

Definitions

How to build

Clustering

Generalized Random Networks

Configuration model

How to build in practi

Strange friends

Largest componer

References III

[8] S. H. Strogatz.
 Nonlinear Dynamics and Chaos.
 Addison Wesley, Reading, Massachusetts, 1994.

[9] H. S. Wilf.

Generating function ology.

A K Peters, Natick, MA, 3rd edition, 2006. pdf

The PoCSverse Random Networks Nutshell 74 of 74

Pure random networks

Definition

How to build theoretical

Clustering

Degree distributions

Generalized Random Networks

Configuration model

How to build in practice

Motifs

Strange friends

Largest component

