Mechanisms for Generating Power-Law Size Distributions, Part 3

Last updated: 2024/10/03, 19:37:10 EDT

Principles of Complex Systems, Vols. 1, 2, & 3D CSYS/MATH 6701, 6713, & a pretend number, 2024–2025

Prof. Peter Sheridan Dodds

Computational Story Lab | Vermont Complex Systems Center Santa Fe Institute | University of Vermont

Licensed under the Creative Commons Attribution 4.0 International

The PoCSverse Power-Law Mechanisms, Pt. 3 1 of 56

Rich-Get-Richer Mechanism

Simon's Model

Words

Catchphrases

irst Mover Advantag

These slides are brought to you by:

The PoCSverse Power-Law Mechanisms, Pt. 3 2 of 56

Rich-Get-Richer Mechanism

Simon's Model

Words

First Mover Advantage

These slides are also brought to you by:

Special Guest Executive Producer

On Instagram at pratchett_the_cat

The PoCSverse Power-Law Mechanisms, Pt. 3 3 of 56

Rich-Get-Richer Mechanism

Simon's Model

Analysis

Words

First Mover Advantage

Outline

Rich-Get-Richer Mechanism

Simon's Model Analysis Words Catchphrases First Mover Advantage

References

The PoCSverse Power-Law Mechanisms, Pt. 3 4 of 56

Rich-Get-Richer Mechanism

Simon's Model

Words

Carobahras

First Mover Advantage

Outline

Rich-Get-Richer Mechanism Simon's Model

Analysis
Words
Catchphrases
First Mover Advantage

References

The PoCSverse Power-Law Mechanisms, Pt. 3 5 of 56

Rich-Get-Richer Mechanism

Simon's Model

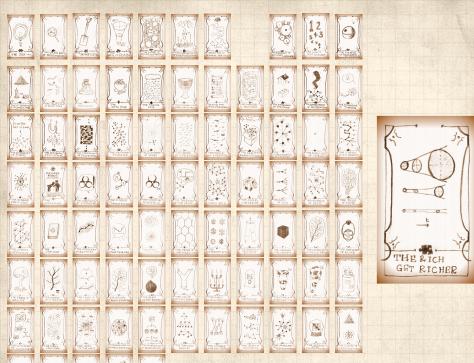
Analysi

Words

First Mover Advantage

The Boggoracle Speaks:

The PoCSverse Power-Law Mechanisms, Pt. 3 6 of 56


Rich-Get-Richer Mechanism

Simon's Model

Words

Catchphrases

Random walks represent additive aggregation

The PoCSverse Power-Law Mechanisms, Pt. 3 8 of 56

Rich-Get-Richer Mechanism

Simon's Model

Words

First Mover Advantage

Random walks represent additive aggregation

Mechanism: Random addition and subtraction

The PoCSverse Power-Law Mechanisms, Pt. 3 8 of 56

Rich-Get-Richer Mechanism

Simon's Model

Words

First Mover Advantage

Random walks represent additive aggregation

Mechanism: Random addition and subtraction

Compare across realizations, no competition.

The PoCSverse Power-Law Mechanisms, Pt. 3 8 of 56

Rich-Get-Richer Mechanism

Simon's Model

Words

& Random walks represent additive aggregation

🙈 Mechanism: Random addition and subtraction

& Compare across realizations, no competition.

Next: Random Additive/Copying Processes involving Competition.

The PoCSverse Power-Law Mechanisms, Pt. 3 8 of 56

Rich-Get-Richer Mechanism

Simon's Model

Analysis Words

Catchphrases

- Random walks represent additive aggregation
- 🙈 Mechanism: Random addition and subtraction
- & Compare across realizations, no competition.
- Next: Random Additive/Copying Processes involving Competition.
- Widespread: Words, Cities, the Web, Wealth, Productivity (Lotka), Popularity (Books, People, ...)

The PoCSverse Power-Law Mechanisms, Pt. 3 8 of 56

Rich-Get-Richer Mechanism

Simon's Model

Analysis

Catchphrases

- Random walks represent additive aggregation
- 🙈 Mechanism: Random addition and subtraction
- & Compare across realizations, no competition.
- Next: Random Additive/Copying Processes involving Competition.
- Widespread: Words, Cities, the Web, Wealth, Productivity (Lotka), Popularity (Books, People, ...)
- Competing mechanisms (trickiness)

The PoCSverse Power-Law Mechanisms, Pt. 3 8 of 56

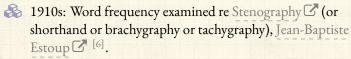
Rich-Get-Richer Mechanism

Simon's Model

Analysis

Catchphrases

🙈 1910s: Word frequency examined re Stenography 🗹 (or shorthand or brachygraphy or tachygraphy), Jean-Baptiste Estoup [6].


The PoCSverse Power-Law Mechanisms, Pt. 3 9 of 56

Rich-Get-Richer Mechanism

Simon's Model

Words

31910s: Felix Auerbach 2 pointed out the Zipfitude of city sizes in

"Das Gesetz der Bevölkerungskonzentration" ("The Law of Population Concentration") [1].

The PoCSverse Power-Law Mechanisms, Pt. 3 9 of 56

Rich-Get-Richer Mechanism

Simon's Model

Analysis Words

Catchphrases

First Mover Advanta

- 31910s: Word frequency examined re Stenography (or shorthand or brachygraphy or tachygraphy), Jean-Baptiste Estoup [6].
- 31910s: Felix Auerbach 2 pointed out the Zipfitude of city sizes in

"Das Gesetz der Bevölkerungskonzentration" ("The Law of Population Concentration") $^{[1]}$.

1924: G. Udny Yule ^[15]:
 # Species per Genus (offers first theoretical mechanism)

The PoCSverse Power-Law Mechanisms, Pt. 3 9 of 56

Rich-Get-Richer Mechanism

Simon's Model

Analysis Words

Catchphrases

First Mover Advanta

- 31910s: Word frequency examined re Stenography (or shorthand or brachygraphy or tachygraphy), Jean-Baptiste Estoup [6].
- 31910s: Felix Auerbach 2 pointed out the Zipfitude of city sizes in

"Das Gesetz der Bevölkerungskonzentration" ("The Law of Population Concentration") $^{[1]}$.

3 1924: G. Udny Yule [15]:

Species per Genus (offers first theoretical mechanism)

3 1926: Lotka [9]:

Scientific papers per author (Lotka's law)

The PoCSverse Power-Law Mechanisms, Pt. 3 9 of 56

Rich-Get-Richer Mechanism

Simon's Model

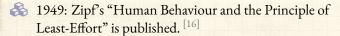
Analysis

Catchphrases

irst Mover Advan

1949: Zipf's "Human Behaviour and the Principle of Least-Effort" is published. [16]

The PoCSverse Power-Law Mechanisms, Pt. 3 10 of 56


Rich-Get-Richer Mechanism

Simon's Model

Words

First Mover Advantage

1953: Mandelbrot [10]: Optimality argument for Zipf's law; focus on language. The PoCSverse Power-Law Mechanisms, Pt. 3 10 of 56

Rich-Get-Richer Mechanism

Simon's Model

Analysis

Catchphrases

irst Mover Advanta

1949: Zipf's "Human Behaviour and the Principle of Least-Effort" is published. [16]

1953: Mandelbrot [10]: Optimality argument for Zipf's law; focus on language.

1955: Herbert Simon [14, 16]: Zipf's law for word frequency, city size, income, publications, and species per genus. The PoCSverse Power-Law Mechanisms, Pt. 3 10 of 56

Rich-Get-Richer Mechanism

Simon's Model

Words

Catchphrases

First Mover Advantag

1949: Zipf's "Human Behaviour and the Principle of Least-Effort" is published. [16]

1953: Mandelbrot [10]: Optimality argument for Zipf's law; focus on language.

1955: Herbert Simon [14, 16]:
Zipf's law for word frequency, city size, income, publications, and species per genus.

3 1965/1976: Derek de Solla Price [4, 13]: Network of Scientific Citations.

The PoCSverse Power-Law Mechanisms, Pt. 3 10 of 56

Rich-Get-Richer Mechanism

Simon's Model

Words

Catchphrases

First Mover Advanta

31949: Zipf's "Human Behaviour and the Principle of Least-Effort" is published. [16]

1953: Mandelbrot [10]: Optimality argument for Zipf's law; focus on language.

1955: Herbert Simon [14, 16]:
Zipf's law for word frequency, city size, income, publications, and species per genus.

3 1965/1976: Derek de Solla Price [4, 13]: Network of Scientific Citations.

1999: Barabasi and Albert ^[2]: The World Wide Web, networks-at-large. The PoCSverse Power-Law Mechanisms, Pt. 3 10 of 56

Rich-Get-Richer Mechanism

Simon's Model

Words

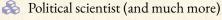
Catchphrases

Political scientist (and much more)

The PoCSverse Power-Law Mechanisms, Pt. 3 11 of 56

Rich-Get-Richer Mechanism

Simon's Model


Analysis -Words

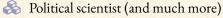
Catchphrases First Mover Advantage

Involved in Cognitive Psychology, Computer Science, Public Administration, Economics, Management, Sociology The PoCSverse Power-Law Mechanisms, Pt. 3 11 of 56

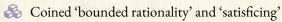
Rich-Get-Richer Mechanism

Simon's Model

Analysis


Catchphrases

iist wiover zauvania



Involved in Cognitive Psychology, Computer Science, Public Administration, Economics, Management, Sociology

The PoCSverse Power-Law Mechanisms, Pt. 3 11 of 56

Rich-Get-Richer Mechanism

Simon's Model

Analysis Words

> atchphrases irst Mover Advantag

The PoCSverse

Mechanism

Simon's Model

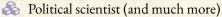
Words

Catenphrases First Mover Advanta

References

Political scientist (and much more)

Involved in Cognitive Psychology, Computer Science, Public Administration, Economics, Management, Sociology


& Coined 'bounded rationality' and 'satisficing'

🙈 Nearly 1000 publications (see Google Scholar 🗹)

Involved in Cognitive Psychology, Computer Science, Public Administration, Economics, Management, Sociology

& Coined 'bounded rationality' and 'satisficing'

🙈 Nearly 1000 publications (see Google Scholar 🗷)

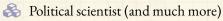
An early leader in Artificial Intelligence, Information Processing, Decision-Making, Problem-Solving, Attention Economics, Organization Theory, Complex Systems, And Computer Simulation Of Scientific Discovery.

The PoCSverse Power-Law Mechanisms, Pt. 3 11 of 56

Rich-Get-Richer Mechanism

Simon's Model

Analysis -Words


atchphrases

Involved in Cognitive Psychology, Computer Science, Public Administration, Economics, Management, Sociology

Coined 'bounded rationality' and 'satisficing'

Nearly 1000 publications (see Google Scholar 🗷)

An early leader in Artificial Intelligence, Information Processing, Decision-Making, Problem-Solving, Attention Economics, Organization Theory, Complex Systems, And Computer Simulation Of Scientific Discovery.


1978 Nobel Laureate in Economics (his Nobel bio is here .).

The PoCSverse Power-Law Mechanisms, Pt. 3 11 of 56

Rich-Get-Richer Mechanism

Simon's Model

Words

Random Competitive Replication (RCR):

1. Start with 1 elephant (or element) of a particular flavor at t=1

The PoCSverse Power-Law Mechanisms, Pt. 3 12 of 56

Rich-Get-Richer Mechanism

Simon's Model

Words

Catchphrases

First Mover Advantage

Random Competitive Replication (RCR):

- 1. Start with 1 elephant (or element) of a particular flavor at t=1
- 2. At time t=2,3,4,..., add a new elephant in one of two ways:
 - $\widehat{}$ With probability ρ , create a new elephant with a new flavor

The PoCSverse Power-Law Mechanisms, Pt. 3 12 of 56

Rich-Get-Richer Mechanism

Simon's Model

Words

Catchphrases

First Mover Advantag

Random Competitive Replication (RCR):

- 1. Start with 1 elephant (or element) of a particular flavor at t=1
- 2. At time t=2,3,4,..., add a new elephant in one of two ways:
 - $\widehat{}$ With probability ρ , create a new elephant with a new flavor
 - With probability 1ρ , randomly choose from all existing elephants, and make a copy.

The PoCSverse Power-Law Mechanisms, Pt. 3 12 of 56

Rich-Get-Richer Mechanism

Simon's Model

Analysis Words

Catchphrases

First Mover Advantag

Random Competitive Replication (RCR):

- 1. Start with 1 elephant (or element) of a particular flavor at t=1
- 2. At time t=2,3,4,..., add a new elephant in one of two ways:
 - \bigcirc With probability ρ , create a new elephant with a new flavor
 - With probability $1-\rho$, randomly choose from all existing elephants, and make a copy.
 - Elephants of the same flavor form a group

The PoCSverse Power-Law Mechanisms, Pt. 3 12 of 56

Rich-Get-Richer Mechanism

Simon's Model

Analysis

Catchphrases

First Mover Advantag

Random Competitive Replication (RCR):

- 1. Start with 1 elephant (or element) of a particular flavor at t=1
- 2. At time t=2,3,4,..., add a new elephant in one of two ways:
 - With probability ρ , create a new elephant with a new flavor = Mutation/Innovation
 - With probability $1-\rho$, randomly choose from all existing elephants, and make a copy.
 - Elephants of the same flavor form a group

The PoCSverse Power-Law Mechanisms, Pt. 3 12 of 56

Rich-Get-Richer Mechanism

Simon's Model

Words

Catchphrases

First Mover Advantag

Random Competitive Replication (RCR):

- 1. Start with 1 elephant (or element) of a particular flavor at t=1
- 2. At time t=2,3,4,..., add a new elephant in one of two ways:
 - With probability ρ , create a new elephant with a new flavor = Mutation/Innovation
 - With probability 1ρ , randomly choose from all existing elephants, and make a copy.
 - = Replication/Imitation
 - Elephants of the same flavor form a group

The PoCSverse Power-Law Mechanisms, Pt. 3 12 of 56

Rich-Get-Richer Mechanism

Simon's Model

Words

Catchphrases

First Mover Advantag

Random Competitive Replication:

Example: Words appearing in a language

The PoCSverse Power-Law Mechanisms, Pt. 3 13 of 56

Rich-Get-Richer Mechanism

Simon's Model

Analysis

Words

First Mover Advantage

Random Competitive Replication:

Example: Words appearing in a language

Consider words as they appear sequentially.

The PoCSverse Power-Law Mechanisms, Pt. 3 13 of 56

Rich-Get-Richer Mechanism

Simon's Model

Words

First Mover Advantage

Example: Words appearing in a language

Consider words as they appear sequentially.

The PoCSverse Power-Law Mechanisms, Pt. 3 13 of 56

Rich-Get-Richer Mechanism

Simon's Model

Analysis Words

Carchibrase

First Mover Advantage

Example: Words appearing in a language

Consider words as they appear sequentially.

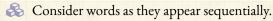
 \ref{Model} With probability ho, the next word has not previously appeared

With probability $1-\rho$, randomly choose one word from all words that have come before, and reuse this word

The PoCSverse Power-Law Mechanisms, Pt. 3 13 of 56

Rich-Get-Richer Mechanism

Simon's Model


Analysis -Words

Catchphrase

First Mover Advantage

Example: Words appearing in a language

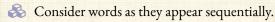
With probability ρ , the next word has not previously appeared = Mutation/Innovation

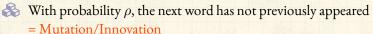
With probability $1-\rho$, randomly choose one word from all words that have come before, and reuse this word

The PoCSverse Power-Law Mechanisms, Pt. 3 13 of 56

Rich-Get-Richer Mechanism

Simon's Model


Words


WORLD .

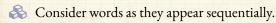
First Mover Advantag

Example: Words appearing in a language

With probability $1 - \rho$, randomly choose one word from all words that have come before, and reuse this word = Replication/Imitation

The PoCSverse Power-Law Mechanisms, Pt. 3 13 of 56

Rich-Get-Richer Mechanism


Simon's Model

Words

Elect Monor Admonto

Example: Words appearing in a language

With probability ρ , the next word has not previously appeared = Mutation/Innovation

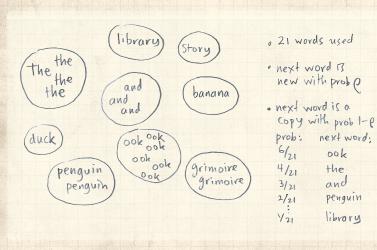
With probability $1 - \rho$, randomly choose one word from all words that have come before, and reuse this word = Replication/Imitation

Note: This is a terrible way to write a novel.

The PoCSverse Power-Law Mechanisms, Pt. 3 13 of 56

Rich-Get-Richer Mechanism

Simon's Model


Words

words

First Mover Advantag

For example:

The PoCSverse Power-Law Mechanisms, Pt. 3 14 of 56

Rich-Get-Richer Mechanism

Simon's Model

Analysis Words

Catchphrases First Mover Advantage

Sundamental Rich-get-Richer story;

The PoCSverse Power-Law Mechanisms, Pt. 3 15 of 56

Rich-Get-Richer Mechanism

Simon's Model

Words

Fundamental Rich-get-Richer story;

Replication between individual elephants is random;

The PoCSverse Power-Law Mechanisms, Pt. 3 15 of 56

Rich-Get-Richer

Simon's Model

Words

Fundamental Rich-get-Richer story;

Competition for replication between individual elephants is random;

Competition for growth between groups of matching elephants is not random;

The PoCSverse Power-Law Mechanisms, Pt. 3 15 of 56

Rich-Get-Richer Mechanism

Simon's Model

Words

Sompetition for replication between individual elephants is random;

Competition for growth between groups of matching elephants is not random;

Selection on groups is biased by size;

The PoCSverse Power-Law Mechanisms, Pt. 3 15 of 56

Rich-Get-Richer Mechanism

Simon's Model

Analysis
Words

Catchphrases

First Mover Advan

Competition for replication between individual elephants is random;

Competition for growth between groups of matching elephants is not random;

Selection on groups is biased by size;

Random selection sounds easy;

The PoCSverse Power-Law Mechanisms, Pt. 3 15 of 56

Rich-Get-Richer Mechanism

Simon's Model

Analysis

Catchphrases

irst Mover Advantag

Competition for replication between individual elephants is random;

Competition for growth between groups of matching elephants is not random;

Selection on groups is biased by size;

Random selection sounds easy;

Possible that no great knowledge of system needed (but more later ...).

The PoCSverse Power-Law Mechanisms, Pt. 3 15 of 56

Rich-Get-Richer Mechanism

Simon's Model

Words

Catchphrases

First Mover Advan

Sompetition for replication between individual elephants is random;

Competition for growth between groups of matching elephants is not random;

Selection on groups is biased by size;

Random selection sounds easy;

Possible that no great knowledge of system needed (but more later ...).

Your free set of tofu knives:

The PoCSverse Power-Law Mechanisms, Pt. 3 15 of 56

Rich-Get-Richer Mechanism

Simon's Model

Words

Catchphrases

Competition for replication between individual elephants is random;

Competition for growth between groups of matching elephants is not random;

Selection on groups is biased by size;

Random selection sounds easy;

Possible that no great knowledge of system needed (but more later ...).

Your free set of tofu knives:

Related to Pólya's Urn Model , a special case of problems involving urns and colored balls .

The PoCSverse Power-Law Mechanisms, Pt. 3 15 of 56

Rich-Get-Richer Mechanism

Simon's Model

Words

Catchphrases

First Mover Advar

- Competition for replication between individual elephants is random;
- Competition for growth between groups of matching elephants is not random;
- Selection on groups is biased by size;
- Random selection sounds easy;
- Possible that no great knowledge of system needed (but more later ...).

Your free set of tofu knives:

- Related to Pólya's Urn Model , a special case of problems involving urns and colored balls .
- Sampling with super-duper replacement and sneaky sneaking in of new colors.

The PoCSverse Power-Law Mechanisms, Pt. 3 15 of 56

Rich-Get-Richer Mechanism

Simon's Model

Words

Catchphras

First Mover Adva

Some observations:

Steady growth of system: +1 elephant per unit time.

The PoCSverse Power-Law Mechanisms, Pt. 3 16 of 56

Rich-Get-Richer Mechanism

Simon's Model

Words

First Mover Advantage

Some observations:

Steady growth of system: +1 elephant per unit time.

Steady growth of distinct flavors at rate ρ

The PoCSverse Power-Law Mechanisms, Pt. 3 16 of 56

Rich-Get-Richer Mechanism

Simon's Model

Words

Some observations:

Steady growth of system: +1 elephant per unit time.

Steady growth of distinct flavors at rate ρ

We can incorporate

The PoCSverse Power-Law Mechanisms, Pt. 3 16 of 56

Rich-Get-Richer Mechanism

Simon's Model

Words

Some observations:

Steady growth of system: +1 elephant per unit time.

Steady growth of distinct flavors at rate ρ

We can incorporate

1. Elephant elimination

The PoCSverse Power-Law Mechanisms, Pt. 3 16 of 56

Rich-Get-Richer Mechanism

Simon's Model

Words

Some observations:

Steady growth of system: +1 elephant per unit time.

Steady growth of distinct flavors at rate ρ

We can incorporate

- 1. Elephant elimination
- 2. Elephants moving between groups

The PoCSverse Power-Law Mechanisms, Pt. 3 16 of 56

Rich-Get-Richer Mechanism

Simon's Model

Words

Some observations:

Steady growth of system: +1 elephant per unit time.

Steady growth of distinct flavors at rate ρ

We can incorporate

- 1. Elephant elimination
- 2. Elephants moving between groups
- 3. Variable innovation rate ρ

The PoCSverse Power-Law Mechanisms, Pt. 3 16 of 56

Rich-Get-Richer Mechanism

Simon's Model

Words

Some observations:

Steady growth of system: +1 elephant per unit time.

Steady growth of distinct flavors at rate ρ

We can incorporate

- 1. Elephant elimination
- 2. Elephants moving between groups
- 3. Variable innovation rate ρ
- 4. Different selection based on group size

The PoCSverse Power-Law Mechanisms, Pt. 3 16 of 56

Rich-Get-Richer Mechanism

Simon's Model

Words

Some observations:

Steady growth of system: +1 elephant per unit time.

Steady growth of distinct flavors at rate ρ

We can incorporate


- 1. Elephant elimination
- 2. Elephants moving between groups
- 3. Variable innovation rate ρ
- 4. Different selection based on group size (But mechanism for selection is not as simple...)

The PoCSverse Power-Law Mechanisms, Pt. 3 16 of 56

Rich-Get-Richer Mechanism

Simon's Model

Words

"The Self-Organizing Economy" **3**,
by Paul Krugman (1996). [8]

The PoCSverse Power-Law Mechanisms, Pt. 3 17 of 56


Rich-Get-Richer Mechanism

Simon's Model

Analysis Words

Carchphrases

First Mover Advanta

"The Self-Organizing Economy" **3**.
by Paul Krugman (1996).

[8]

Ch. 3: An Urban Mystery, p. 46

"...Simon showed—in a completely impenetrable exposition!—that the exponent of the power law distribution should be ..." $^{1,\;2}$

The PoCSverse Power-Law Mechanisms, Pt. 3 17 of 56

Rich-Get-Richer Mechanism

Simon's Model

Analysis

Catchphrases

irst Mover Advanta

"The Self-Organizing Economy" **3** 2 by Paul Krugman (1996). [8]

Ch. 3: An Urban Mystery, p. 46

"...Simon showed—in a completely impenetrable exposition!—that the exponent of the power law distribution should be ..." 1, 2

The PoCSverse Power-Law Mechanisms, Pt. 3 17 of 56

Rich-Get-Richer Mechanism

Simon's Model

Analysis Words

Catchphrases

irst Mover Advantag

¹Krugman's book was handed to the Deliverator by a certain Álvaro Cartea
many years ago at the Santa Fe Institute Summer School.

"The Self-Organizing Economy" **3**, **2** by Paul Krugman (1996). [8]

Ch. 3: An Urban Mystery, p. 46

"...Simon showed—in a completely impenetrable exposition!—that the exponent of the power law distribution should be ..."1, 2

¹Krugman's book was handed to the Deliverator by a certain Álvaro Cartea 🛂 many years ago at the Santa Fe Institute Summer School.

The PoCSverse Power-Law Mechanisms, Pt. 3 17 of 56

Rich-Get-Richer Mechanism

Simon's Model

Words

²Let's use π for probability because π 's not special, right guys?

Outline

Rich-Get-Richer Mechanism

Simon's Mode

Analysis

Word

Catchphrase

First Mover Advantag

References

The PoCSverse Power-Law Mechanisms, Pt. 3 18 of 56

Rich-Get-Richer Mechanism

Simon's Model

Analysis Words

Carchobrase

First Mover Advantag

Definitions:

The PoCSverse Power-Law Mechanisms, Pt. 3 19 of 56

Rich-Get-Richer Mechanism

Simon's Model

Analysis Words

First Mover Advantage

Definitions:

 \aleph $N_{k,t}$ = # groups containing k elephants at time t.

The PoCSverse Power-Law Mechanisms, Pt. 3 19 of 56

Rich-Get-Richer Mechanism

Simon's Model

Analysis Words

Definitions:

 $N_{k,t}$ = # groups containing k elephants at time t.

Basic question: How does $N_{k,t}$ evolve with time?

The PoCSverse Power-Law Mechanisms, Pt. 3 19 of 56

Rich-Get-Richer Mechanism

Simon's Model

Analysis Words

Definitions:

 $k_i =$ size of a group i

 \aleph $N_{k,t}$ = # groups containing k elephants at time t.

Basic question: How does $N_{k,t}$ evolve with time?

First: $\sum_{i} k N_{k,t} = t = \text{number of elephants at time } t$

The PoCSverse Power-Law Mechanisms, Pt. 3 19 of 56

Rich-Get-Richer Mechanism

Simon's Model

Analysis

Words

 $P_k(t)$ = Probability of choosing an elephant that belongs to a group of size k:

The PoCSverse Power-Law Mechanisms, Pt. 3 20 of 56

Rich-Get-Richer Mechanism

Simon's Model

Analysis

Words

First Mover Advantage

 $P_k(t)$ = Probability of choosing an elephant that belongs to a group of size ${\it k}$:

 $\Re N_{k,t}$ size k groups

The PoCSverse Power-Law Mechanisms, Pt. 3 20 of 56

Rich-Get-Richer Mechanism

Simon's Model

Analysis

Words

First Mover Advantage

 $P_k(t)$ = Probability of choosing an elephant that belongs to a group of size k:

 $\begin{cases} \clubsuit > kN_{k,t} \text{ elephants in size } k \text{ groups} \end{cases}$

The PoCSverse Power-Law Mechanisms, Pt. 3 20 of 56

Rich-Get-Richer Mechanism

Simon's Model

Analysis

Words

First Mover Advantage

 $P_k(t)$ = Probability of choosing an elephant that belongs to a group of size k:

 $\Longrightarrow kN_{k,t}$ elephants in size k groups

& t elephants overall

The PoCSverse Power-Law Mechanisms, Pt. 3 20 of 56

Rich-Get-Richer Mechanism

Simon's Model

Analysis

Words

First Mover Advantage

 $P_k(t)$ = Probability of choosing an elephant that belongs to a group of size k:

 $\Longrightarrow kN_{k,t}$ elephants in size k groups

 \Leftrightarrow t elephants overall

$$P_k(t) = \frac{kN_{k,t}}{t}.$$

The PoCSverse Power-Law Mechanisms, Pt. 3 20 of 56

Rich-Get-Richer Mechanism

Simon's Model

Analysis

Words

First Mover Advantag

 $N_{k,t}$, the number of groups with k elephants, changes at time t if

The PoCSverse Power-Law Mechanisms, Pt. 3 21 of 56

Rich-Get-Richer Mechanism

Simon's Model

Analysis

Words

First Mover Advantage

 $N_{k,t}$, the number of groups with k elephants, changes at time t if

1. An elephant belonging to a group with *k* elephants is replicated:

The PoCSverse Power-Law Mechanisms, Pt. 3 21 of 56

Rich-Get-Richer Mechanism

Simon's Model

Analysis

Words

First Mover Advantage

 $N_{k,t}$, the number of groups with k elephants, changes at time t if

1. An elephant belonging to a group with *k* elephants is replicated:

2. An elephant belonging to a group with k-1 elephants is replicated:

The PoCSverse Power-Law Mechanisms, Pt. 3 21 of 56

Rich-Get-Richer Mechanism

Simon's Model

Analysis

Words

First Mover Advantag

$N_{k,t}$, the number of groups with k elephants, changes at time t if

1. An elephant belonging to a group with *k* elephants is replicated:

$$N_{k,t+1} = N_{k,t} - 1$$

2. An elephant belonging to a group with k-1 elephants is replicated:

The PoCSverse Power-Law Mechanisms, Pt. 3 21 of 56

Rich-Get-Richer Mechanism

Simon's Model

Analysis

Words

First Mover Advantag

$N_{k,t}$, the number of groups with k elephants, changes at time t if

1. An elephant belonging to a group with *k* elephants is replicated:

$$\begin{split} N_{k,t+1} &= N_{k,t} - 1 \\ \text{Happens with probability } (1-\rho)kN_{k,t}/t \end{split}$$

2. An elephant belonging to a group with k-1 elephants is replicated:

The PoCSverse Power-Law Mechanisms, Pt. 3 21 of 56

Rich-Get-Richer Mechanism

Simon's Model

Analysis

Words

First Mover Advantag

$N_{k,t}$, the number of groups with k elephants, changes at time t if

1. An elephant belonging to a group with *k* elephants is replicated:

$$\begin{split} N_{k,t+1} &= N_{k,t} - 1 \\ \text{Happens with probability } (1-\rho)kN_{k,t}/t \end{split}$$

2. An elephant belonging to a group with k-1 elephants is replicated:

$$N_{k,t+1} = N_{k,t} + 1$$

The PoCSverse Power-Law Mechanisms, Pt. 3 21 of 56

Rich-Get-Richer Mechanism

Simon's Model

Analysis

Words

First Mover Advantag

$N_{k,t}$, the number of groups with k elephants, changes at time t if

1. An elephant belonging to a group with *k* elephants is replicated:

$$\begin{split} N_{k,t+1} &= N_{k,t} - 1 \\ \text{Happens with probability } (1-\rho)kN_{k,t}/t \end{split}$$

2. An elephant belonging to a group with k-1 elephants is replicated:

$$\begin{split} N_{k,t+1} &= N_{k,t} + 1 \\ \text{Happens with probability } (1-\rho)(k-1)N_{k-1,t}/t \end{split}$$

The PoCSverse Power-Law Mechanisms, Pt. 3 21 of 56

Rich-Get-Richer Mechanism

Simon's Model

Analysis

Words

First Mover Advantag

Special case for $N_{1,t}$:

The PoCSverse Power-Law Mechanisms, Pt. 3 22 of 56

Rich-Get-Richer Mechanism

Simon's Model

Analysis Words

0 1 10

First Mover Advantage

Special case for $N_{1,t}$:

1. The new elephant is a new flavor:

The PoCSverse Power-Law Mechanisms, Pt. 3 22 of 56

Rich-Get-Richer Mechanism

Simon's Model

Analysis

Words

First Mover Advantage

Special case for $N_{1,t}$:

1. The new elephant is a new flavor:

2. A unique elephant is replicated:

The PoCSverse Power-Law Mechanisms, Pt. 3 22 of 56

Rich-Get-Richer Mechanism

Simon's Model

Analysis Words

Catchphrase

First Mover Advantage

Special case for $N_{1,t}$:

1. The new elephant is a new flavor: $N_{1,t+1} = N_{1,t} + 1$

2. A unique elephant is replicated:

The PoCSverse Power-Law Mechanisms, Pt. 3 22 of 56

Rich-Get-Richer Mechanism

Simon's Model

Analysis Words

Carchobras

First Mover Advantag

Special case for $N_{1,t}$:

- 1. The new elephant is a new flavor: $N_{1,t+1} = N_{1,t} + 1$ Happens with probability ρ
- 2. A unique elephant is replicated:

The PoCSverse Power-Law Mechanisms, Pt. 3 22 of 56

Rich-Get-Richer Mechanism

Simon's Model

Analysis Words

WOLLS.

First Mover Advant

Special case for $N_{1,t}$:

- 1. The new elephant is a new flavor: $N_{1,t+1}=N_{1,t}+1$ Happens with probability ho
- 2. A unique elephant is replicated:

$$N_{1,t+1} = N_{1,t} - 1$$

The PoCSverse Power-Law Mechanisms, Pt. 3 22 of 56

Rich-Get-Richer Mechanism

Simon's Model

Analysis Words

Words

First Mover Advan

Special case for $N_{1,t}$:

- 1. The new elephant is a new flavor: $N_{1,t+1}=N_{1,t}+1$ Happens with probability ho
- 2. A unique elephant is replicated:

$$N_{1,t+1} = N_{1,t} - 1$$
 Happens with probability $(1-\rho)N_{1,t}/t$

The PoCSverse Power-Law Mechanisms, Pt. 3 22 of 56

Rich-Get-Richer Mechanism

Simon's Model

Analysis

Words

First Mover Advar

Putting everything together:

For k > 1:

$$\left< N_{k,t+1} - N_{k,t} \right> = (1 - \rho) \left(\frac{(+1)(k-1)}{t} \frac{N_{k-1,t}}{t} + \frac{(-1)k}{t} \frac{N_{k,t}}{t} \right)$$

The PoCSverse Power-Law Mechanisms, Pt. 3 23 of 56

Rich-Get-Richer Mechanism

Simon's Model

Analysis Words

Catchphrases

rst Mover Advantag

The PoCSverse Power-Law Mechanisms, Pt. 3 23 of 56

Rich-Get-Richer Mechanism

Simon's Model

Analysis Words

atchphrases

References

Putting everything together:

For k > 1:

$$\left< N_{k,t+1} - N_{k,t} \right> = (1 - \rho) \left((\textcolor{red}{\textbf{+1}})(k-1) \frac{N_{k-1,t}}{t} + (\textcolor{red}{\textbf{-1}})k \frac{N_{k,t}}{t} \right)$$

For k = 1:

$$\langle N_{1,t+1} - N_{1,t} \rangle = (+1)\rho + (-1)(1-\rho)1 \cdot \frac{N_{1,t}}{t}$$

Assume distribution stabilizes: $N_{k,t} = n_k t$ (Reasonable for t large)

The PoCSverse Power-Law Mechanisms, Pt. 3 24 of 56

Rich-Get-Richer Mechanism

Simon's Model

Analysis Words

Catchphrases

First Mover Advantage

Assume distribution stabilizes: $N_{k,t} = n_k t$ (Reasonable for t large)

Drop expectations

The PoCSverse Power-Law Mechanisms, Pt. 3 24 of 56

Rich-Get-Richer Mechanism

Simon's Model

Analysis Words

Catchphrase

First Mover Advantage

Assume distribution stabilizes: $N_{k,t} = n_k t$ (Reasonable for t large)

Drop expectations

Numbers of elephants now fractional

The PoCSverse Power-Law Mechanisms, Pt. 3 24 of 56

Rich-Get-Richer Mechanism

Simon's Model

Analysis Words

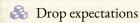
Assume distribution stabilizes: $N_{k,t} = n_k t$ (Reasonable for t large)

Drop expectations

Numbers of elephants now fractional

Okay over large time scales

The PoCSverse Power-Law Mechanisms, Pt. 3 24 of 56


Rich-Get-Richer Mechanism

Simon's Model

Analysis Words

Assume distribution stabilizes: $N_{k,t} = n_k t$ (Reasonable for t large)

Numbers of elephants now fractional

Okay over large time scales

$$\frac{N_{k,t}}{\rho t} = \frac{n_k t}{\rho t} = \frac{n_k}{\rho}.$$

The PoCSverse Power-Law Mechanisms, Pt. 3 24 of 56

Rich-Get-Richer Mechanism

Simon's Model

Analysis

words

First Mover Advantag

Stochastic difference equation:

$$\left\langle N_{k,t+1} - N_{k,t} \right\rangle = (1-\rho) \left((k-1) \frac{N_{k-1,t}}{t} - k \frac{N_{k,t}}{t} \right)$$

becomes

$$n_k(t+1)-n_kt=(1-\rho)\left((k-1)\frac{n_{k-1}t}{t}-k\frac{n_kt}{t}\right)$$

The PoCSverse Power-Law Mechanisms, Pt. 3 25 of 56

Rich-Get-Richer Mechanism

imon's Model

Analysis

Catchphrases

First Mover Advantage

Stochastic difference equation:

$$\left\langle N_{k,t+1} - N_{k,t} \right\rangle = (1-\rho) \left((k-1) \frac{N_{k-1,t}}{t} - k \frac{N_{k,t}}{t} \right)$$

becomes

$$n_k(t+1)-n_kt=(1-\rho)\left((k-1)\frac{n_{k-1}t}{t}-k\frac{n_kt}{t}\right)$$

$$n_k({\color{red} t}+1-{\color{red} t}) = (1-\rho)\left((k-1)\frac{n_{k-1}{\color{red} t}}{{\color{red} t}} - k\frac{n_k{\color{red} t}}{{\color{red} t}}\right)$$

The PoCSverse Power-Law Mechanisms, Pt. 3 25 of 56

Rich-Get-Richer Mechanism

mon's Model

Analysis

Words

First Mover Advantage

Stochastic difference equation:

$$\left\langle N_{k,t+1} - N_{k,t} \right\rangle = (1-\rho) \left((k-1) \frac{N_{k-1,t}}{t} - k \frac{N_{k,t}}{t} \right)$$

becomes

$$n_k(t+1)-n_kt=(1-\rho)\left((k-1)\frac{n_{k-1}t}{t}-k\frac{n_kt}{t}\right)$$

$$\begin{split} n_k({\color{red}t}+1-{\color{red}t}) &= (1-\rho)\left((k-1)\frac{n_{k-1}{\color{red}t}}{{\color{red}t}} - k\frac{n_k{\color{red}t}}{{\color{red}t}}\right) \\ \\ \Rightarrow n_k &= (1-\rho)\left((k-1)n_{k-1} - kn_k\right) \end{split}$$

The PoCSverse Power-Law Mechanisms, Pt. 3 25 of 56

Rich-Get-Richer Mechanism

mon's Model

Analysis

Words

First Mover Advantage

Stochastic difference equation:

$$\left\langle N_{k,t+1} - N_{k,t} \right\rangle = (1-\rho) \left((k-1) \frac{N_{k-1,t}}{t} - k \frac{N_{k,t}}{t} \right)$$

becomes

$$\begin{split} n_k(t+1) - n_k t &= (1-\rho) \left((k-1) \frac{n_{k-1} t}{t} - k \frac{n_k t}{t} \right) \\ n_k(t+1-t) &= (1-\rho) \left((k-1) \frac{n_{k-1} t}{t} - k \frac{n_k t}{t} \right) \\ \Rightarrow n_k &= (1-\rho) \left((k-1) n_{k-1} - k n_k \right) \\ \Rightarrow n_k \left(1 + (1-\rho) k \right) &= (1-\rho) (k-1) n_{k-1} \end{split}$$

The PoCSverse Power-Law Mechanisms, Pt. 3 25 of 56

Rich-Get-Richer Mechanism

imon's Model

Analysis

Words

irst Mover Advantage

We have a simple recursion:

$$\frac{n_k}{n_{k-1}} = \frac{(k-1)(1-\rho)}{1+(1-\rho)k}$$

The PoCSverse Power-Law Mechanisms, Pt. 3 26 of 56

Rich-Get-Richer Mechanism

Simon's Model

Analysis

Words

First Mover Advantage

We have a simple recursion:

$$\frac{n_k}{n_{k-1}} = \frac{(k-1)(1-\rho)}{1+(1-\rho)k}$$

Interested in k large (the tail of the distribution)

The PoCSverse Power-Law Mechanisms, Pt. 3 26 of 56

Rich-Get-Richer Mechanism

Simon's Model

Analysis Words

We have a simple recursion:

$$\frac{n_k}{n_{k-1}} = \frac{(k-1)(1-\rho)}{1+(1-\rho)k}$$

Interested in k large (the tail of the distribution)

Can be solved exactly.

The PoCSverse Power-Law Mechanisms, Pt. 3 26 of 56

Rich-Get-Richer Mechanism

Simon's Model

Analysis Words

Catchphrase

First Mover Advantag

We have a simple recursion:

$$\frac{n_k}{n_{k-1}} = \frac{(k-1)(1-\rho)}{1+(1-\rho)k}$$

Interested in k large (the tail of the distribution)

Can be solved exactly.

Insert assignment question

The PoCSverse Power-Law Mechanisms, Pt. 3 26 of 56

Rich-Get-Richer Mechanism

Simon's Model

Analysis

Catchphrase

First Mover Advantag

We have a simple recursion:

$$\frac{n_k}{n_{k-1}} = \frac{(k-1)(1-\rho)}{1+(1-\rho)k}$$

- Interested in k large (the tail of the distribution)
- \clubsuit For just the tail: Expand as a series of powers of 1/k

The PoCSverse Power-Law Mechanisms, Pt. 3 26 of 56

Rich-Get-Richer Mechanism

Simon's Model

Analysis

Carchphrase

First Mover Advantag

We have a simple recursion:

$$\frac{n_k}{n_{k-1}} = \frac{(k-1)(1-\rho)}{1+(1-\rho)k}$$

- & Interested in k large (the tail of the distribution)
- Can be solved exactly.
 Insert assignment question
- For just the tail: Expand as a series of powers of 1/kInsert assignment question \square

The PoCSverse Power-Law Mechanisms, Pt. 3 26 of 56

Rich-Get-Richer Mechanism

Simon's Model

Analysis

Catchphrase

First Mover Advantag

We have a simple recursion:

$$\frac{n_k}{n_{k-1}} = \frac{(k-1)(1-\rho)}{1+(1-\rho)k}$$

- Interested in k large (the tail of the distribution)
- Can be solved exactly.

 Insert assignment question
- For just the tail: Expand as a series of powers of 1/kInsert assignment question \square

We (okay, you) find

$$n_k \propto k^{-\frac{(2-\rho)}{(1-\rho)}} = k^{-\gamma}$$

$$\gamma = \frac{(2-\rho)}{(1-\rho)} = 1 + \frac{1}{(1-\rho)}$$

The PoCSverse Power-Law Mechanisms, Pt. 3 26 of 56

Rich-Get-Richer Mechanism

Simon's Model

Analysis

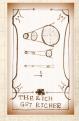
Words

First Mover Advantag

& Micro-to-Macro story with ρ and γ measurable.

$$\gamma = \frac{(2-\rho)}{(1-\rho)} = 1 + \frac{1}{(1-\rho)}$$

The PoCSverse Power-Law Mechanisms, Pt. 3 27 of 56


Rich-Get-Richer Mechanism

Simon's Model

Analysis

Words

First Mover Advantage

 $\red{solution}$ Micro-to-Macro story with ho and γ measurable.

$$\gamma = \frac{(2-\rho)}{(1-\rho)} = 1 + \frac{1}{(1-\rho)}$$

 \Leftrightarrow Observe $2 < \gamma < \infty$ for $0 < \rho < 1$.

The PoCSverse Power-Law Mechanisms, Pt. 3 27 of 56

Rich-Get-Richer Mechanism

Simon's Model

Analysis

Words

Micro-to-Macro story with ρ and γ measurable.

$$\gamma = \frac{(2-\rho)}{(1-\rho)} = 1 + \frac{1}{(1-\rho)}$$

 \Leftrightarrow Observe $2 < \gamma < \infty$ for $0 < \rho < 1$.

A For $\rho \simeq 0$ (low innovation rate):

The PoCSverse Power-Law Mechanisms, Pt. 3 27 of 56

Rich-Get-Richer Mechanism

Simon's Model

Analysis

Words

Micro-to-Macro story with ρ and γ measurable.

$$\gamma = \frac{(2-\rho)}{(1-\rho)} = 1 + \frac{1}{(1-\rho)}$$

 \triangle Observe $2 < \gamma < \infty$ for $0 < \rho < 1$.

A For $\rho \simeq 0$ (low innovation rate):

 $\gamma \simeq 2$

💸 'Wild' power-law size distribution of group sizes, bordering on 'infinite' mean.

The PoCSverse Power-Law Mechanisms, Pt. 3 27 of 56

Rich-Get-Richer Mechanism

Simon's Model

Analysis

Words

 \clubsuit Micro-to-Macro story with ρ and γ measurable.

$$\gamma = \frac{(2-\rho)}{(1-\rho)} = 1 + \frac{1}{(1-\rho)}$$

- \triangle Observe $2 < \gamma < \infty$ for $0 < \rho < 1$.
- Solution For $\rho \simeq 0$ (low innovation rate):

$$\gamma \simeq 2$$

- Wild' power-law size distribution of group sizes, bordering on 'infinite' mean.
- \Leftrightarrow For $\rho \simeq 1$ (high innovation rate):

The PoCSverse Power-Law Mechanisms, Pt. 3 27 of 56

Rich-Get-Richer Mechanism

Simon's Model

Analysis

Micro-to-Macro story with ρ and γ measurable.

$$\gamma = \frac{(2-\rho)}{(1-\rho)} = 1 + \frac{1}{(1-\rho)}$$

- \Leftrightarrow Observe $2 < \gamma < \infty$ for $0 < \rho < 1$.
- A For $\rho \simeq 0$ (low innovation rate):

$$\gamma \simeq 2$$

- Wild' power-law size distribution of group sizes, bordering on 'infinite' mean.
- \Leftrightarrow For $\rho \simeq 1$ (high innovation rate):

$$\gamma \simeq \infty$$

All elephants have different flavors.

The PoCSverse Power-Law Mechanisms, Pt. 3 27 of 56

Rich-Get-Richer Mechanism

Simon's Model

Analysis

 \clubsuit Micro-to-Macro story with ρ and γ measurable.

$$\gamma = \frac{(2-\rho)}{(1-\rho)} = 1 + \frac{1}{(1-\rho)}$$

 \Leftrightarrow Observe $2 < \gamma < \infty$ for $0 < \rho < 1$.

A For $\rho \simeq 0$ (low innovation rate):

 $\gamma \simeq 2$

Wild' power-law size distribution of group sizes, bordering on 'infinite' mean.

 \Leftrightarrow For $\rho \simeq 1$ (high innovation rate):

 $\gamma \simeq \infty$

All elephants have different flavors.

Upshot: Tunable mechanism producing a family of universality classes.

The PoCSverse Power-Law Mechanisms, Pt. 3 27 of 56

Rich-Get-Richer

Simon's Model

 $\ref{Recall size-ranking law: } s_r \sim r^{-\alpha}$ $(s_r = \text{size of the } r \text{th largest group of elephants})$

The PoCSverse Power-Law Mechanisms, Pt. 3 28 of 56

Rich-Get-Richer Mechanism

Simon's Model

Analysis Words

First Mover Advantage

Recall size-ranking law: $s_r \sim r^{-\alpha}$ (s_r = size of the rth largest group of elephants)

 $\ensuremath{\mathfrak{S}}$ We found $\alpha=1/(\gamma-1)$ so:

$$\alpha = \frac{1}{\gamma - 1} = \frac{1}{\frac{1}{1 + \frac{1}{(1 - \rho)} - \frac{1}{1}}} = 1 - \rho.$$

The PoCSverse Power-Law Mechanisms, Pt. 3 28 of 56

Rich-Get-Richer Mechanism

Simon's Model

Analysis Words

Catchphrases

First Mover Advantage

 $\begin{array}{l} \hbox{Recall size-ranking law: } s_r \sim r^{-\alpha} \\ \hbox{($s_r=$ size of the rth largest group of elephants)} \end{array}$

 $\ensuremath{\mathfrak{S}}$ We found $\alpha=1/(\gamma-1)$ so:

$$\alpha = \frac{1}{\gamma - 1} = \frac{1}{\frac{1}{(1 - \rho)} - \frac{1}{2}} = 1 - \rho.$$

The PoCSverse Power-Law Mechanisms, Pt. 3 28 of 56

Rich-Get-Richer Mechanism

Simon's Model

Analysis Words

Catchphrases

Recall size-ranking law: $s_r \sim r^{-\alpha}$ (s_r = size of the rth largest group of elephants)

 $\ensuremath{\mathfrak{S}}$ We found $\alpha=1/(\gamma-1)$ so:

$$\alpha = \frac{1}{\gamma - 1} = \frac{1}{1 + \frac{1}{(1 - \rho)} - 1} = 1 - \rho.$$

We (roughly) see Zipfian exponent [16] of $\alpha=1$ for many real systems: city sizes, word distributions, ...

The PoCSverse Power-Law Mechanisms, Pt. 3 28 of 56

Rich-Get-Richer Mechanism

Simon's Model

Analysis

Catchphrases

- Recall size-ranking law: $s_r \sim r^{-\alpha}$ (s_r = size of the rth largest group of elephants)
- $\ensuremath{\mathfrak{S}}$ We found $\alpha=1/(\gamma-1)$ so:

$$\alpha = \frac{1}{\gamma - 1} = \frac{1}{1 + \frac{1}{(1 - \rho)} - 1} = 1 - \rho.$$

- We (roughly) see Zipfian exponent [16] of $\alpha = 1$ for many real systems: city sizes, word distributions, ...
- $\mbox{\&}$ Corresponds to $ho \rightarrow 0$, low innovation.

The PoCSverse Power-Law Mechanisms, Pt. 3 28 of 56

Rich-Get-Richer Mechanism

Simon's Model

Analysis

Catchphrases

First Mover Advantage

- Recall size-ranking law: $s_r \sim r^{-\alpha}$ (s_r = size of the rth largest group of elephants)
- $\ensuremath{\mathfrak{S}}$ We found $\alpha=1/(\gamma-1)$ so:

$$\alpha = \frac{1}{\gamma - 1} = \frac{1}{\frac{1}{1 + \frac{1}{(1 - \rho)} - \frac{1}{1}}} = 1 - \rho.$$

- We (roughly) see Zipfian exponent [16] of $\alpha = 1$ for many real systems: city sizes, word distributions, ...
- $\ensuremath{\mathfrak{S}}$ Corresponds to $\rho \to 0$, low innovation.
- Still, other quite different mechanisms are possible...

The PoCSverse Power-Law Mechanisms, Pt. 3 28 of 56

Rich-Get-Richer Mechanism

Simon's Model

Analysis

Catchphrases

First Mover Advanta

- Recall size-ranking law: $s_r \sim r^{-\alpha}$ (s_r = size of the rth largest group of elephants)
- $\ensuremath{\mathfrak{S}}$ We found $\alpha=1/(\gamma-1)$ so:

$$\alpha = \frac{1}{\gamma - 1} = \frac{1}{1 + \frac{1}{(1 - \rho)} - 1} = 1 - \rho.$$

- We (roughly) see Zipfian exponent [16] of $\alpha=1$ for many real systems: city sizes, word distributions, ...
- $\ensuremath{\mathfrak{S}}$ Corresponds to $\rho \to 0$, low innovation.
- Still, other quite different mechanisms are possible...
- Must look at the details to see if mechanism makes sense... more later.

The PoCSverse Power-Law Mechanisms, Pt. 3 28 of 56

Rich-Get-Richer Mechanism

Simon's Model

Analysis

Words

First Mover Advantag

We had one other equation:

$$\left\langle N_{1,t+1} - N_{1,t} \right\rangle = \rho - (1-\rho)1 \cdot \frac{N_{1,t}}{t}$$

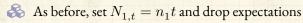
The PoCSverse Power-Law Mechanisms, Pt. 3 29 of 56

Rich-Get-Richer Mechanism

Simon's Model

Analysis Words

Catchphrases


First Mover Advantage

We had one other equation:

$$\left\langle N_{1,t+1} - N_{1,t} \right\rangle = \rho - (1-\rho)1 \cdot \frac{N_{1,t}}{t}$$

The PoCSverse Power-Law Mechanisms, Pt. 3 29 of 56

Rich-Get-Richer Mechanism

Simon's Model

Analysis Words

Catchphrase

First Mover Advantage

We had one other equation:

$$\left\langle N_{1,t+1} - N_{1,t} \right\rangle = \rho - (1-\rho)1 \cdot \frac{N_{1,t}}{t}$$

 $\ensuremath{\&}$ As before, set $N_{1,t}=n_1t$ and drop expectations

$$n_1(t+1)-n_1t=\rho-(1-\rho)1\cdot\frac{n_1t}{t}$$

$$n_1=\rho-(1-\rho)n_1$$

The PoCSverse Power-Law Mechanisms, Pt. 3 29 of 56

Rich-Get-Richer Mechanism

Simon's Model

Analysis -

Catchphrases

First Mover Advantage

We had one other equation:

$$\left\langle N_{1,t+1} - N_{1,t} \right\rangle = \rho - (1-\rho)1 \cdot \frac{N_{1,t}}{t}$$

 $\ensuremath{\&}$ As before, set $N_{1,t}=n_1 t$ and drop expectations

$$n_1(t+1)-n_1t=\rho-(1-\rho)1\cdot\frac{n_1t}{t}$$

$$n_1=\rho-(1-\rho)n_1$$

$$n_1+(1-\rho)n_1=\rho$$

The PoCSverse Power-Law Mechanisms, Pt. 3 29 of 56

Rich-Get-Richer Mechanism

Simon's Model

Analysis

Catchphrases

First Mover Advanta

We had one other equation:

$$\left\langle N_{1,t+1} - N_{1,t} \right\rangle = \rho - (1-\rho)1 \cdot \frac{N_{1,t}}{t}$$

 $\ensuremath{ \leqslant } \ensuremath{ } \e$

$$n_1(t+1)-n_1t=\rho-(1-\rho)1\cdot\frac{n_1t}{t}$$

$$n_1=\rho-(1-\rho)n_1$$

$$n_1+(1-\rho)n_1=\rho$$

$$n_1 = \frac{\rho}{2 - \rho}$$

The PoCSverse Power-Law Mechanisms, Pt. 3 29 of 56

Rich-Get-Richer Mechanism

Simon's Model

Analysis

Catchphrases

First Mover Advantage

So...
$$N_{1,t}=n_1t=\frac{\rho t}{2-\rho}$$

The PoCSverse Power-Law Mechanisms, Pt. 3 30 of 56

Rich-Get-Richer Mechanism

Simon's Model

Analysis Words

Catchphrases

First Mover Advantage

So...
$$N_{1,t} = n_1 t = \frac{\rho t}{2 - \rho}$$

Recall number of distinct elephants = ρt .

The PoCSverse Power-Law Mechanisms, Pt. 3 30 of 56

Rich-Get-Richer Mechanism

Simon's Model

Analysis Words

First Mover Advantage

So...
$$N_{1,t}=n_1t=\frac{\rho t}{2-\rho}$$

Recall number of distinct elephants = ρt .

Fraction of distinct elephants that are unique (belong to groups of size 1):

$$\frac{1}{\rho t} N_{1,t} = \frac{1}{\rho \ell} \underbrace{\rho \ell}_{2-\rho} = \frac{1}{2-\rho}$$

(also = fraction of groups of size 1)

The PoCSverse Power-Law Mechanisms, Pt. 3 30 of 56

Rich-Get-Richer Mechanism

Simon's Model

Analysis

So...
$$N_{1,t}=n_1t=\frac{\rho t}{2-\rho}$$

Recall number of distinct elephants = ρt .

Fraction of distinct elephants that are unique (belong to groups of size 1):

$$\frac{1}{\rho t} N_{1,t} = \frac{1}{\rho t} \underbrace{\rho t}_{2-\rho} = \frac{1}{2-\rho}$$

(also = fraction of groups of size 1)

 \red For ho small, fraction of unique elephants $\sim 1/2$

The PoCSverse Power-Law Mechanisms, Pt. 3 30 of 56

Rich-Get-Richer Mechanism

Simon's Model

Analysis

So...
$$N_{1,t}=n_1t=\frac{\rho t}{2-\rho}$$

- Recall number of distinct elephants = ρt .
- Fraction of distinct elephants that are unique (belong to groups of size 1):

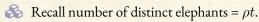
$$\frac{1}{\rho t} N_{1,t} = \frac{1}{\rho t} \underbrace{\rho t}_{2-\rho} = \frac{1}{2-\rho}$$

- $\ref{heather}$ For ho small, fraction of unique elephants $\sim 1/2$
- Roughly observed for real distributions

The PoCSverse Power-Law Mechanisms, Pt. 3 30 of 56

Rich-Get-Richer Mechanism

Simon's Model


Analysis

Words

Eless Morros Administra

So...
$$N_{1,t}=n_1t=\frac{\rho t}{2-\rho}$$

Fraction of distinct elephants that are unique (belong to groups of size 1):

$$\frac{1}{\rho t} N_{1,t} = \frac{1}{\rho t} \underbrace{\rho t}_{2-\rho} = \frac{1}{2-\rho}$$

(also = fraction of groups of size 1)

- \clubsuit For ho small, fraction of unique elephants $\sim 1/2$
- Roughly observed for real distributions

The PoCSverse Power-Law Mechanisms, Pt. 3 30 of 56

Rich-Get-Richer Mechanism

Simon's Model

Analysis

Words

iret Mouer Advantage

So...
$$N_{1,t}=n_1t=\frac{\rho t}{2-\rho}$$

- \Leftrightarrow Recall number of distinct elephants = ρt .
- Fraction of distinct elephants that are unique (belong to groups of size 1):

$$\frac{1}{\rho t} N_{1,t} = \frac{1}{\rho t} \underbrace{\rho t}_{2-\rho} = \frac{1}{2-\rho}$$

- \clubsuit For ho small, fraction of unique elephants $\sim 1/2$
- Roughly observed for real distributions
- $\begin{cases}{l} ρ increases, fraction increases \end{cases}$
- $\stackrel{>}{\leqslant}$ Can show fraction of groups with two elephants $\sim 1/6$

The PoCSverse Power-Law Mechanisms, Pt. 3 30 of 56


Rich-Get-Richer Mechanism

Simon's Model

Analysis

Wardo

Catchphrases

So...
$$N_{1,t}=n_1t=\frac{\rho t}{2-\rho}$$

- Recall number of distinct elephants = ρt .
- Fraction of distinct elephants that are unique (belong to groups of size 1):

$$\frac{1}{\rho t} N_{1,t} = \frac{1}{\rho \ell} \frac{\rho \ell}{2 - \rho} = \frac{1}{2 - \rho}$$

- \clubsuit For ho small, fraction of unique elephants $\sim 1/2$
- Roughly observed for real distributions

The PoCSverse Power-Law Mechanisms, Pt. 3 30 of 56

Rich-Get-Richer Mechanism

Simon's Model

Analysis

Words

First Mover Advantage

$$\text{So...} \qquad N_{1,t} = n_1 t = \frac{\rho t}{2-\rho}$$

- Recall number of distinct elephants = ρt .
- Fraction of distinct elephants that are unique (belong to groups of size 1):

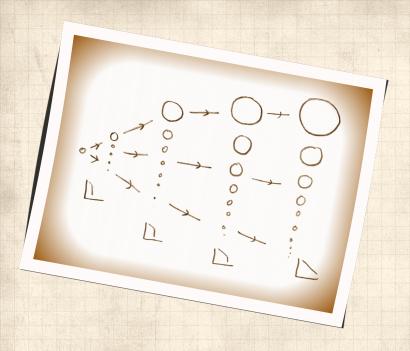
$$\frac{1}{\rho t} N_{1,t} = \frac{1}{\rho t} \frac{\rho t}{2 - \rho} = \frac{1}{2 - \rho}$$

- \Longrightarrow For ho small, fraction of unique elephants $\sim 1/2$
- Roughly observed for real distributions

- Model works well for large and small k #awesome

The PoCSverse Power-Law Mechanisms, Pt. 3 30 of 56

Rich-Get-Richer Mechanism


Simon's Model

Analysis

Words

First Mover Advantage

The PoCSverse Power-Law Mechanisms, Pt. 3 31 of 56

Rich-Get-Richer Mechanism

Simon's Model

Analysis Words

Words Catchphrases

First Mover Advantage

Outline

Rich-Get-Richer Mechanism

Simon's Mode

Tallalys

Words

Catchphrases
First Mover Advantage

Reference

The PoCSverse Power-Law Mechanisms, Pt. 3 32 of 56

Rich-Get-Richer Mechanism

Simon's Model

Words -

Catchphrase

First Mover Advantag

Words:

From Simon [14]:

Estimate $\rho_{\rm est}$ = # unique words/# all words

The PoCSverse Power-Law Mechanisms, Pt. 3 33 of 56

Rich-Get-Richer Mechanism

Simon's Model

Analysis

Words

First Mover Advantage

Words:

From Simon [14]:

Estimate $\rho_{\rm est}=$ # unique words/# all words

For Joyce's Ulysses: $\rho_{\rm est} \simeq 0.115$

The PoCSverse Power-Law Mechanisms, Pt. 3 33 of 56

Rich-Get-Richer Mechanism

Simon's Model

Words

Catchphras

First Mover Advantage

Words:

From Simon [14]:

Estimate $\rho_{\rm est}=$ # unique words/# all words

For Joyce's Ulysses: $\rho_{\rm est} \simeq 0.115$

N_1 (real)	N_1 (est)	N_2 (real)	N_2 (est)
16,432	15,850	4,776	4,870

The PoCSverse Power-Law Mechanisms, Pt. 3 33 of 56

Rich-Get-Richer Mechanism

Simon's Model

Words

Catchphras

First Mover Advantage

Outline

Rich-Get-Richer Mechanism

Simon's Mode

Analysi

Words

Catchphrases

First Mover Advantag

Reference

The PoCSverse Power-Law Mechanisms, Pt. 3 34 of 56

Rich-Get-Richer Mechanism

Simon's Model

Words

Catchphrases

First Mover Advantage

& Yule's paper (1924) [15]:

"A mathematical theory of evolution, based on the conclusions of Dr J. C. Willis, F.R.S."

The PoCSverse Power-Law Mechanisms, Pt. 3 35 of 56

Rich-Get-Richer Mechanism

Simon's Model

Words

Words Catchphrases

First Mover Advantag

Yule's paper (1924) [15]:
"A mathematical theory of evolution, based on the conclusions of Dr J. C. Willis, F.R.S."

Simon's paper (1955) [14]:
"On a class of skew distribution functions" (snore)

The PoCSverse Power-Law Mechanisms, Pt. 3 35 of 56

Rich-Get-Richer Mechanism

Simon's Model

Words

Catchphrases

First Mover Advantag

Yule's paper (1924) [15]:

"A mathematical theory of evolution, based on the conclusions of Dr J. C. Willis, F.R.S."

Simon's paper (1955) [14]:
"On a class of skew distribution functions" (snore)

From Simon's introduction:

The PoCSverse Power-Law Mechanisms, Pt. 3 35 of 56

Rich-Get-Richer Mechanism

Simon's Model

Words

Catchphrases

First Mover Advantag

Yule's paper (1924) [15]:

"A mathematical theory of evolution, based on the conclusions of Dr J. C. Willis, F.R.S."

Simon's paper (1955) [14]:
"On a class of skew distribution functions" (snore)

From Simon's introduction:

It is the purpose of this paper to analyse a class of distribution functions that appear in a wide range of empirical data The PoCSverse Power-Law Mechanisms, Pt. 3 35 of 56

Rich-Get-Richer Mechanism

Simon's Model

Words Catchphrases

First Mover Advantag

Yule's paper (1924) [15]:
"A mathematical theory of evolution, based on the conclusions of Dr J. C. Willis, F.R.S."

Simon's paper (1955) [14]:
"On a class of skew distribution functions" (snore)

From Simon's introduction:

It is the purpose of this paper to analyse a class of distribution functions that appear in a wide range of empirical data—particularly data describing sociological, biological and economic phenomena.

The PoCSverse Power-Law Mechanisms, Pt. 3 35 of 56

Rich-Get-Richer Mechanism

Simon's Model

Words

Catchphrases

First Mover Advantag

Yule's paper (1924) [15]:
"A mathematical theory of evolution, based on the conclusions of Dr J. C. Willis, F.R.S."

Simon's paper (1955) [14]:
"On a class of skew distribution functions" (snore)

From Simon's introduction:

It is the purpose of this paper to analyse a class of distribution functions that appear in a wide range of empirical data—particularly data describing sociological, biological and economic phenomena.

Its appearance is so frequent, and the phenomena so diverse,

The PoCSverse Power-Law Mechanisms, Pt. 3 35 of 56

Rich-Get-Richer Mechanism

Simon's Model

....

Words

Catchphrases First Mover Advantag

Yule's paper (1924) [15]:
"A mathematical theory of

"A mathematical theory of evolution, based on the conclusions of Dr J. C. Willis, F.R.S."

Simon's paper (1955) [14]:

"On a class of skew distribution functions" (snore)

From Simon's introduction:

It is the purpose of this paper to analyse a class of distribution functions that appear in a wide range of empirical data—particularly data describing sociological, biological and economic phenomena.

Its appearance is so frequent, and the phenomena so diverse, that one is led to conjecture that if these phenomena have any property in common The PoCSverse Power-Law Mechanisms, Pt. 3 35 of 56

Rich-Get-Richer Mechanism

Simon's Model

Words

Words

Catchphrases First Mover Advantag

Yule's paper (1924) [15]:
"A mathematical theory of evolution, based on the conclusions of Dr J. C. Willis, F.R.S."

Simon's paper (1955) [14]:
"On a class of skew distribution functions" (snore)

From Simon's introduction:

It is the purpose of this paper to analyse a class of distribution functions that appear in a wide range of empirical data—particularly data describing sociological, biological and economic phenomena.

Its appearance is so frequent, and the phenomena so diverse, that one is led to conjecture that if these phenomena have any property in common it can only be a similarity in the structure of the underlying probability mechanisms.

The PoCSverse Power-Law Mechanisms, Pt. 3 35 of 56

Rich-Get-Richer Mechanism

Simon's Model

Words

Catchphrases

Derek de Solla Price:

First to study network evolution with these kinds of models.

The PoCSverse Power-Law Mechanisms, Pt. 3 36 of 56

Rich-Get-Richer Mechanism

Simon's Model

Words

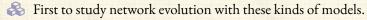
Catchphrases

Derek de Solla Price:

First to study network evolution with these kinds of models.

Citation network of scientific papers

The PoCSverse Power-Law Mechanisms, Pt. 3 36 of 56


Rich-Get-Richer Mechanism

Words

Catchphrases

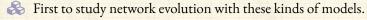
Derek de Solla Price:

Citation network of scientific papers

Reference Price's term: Cumulative Advantage

The PoCSverse Power-Law Mechanisms, Pt. 3 36 of 56

Rich-Get-Richer Mechanism


imon's Model

Words

Catchphrases First Mover Advantas

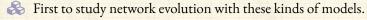
Derek de Solla Price:

Citation network of scientific papers

Price's term: Cumulative Advantage

Idea: papers receive new citations with probability proportional to their existing # of citations The PoCSverse Power-Law Mechanisms, Pt. 3 36 of 56

Rich-Get-Richer Mechanism


imon's Model

Words

Catchphrases

Derek de Solla Price:

& Citation network of scientific papers

Price's term: Cumulative Advantage

A Idea: papers receive new citations with probability proportional to their existing # of citations

Directed network

The PoCSverse Power-Law Mechanisms, Pt. 3 36 of 56

Rich-Get-Richer Mechanism

imon's Model

Words

Catchphrases First Mover Advanta

Derek de Solla Price:

- First to study network evolution with these kinds of models.
- & Citation network of scientific papers
- Rrice's term: Cumulative Advantage
- A Idea: papers receive new citations with probability proportional to their existing # of citations
- Directed network
- Two (surmountable) problems:
 - 1. New papers have no citations
 - 2. Selection mechanism is more complicated

The PoCSverse Power-Law Mechanisms, Pt. 3 36 of 56

Rich-Get-Richer Mechanism

imon's Model

Words

Catchphrases First Mover Advan

Robert K. Merton: the Matthew Effect

Studied careers of scientists and found credit flowed disproportionately to the already famous The PoCSverse Power-Law Mechanisms, Pt. 3 37 of 56

Rich-Get-Richer Mechanism

Simon's Model

Analysis

Words

Catchphrases First Mover Advantage

Robert K. Merton: the Matthew Effect

Studied careers of scientists and found credit flowed disproportionately to the already famous

From the Gospel of Matthew: "For to every one that hath shall be given... The PoCSverse Power-Law Mechanisms, Pt. 3 37 of 56

Rich-Get-Richer Mechanism

Words Catchphrases

Robert K. Merton: the Matthew Effect

Studied careers of scientists and found credit flowed disproportionately to the already famous

From the Gospel of Matthew:

"For to every one that hath shall be given... (Wait! There's more....)

The PoCSverse Power-Law Mechanisms, Pt. 3 37 of 56

Rich-Get-Richer Mechanism

Words

Catchphrases

Robert K. Merton: the Matthew Effect

Studied careers of scientists and found credit flowed disproportionately to the already famous

From the Gospel of Matthew:

"For to every one that hath shall be given...

(Wait! There's more....)

but from him that hath not, that also which he seemeth to have shall be taken away.

The PoCSverse Power-Law Mechanisms, Pt. 3 37 of 56

Rich-Get-Richer Mechanism

Words

Catchphrases

Robert K. Merton: the Matthew Effect

Studied careers of scientists and found credit flowed disproportionately to the already famous

From the Gospel of Matthew:

"For to every one that hath shall be given...

(Wait! There's more....)

but from him that hath not, that also which he seemeth to have shall be taken away.

And cast the worthless servant into the outer darkness; there men will weep and gnash their teeth."

The PoCSverse Power-Law Mechanisms, Pt. 3 37 of 56

Rich-Get-Richer Mechanism

Words

Catchphrases

Robert K. Merton: the Matthew Effect

Studied careers of scientists and found credit flowed disproportionately to the already famous

From the Gospel of Matthew:

"For to every one that hath shall be given...

(Wait! There's more....)

but from him that hath not, that also which he seemeth to have shall be taken away.

And cast the worthless servant into the outer darkness; there men will weep and gnash their teeth."

(Hath = suggested unit of purchasing power.)

The PoCSverse Power-Law Mechanisms, Pt. 3 37 of 56

Rich-Get-Richer Mechanism

Words

Catchphrases

Robert K. Merton: the Matthew Effect

Studied careers of scientists and found credit flowed disproportionately to the already famous

From the Gospel of Matthew:

"For to every one that hath shall be given...

(Wait! There's more....)

but from him that hath not, that also which he seemeth to have shall be taken away.

And cast the worthless servant into the outer darkness; there men will weep and gnash their teeth."

(Hath = suggested unit of purchasing power.)

Matilda effect: women's scientific achievements are often overlooked

The PoCSverse Power-Law Mechanisms, Pt. 3 37 of 56

Rich-Get-Richer Mechanism

Words

Catchphrases

Merton was a catchphrase machine:

The PoCSverse Power-Law Mechanisms, Pt. 3 38 of 56

Rich-Get-Richer Mechanism

Simon's Model

Analysi

Catchphrases

First Mover Advantage

Merton was a catchphrase machine:

1. Self-fulfilling prophecy

The PoCSverse Power-Law Mechanisms, Pt. 3 38 of 56

Rich-Get-Richer Mechanism

Simon's Model

Words

Catchphrases

First Mover Advantag

Merton was a catchphrase machine:

- 1. Self-fulfilling prophecy
- 2. Role model

The PoCSverse Power-Law Mechanisms, Pt. 3 38 of 56

Rich-Get-Richer Mechanism

Simon's Model

Words

Catchphrases

First Mover Advantage

Merton was a catchphrase machine:

- 1. Self-fulfilling prophecy
- 2. Role model
- 3. Unintended (or unanticipated) consequences

The PoCSverse Power-Law Mechanisms, Pt. 3 38 of 56

Rich-Get-Richer Mechanism

Simon's Model

Words

Catchphrases

First Mover Advantage

Merton was a catchphrase machine:

- 1. Self-fulfilling prophecy
- 2. Role model
- 3. Unintended (or unanticipated) consequences
- 4. Focused interview \rightarrow focus group

The PoCSverse Power-Law Mechanisms, Pt. 3 38 of 56

Rich-Get-Richer Mechanism

imon's Model

Words

Catchphrases

First Mover Advantag

Merton was a catchphrase machine:

- 1. Self-fulfilling prophecy
- 2. Role model
- 3. Unintended (or unanticipated) consequences
- 4. Focused interview \rightarrow focus group
- 5. Obliteration by incorporation (includes above examples from Merton himself)

The PoCSverse Power-Law Mechanisms, Pt. 3 38 of 56

Rich-Get-Richer Mechanism

imon's Model

Words

Catchphrases

First Mover Advan

Merton was a catchphrase machine:

- 1. Self-fulfilling prophecy
- 2. Role model
- 3. Unintended (or unanticipated) consequences
- 4. Focused interview \rightarrow focus group
- 5. Obliteration by incorporation (includes above examples from Merton himself)

And just to be clear...

The PoCSverse Power-Law Mechanisms, Pt. 3 38 of 56

Rich-Get-Richer Mechanism

imon's Model

Words

Catchphrases

Merton was a catchphrase machine:

- 1. Self-fulfilling prophecy
- 2. Role model
- 3. Unintended (or unanticipated) consequences
- 4. Focused interview \rightarrow focus group
- 5. Obliteration by incorporation (includes above examples from Merton himself)

And just to be clear...

Merton's son, Robert C. Merton, won the Nobel Prize for Economics in 1997.

The PoCSverse Power-Law Mechanisms, Pt. 3 38 of 56

Rich-Get-Richer Mechanism

Simon's Model

Words

Catchphrases

Barabasi and Albert [2]—thinking about the Web

The PoCSverse Power-Law Mechanisms, Pt. 3 39 of 56

Rich-Get-Richer Mechanism

Simon's Model

Words

Catchphrases

Barabasi and Albert [2]—thinking about the Web

Independent reinvention of a version of Simon and Price's theory for networks

The PoCSverse Power-Law Mechanisms, Pt. 3 39 of 56

Rich-Get-Richer Mechanism

Words

Catchphrases

Barabasi and Albert [2]—thinking about the Web

Independent reinvention of a version of Simon and Price's theory for networks

Another term: "Preferential Attachment"

The PoCSverse Power-Law Mechanisms, Pt. 3 39 of 56

Rich-Get-Richer Mechanism

Words

Catchphrases

Barabasi and Albert [2]—thinking about the Web

Independent reinvention of a version of Simon and Price's theory for networks

Another term: "Preferential Attachment"

Considered undirected networks (not realistic but avoids 0 citation problem)

The PoCSverse Power-Law Mechanisms, Pt. 3 39 of 56

Rich-Get-Richer Mechanism

Words

Catchphrases

Barabasi and Albert [2]—thinking about the Web

Independent reinvention of a version of Simon and Price's theory for networks

Another term: "Preferential Attachment"

Considered undirected networks (not realistic but avoids 0 citation problem)

Still have selection problem based on size (non-random)

The PoCSverse Power-Law Mechanisms, Pt. 3 39 of 56

Rich-Get-Richer Mechanism

Words

Catchphrases

- Barabasi and Albert [2]—thinking about the Web
- Independent reinvention of a version of Simon and Price's theory for networks
- Another term: "Preferential Attachment"
- Considered undirected networks (not realistic but avoids 0 citation problem)
- Still have selection problem based on size (non-random)
- Solution: Randomly connect to a node (easy) ...

The PoCSverse Power-Law Mechanisms, Pt. 3 39 of 56

Rich-Get-Richer Mechanism

Words

Catchphrases

Barabasi and Albert [2]—thinking about the Web

Independent reinvention of a version of Simon and Price's theory for networks

Another term: "Preferential Attachment"

Considered undirected networks (not realistic but avoids 0 citation problem)

Still have selection problem based on size (non-random)

Solution: Randomly connect to a node (easy) ...

...and then randomly connect to the node's friends (also easy)

The PoCSverse Power-Law Mechanisms, Pt. 3 39 of 56

Rich-Get-Richer Mechanism

Words

Catchphrases

Barabasi and Albert [2]—thinking about the Web

Independent reinvention of a version of Simon and Price's theory for networks

Another term: "Preferential Attachment"

Considered undirected networks (not realistic but avoids 0 citation problem)

Still have selection problem based on size (non-random)

Solution: Randomly connect to a node (easy) ...

...and then randomly connect to the node's friends (also easy)

Scale-free networks" = food on the table for physicists

The PoCSverse Power-Law Mechanisms, Pt. 3 39 of 56

Rich-Get-Richer Mechanism

Words

Catchphrases

Outline

Rich-Get-Richer Mechanism

Simon's Model Analysis Words Catchphrases

First Mover Advantage

Reference

The PoCSverse Power-Law Mechanisms, Pt. 3 40 of 56

Rich-Get-Richer Mechanism

Simon's Model

Analysi

Words

Catchphrases

First Mover Advantage

Another analytic approach: [5]

 \clubsuit Focus on how the nth arriving group typically grows.

The PoCSverse Power-Law Mechanisms, Pt. 3 41 of 56

Rich-Get-Richer Mechanism

Simon's Model

Words

First Mover Advantage

Another analytic approach: [5]

 \clubsuit Focus on how the nth arriving group typically grows.

Analysis gives:

$$S_{n,t} \sim \left\{ \begin{array}{l} \frac{1}{\Gamma(2-\rho)} \left[\frac{1}{t}\right]^{-(1-\rho)} = \Gamma(2-\rho) \left[\frac{t}{1}\right]^{+(1-\rho)} \ \ \text{for } n=1, \\ \rho^{1-\rho} \left[\frac{n-1}{t}\right]^{-(1-\rho)} = \left[\frac{t}{n-1}\right]^{+(1-\rho)} \ \ \text{for } n \geq 2. \end{array} \right.$$

The PoCSverse Power-Law Mechanisms, Pt. 3 41 of 56

Rich-Get-Richer Mechanism

Words

First Mover Advantage

Another analytic approach: [5]

Focus on how the nth arriving group typically grows.

Analysis gives:

$$S_{n,t} \sim \left\{ \begin{array}{l} \frac{1}{\Gamma(2-\rho)} \left[\frac{1}{t}\right]^{-(1-\rho)} = \Gamma(2-\rho) \left[\frac{t}{1}\right]^{+(1-\rho)} \ \ \text{for } n=1, \\ \rho^{1-\rho} \left[\frac{n-1}{t}\right]^{-(1-\rho)} = \left[\frac{t}{n-1}\right]^{+(1-\rho)} \ \ \text{for } n \geq 2. \end{array} \right.$$

 $\ref{heather}$ First mover is a factor $1/\rho$ greater than expected.

The PoCSverse Power-Law Mechanisms, Pt. 3 41 of 56

Rich-Get-Richer Mechanism

Simon's Model

Words

Catchphrases

First Mover Advantage

Another analytic approach: [5]

Focus on how the nth arriving group typically grows.

Analysis gives:

$$S_{n,t} \sim \left\{ \begin{array}{l} \frac{1}{\Gamma(2-\rho)} \left[\frac{1}{t}\right]^{-(1-\rho)} = \Gamma(2-\rho) \left[\frac{t}{1}\right]^{+(1-\rho)} \ \ \text{for } n=1, \\ \rho^{1-\rho} \left[\frac{n-1}{t}\right]^{-(1-\rho)} = \left[\frac{t}{n-1}\right]^{+(1-\rho)} \ \ \text{for } n \geq 2. \end{array} \right.$$

- \red{a} First mover is a factor 1/
 ho greater than expected.
- Because ρ is usually close to 0, the first element is truly an elephant in the room.

The PoCSverse Power-Law Mechanisms, Pt. 3 41 of 56

Rich-Get-Richer Mechanism

Simon's Model

Words

Catchphrases

First Mover Advantage

Another analytic approach: [5]

Focus on how the nth arriving group typically grows.

Analysis gives:

$$S_{n,t} \sim \left\{ \begin{array}{l} \frac{1}{\Gamma(2-\rho)} \left[\frac{1}{t}\right]^{-(1-\rho)} = \Gamma(2-\rho) \left[\frac{t}{1}\right]^{+(1-\rho)} \ \ \text{for } n=1, \\ \rho^{1-\rho} \left[\frac{n-1}{t}\right]^{-(1-\rho)} = \left[\frac{t}{n-1}\right]^{+(1-\rho)} \ \ \text{for } n \geq 2. \end{array} \right.$$

- \red{a} First mover is a factor 1/
 ho greater than expected.
- Because ρ is usually close to 0, the first element is truly an elephant in the room.
- Appears that this has been missed for 60 years ...

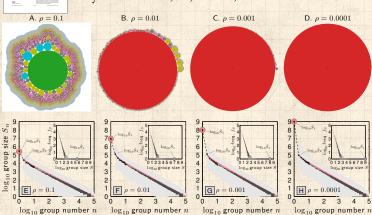
The PoCSverse Power-Law Mechanisms, Pt. 3 41 of 56

Rich-Get-Richer Mechanism

Simon's Model

Words

Catchphrases


First Mover Advantage

"Simon's fundamental rich-get-richer model entails a dominant first-mover advantage"

Dodds et al., Physical Review E, 95, 052301, 2017. [5]

The PoCSverse Power-Law Mechanisms, Pt. 3 42. of 56

Rich-Get-Richer Mechanism

Simon's Model

Words

First Mover Advantage

Alternate analysis:

Evolution of the nth arriving group's size:

$$\left\langle S_{n,t+1} - S_{n,t} \right\rangle = (1 - \rho_t) \cdot \frac{S_{n,t}}{t} \cdot (+1).$$

The PoCSverse Power-Law Mechanisms, Pt. 3 43 of 56

Rich-Get-Richer Mechanism

Simon's Model

Words

First Mover Advantage

Alternate analysis:

 \clubsuit Evolution of the *n*th arriving group's size:

$$\left\langle S_{n,t+1} - S_{n,t} \right\rangle = (1 - \rho_t) \cdot \frac{S_{n,t}}{t} \cdot (+1).$$

 \Leftrightarrow For $t \geq t_n^{\text{init}}$, fix $\rho_t = \rho$ and shift t to t-1:

$$S_{n,t} = \left[1 + \frac{(1-\rho)}{t-1}\right] S_{n,t-1}.$$

where $S_{n,t_n^{\text{init}}} = 1$.

The PoCSverse Power-Law Mechanisms, Pt. 3 43 of 56

Rich-Get-Richer Mechanism

Simon's Model

Words

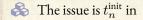
First Mover Advantage

Betafication ensues:

$$\begin{split} S_{n,t} &= \left[1 + \frac{(1-\rho)}{t-1}\right] \left[1 + \frac{(1-\rho)}{t-2}\right] \cdots \left[1 + \frac{(1-\rho)}{t_n^{\text{init}}}\right] \cdot 1 \\ &= \left[\frac{t+1-\rho}{t-1}\right] \left[\frac{t-\rho}{t-2}\right] \cdots \left[\frac{t_n^{\text{init}}+1-\rho}{t_n^{\text{init}}}\right] \\ &= \frac{\Gamma(t+1-\rho)\Gamma(t_n^{\text{init}})}{\Gamma(t_n^{\text{init}}+1-\rho)\Gamma(t)} \\ &= \frac{B(t_n^{\text{init}},1-\rho)}{B(t,1-\rho)}. \end{split}$$

The PoCSverse Power-Law Mechanisms, Pt. 3 44 of 56

Rich-Get-Richer Mechanism


Simon's Model

Words

montal a

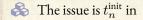
First Mover Advantage

$$S_{n,t} = \frac{\mathbf{B}(t_n^{\mathrm{init}}, 1 - \rho)}{\mathbf{B}(t, 1 - \rho)}$$

 \iff For $n\geq 2$ and $\rho\ll 1$, the nth group typically arrives at $t_n^{\rm init}\simeq [\frac{n-1}{\rho}]$

The PoCSverse Power-Law Mechanisms, Pt. 3 45 of 56

Rich-Get-Richer Mechanism


Simon's Model

Words

Catchphrases

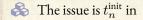
First Mover Advantage

$$S_{n,t} = \frac{\mathbf{B}(t_n^{\mathrm{init}}, 1 - \rho)}{\mathbf{B}(t, 1 - \rho)}$$

- \iff For $n\geq 2$ and $\rho\ll 1,$ the nth group typically arrives at $t_n^{\rm init}\simeq [\frac{n-1}{\rho}]$
- \Re But $t_1^{\text{init}} = 1$ and the scaling is distinct in form.

The PoCSverse Power-Law Mechanisms, Pt. 3 45 of 56

Rich-Get-Richer Mechanism


Simon's Model

Words

Catchphrases

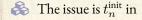
First Mover Advantage

$$S_{n,t} = \frac{\mathbf{B}(t_n^{\text{init}}, 1 - \rho)}{\mathbf{B}(t, 1 - \rho)}$$

- \iff For $n\geq 2$ and $\rho\ll 1,$ the nth group typically arrives at $t_n^{\rm init}\simeq [\frac{n-1}{\rho}]$
- \Re But $t_1^{\text{init}} = 1$ and the scaling is distinct in form.
- Simon missed the first mover by working on the size distribution.

The PoCSverse Power-Law Mechanisms, Pt. 3 45 of 56

Rich-Get-Richer Mechanism


Simon's Model

Words

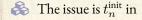
Catchphrases

First Mover Advantage

$$S_{n,t} = \frac{\mathbf{B}(t_n^{\text{init}}, 1 - \rho)}{\mathbf{B}(t, 1 - \rho)}$$

- \iff For $n\geq 2$ and $\rho\ll 1,$ the nth group typically arrives at $t_n^{\rm init}\simeq [\frac{n-1}{\rho}]$
- Arr But $t_1^{\text{init}} = 1$ and the scaling is distinct in form.
- Simon missed the first mover by working on the size distribution.
- $\ensuremath{\mathfrak{S}}$ Contribution to $P_{k,t}$ of the first element vanishes as $t \to \infty$.

The PoCSverse Power-Law Mechanisms, Pt. 3 45 of 56


Rich-Get-Richer Mechanism

Simon's Model

Words

First Mover Advantage

$$S_{n,t} = \frac{\mathbf{B}(t_n^{\text{init}}, 1 - \rho)}{\mathbf{B}(t, 1 - \rho)}$$

- \iff For $n\geq 2$ and $\rho\ll 1,$ the nth group typically arrives at $t_n^{\rm init}\simeq \left[\frac{n-1}{\rho}\right]$
- Arr But $t_1^{\text{init}} = 1$ and the scaling is distinct in form.
- Simon missed the first mover by working on the size distribution.
- $\ensuremath{\&}$ Contribution to $P_{k,t}$ of the first element vanishes as $t \to \infty$.
- Note: Does not apply to Barabási-Albert model.

The PoCSverse Power-Law Mechanisms, Pt. 3 45 of 56

Rich-Get-Richer Mechanism

Simon's Model

Words

Catchphrases

First Mover Advantage

Variability:

 \clubsuit The probability that the nth arriving group, if of size $S_{n,t} = k$ at time t, first replicates at time $t + \tau$:

The PoCSverse Power-Law Mechanisms, Pt. 3 46 of 56

Rich-Get-Richer Mechanism

Simon's Model

Words

First Mover Advantage

Variability:

 The probability that the nth arriving group, if of size $S_{n,t} = k$ at time t, first replicates at time $t + \tau$:

$$\begin{split} & \mathbf{Pr} \big(S_{n,t+\tau} = k+1 \,|\, S_{n,t+i} = k \;\; \text{for} \, i = 0, \dots, \tau-1 \big) \\ & = \prod_{i=0}^{\tau-1} \left[1 - (1-\rho) \frac{k}{t+i} \right] \cdot (1-\rho) \frac{k}{t+\tau} \\ & = k \frac{B(\tau,t)}{B\left(\tau,t-(1-\rho)\right)} \frac{1-\rho}{t+\tau} \propto \frac{\tau^{-(1-\rho)k}}{t+\tau} \sim \tau^{-(2-\rho)k}. \end{split}$$

The PoCSverse Power-Law Mechanisms, Pt. 3 46 of 56

Rich-Get-Richer Mechanism

Words

First Mover Advantage

Variability:

 The probability that the nth arriving group, if of size $S_{n,t} = k$ at time t, first replicates at time $t + \tau$:

$$\begin{split} & \mathbf{Pr} \big(S_{n,t+\tau} = k+1 \,|\, S_{n,t+i} = k \;\; \text{for} \, i = 0, \dots, \tau-1 \big) \\ & = \prod_{i=0}^{\tau-1} \left[1 - (1-\rho) \frac{k}{t+i} \right] \cdot (1-\rho) \frac{k}{t+\tau} \\ & = k \frac{B(\tau,t)}{B\left(\tau,t-(1-\rho)\right)} \frac{1-\rho}{t+\tau} \propto \frac{\tau^{-(1-\rho)k}}{t+\tau} \sim \tau^{-(2-\rho)k}. \end{split}$$

 \clubsuit Upshot: nth arriving group starting at size 1 will on average wait for an infinite time to replicate.

The PoCSverse Power-Law Mechanisms, Pt. 3 46 of 56

Rich-Get-Richer Mechanism

Simon's Model

Words

First Mover Advantage

Related papers:

"Organization of Growing Random Networks" Krapivsky and Redner,
Phys. Rev. E, **63**, 066123, 2001. [7]

"The first-mover advantage in scientific publication"

M. E. J. Newman,
Europhysics Letters, **86**, 68001, 2009. [11]

The PoCSverse Power-Law Mechanisms, Pt. 3 47 of 56

Rich-Get-Richer Mechanism

Simon's Model

Analysis

Catchphrases

First Mover Advantage

Related papers:

"Prediction of highly cited papers"
M. E. J. Newman,

Europhysics Letters, **105**, 28002, 2014. [12]

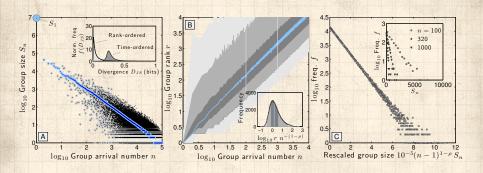
"The effect of the initial network configuration on preferential attachment"

Berset and Medo, The European Physical Journal B, **86**, 1–7, 2013. ^[3] The PoCSverse Power-Law Mechanisms, Pt. 3 48 of 56

Rich-Get-Richer Mechanism

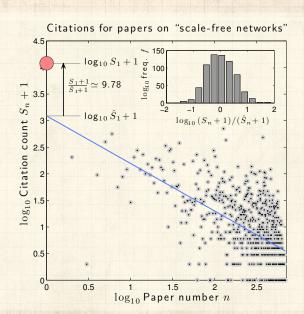
Simon's Model

Analysis


Catchphrases

First Mover Advantage

Leferences



Arrival variability:

- Any one simulation shows a high amount of disorder.
- Two orders of magnitude variation in possible rank.
- Rank ordering creates a smooth Zipf distribution.
- Size distribution for the *n*th arriving group show exponential decay.

Self-referential citation data:

The PoCSverse Power-Law Mechanisms, Pt. 3 50 of 56

Rich-Get-Richer Mechanism

Simon's Model

Analysi

Catchphras

First Mover Advantage

Rich-get-richerness in social contagion:

& We love to rank everyone, everything: Top n lists.

The PoCSverse Power-Law Mechanisms, Pt. 3 51 of 56

Rich-Get-Richer Mechanism

Simon's Model

Words

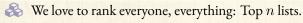
First Mover Advantage

Rich-get-richerness in social contagion:

People, wealth, sports, music, movies, books, schools, cities, countries, dogs (13/10) , ...

The PoCSverse Power-Law Mechanisms, Pt. 3 51 of 56

Rich-Get-Richer Mechanism


Simon's Model

Words

First Mover Advantage

Rich-get-richerness in social contagion:

People, wealth, sports, music, movies, books, schools, cities, countries, dogs (13/10) , ...

Gameable: payola ☑, astroturfing ☑, sockpuppetry ☑, John Barron ☑ (the sockpuppet hype man ☑), ... The PoCSverse Power-Law Mechanisms, Pt. 3 51 of 56

Rich-Get-Richer Mechanism

Simon's Model

Analysis

Catchphrases

First Mover Advantage

Rich-get-richerness in social contagion:

- $\ensuremath{\mathfrak{S}}$ We love to rank everyone, everything: Top n lists.
- People, wealth, sports, music, movies, books, schools, cities, countries, dogs (13/10) , ...
- & Gameable: payola ☑, astroturfing ☑, sockpuppetry ☑, John Barron ☑ (the sockpuppet hype man ☑), ...
- 🔗 Black-box ranking algorithms make ranking opaque.

The PoCSverse Power-Law Mechanisms, Pt. 3 51 of 56

Rich-Get-Richer Mechanism

Simon's Model

Analysis

Catchphrases

First Mover Advantage

Rich-get-richerness in social contagion:

- People, wealth, sports, music, movies, books, schools, cities, countries, dogs (13/10) , ...
- Gameable: payola , astroturfing , sockpuppetry , John Barron (the sockpuppet hype man), ...
- 🔗 Black-box ranking algorithms make ranking opaque.
- Black boxes are gameable but takes money and commensurate skill.

The PoCSverse Power-Law Mechanisms, Pt. 3 51 of 56

Rich-Get-Richer Mechanism

Simon's Model

Analysis

Catchphrases

First Mover Advantage

Rich-get-richerness in social contagion:

- People, wealth, sports, music, movies, books, schools, cities, countries, dogs (13/10) , ...
- & Gameable: payola ☑, astroturfing ☑, sockpuppetry ☑, John Barron ☑ (the sockpuppet hype man ☑), ...
- 🔗 Black-box ranking algorithms make ranking opaque.
- Black boxes are gameable but takes money and commensurate skill.
- Black box algorithms can make things spread rampantly.¹

The PoCSverse Power-Law Mechanisms, Pt. 3 51 of 56

Rich-Get-Richer Mechanism

Simon's Model

Analysis

Catchphrases

First Mover Advantage

Rich-get-richerness in social contagion:

 \clubsuit We love to rank everyone, everything: Top n lists.

People, wealth, sports, music, movies, books, schools, cities, countries, dogs (13/10) , ...

Gameable: payola ☑, astroturfing ☑, sockpuppetry ☑, John Barron ☑ (the sockpuppet hype man ☑), ...

Black-box ranking algorithms make ranking opaque.

& Black boxes are gameable but takes money and commensurate skill.

Black box algorithms can make things spread rampantly.¹

The PoCSverse Power-Law Mechanisms, Pt. 3 51 of 56

Rich-Get-Richer Mechanism

imon's Model

Analysis
Words

Catchphrases

First Mover Advantage

¹"With great power comes great responsibility." –S. Man.

Rich-get-richerness in social contagion:

- $\ensuremath{\mathfrak{S}}$ We love to rank everyone, everything: Top n lists.
- People, wealth, sports, music, movies, books, schools, cities, countries, dogs (13/10) , ...
- & Gameable: payola ☑, astroturfing ☑, sockpuppetry ☑, John Barron ☑ (the sockpuppet hype man ☑), ...
- 🙈 Black-box ranking algorithms make ranking opaque.
- Black boxes are gameable but takes money and commensurate skill.
- Black box algorithms can make things spread rampantly.¹
- No "regramming" is a positive feature of Instagram (also: Pratchett the Cat (3)

The PoCSverse Power-Law Mechanisms, Pt. 3 51 of 56

Rich-Get-Richer Mechanism

Simon's Model

Analysis

Catchphrases

First Mover Advantage

¹"With great power comes great responsibility." –S. Man.

Rich-get-richerness in social contagion:

- People, wealth, sports, music, movies, books, schools, cities, countries, dogs (13/10) , ...
- & Gameable: payola ☑, astroturfing ☑, sockpuppetry ☑, John Barron ☑ (the sockpuppet hype man ☑), ...
- 🔗 Black-box ranking algorithms make ranking opaque.
- Black boxes are gameable but takes money and commensurate skill.
- Black box algorithms can make things spread rampantly.¹
- No "regramming" is a positive feature of Instagram (also: Pratchett the Cat ☑)
- What if a healthier Facebook is just ... Instagram? (hahahhaaha)

Rich-Get-Richer Mechanism

Simon's Model

Analysis
Words

Catchphrases

First Mover Advantage

The PoCSverse Power-Law Mechanisms, Pt. 3 51 of 56

¹"With great power comes great responsibility." –S. Man.

References I

[1] F. Auerbach.

Das gesetz der bevölkerungskonzentration.

Petermanns Geogr. Mitteilungen, 59:73–76, 1913.

[2] A.-L. Barabási and R. Albert. Emergence of scaling in random networks. Science, 286:509–511, 1999. pdf

[3] Y. Berset and M. Medo. The effect of the initial network configuration on preferential attachment. The European Physical Journal B, 86(6):1–7, 2013. pdf

[4] D. J. de Solla Price.

Networks of scientific papers.

Science, 149:510–515, 1965. pdf

The PoCSverse Power-Law Mechanisms, Pt. 3 52 of 56

Rich-Get-Richer Mechanism

Simon's Mode

Words

Catchphrases

References II

[5] P. S. Dodds, D. R. Dewhurst, F. F. Hazlehurst, C. M. Van Oort, L. Mitchell, A. J. Reagan, J. R. Williams, and C. M. Danforth.

Simon's fundamental rich-get-richer model entails a dominant first-mover advantage.

Physical Review E, 95:052301, 2017. pdf

[6] J.-B. Estoup.

Gammes sténographiques: méthode et exercices pour l'acquisition de la vitesse.

Institut Sténographique, 1916.

[7] P. L. Krapivsky and S. Redner.
Organization of growing random networks.
Phys. Rev. E, 63:066123, 2001. pdf

The PoCSverse Power-Law Mechanisms, Pt. 3 53 of 56

Rich-Get-Richer Mechanism

Simon's Model

Words

Catchphrases

First Mover Advan

References III

- [8] P. Krugman.

 The Self-Organizing Economy.

 Blackwell Publishers, Cambridge, Massachusetts, 1996.
- [9] A. J. Lotka. The frequency distribution of scientific productivity. Journal of the Washington Academy of Science, 16:317–323, 1926.
- [10] B. B. Mandelbrot.
 An informational theory of the statistical structure of languages.
 In W. Jackson, editor, Communication Theory, pages 486–502. Butterworth, Woburn, MA, 1953. pdf
- [11] M. E. J. Newman.

 The first-mover advantage in scientific publication.

 Europhysics Letters, 86:68001, 2009. pdf

The PoCSverse Power-Law Mechanisms, Pt. 3 54 of 56

Rich-Get-Richer Mechanism

Simon's Model

Analysis

Catchphrases

First Mover Advantag

References IV

[12] M. E. J. Newman.

Prediction of highly cited papers.

Europhysics Letters, 105:28002, 2014. pdf

[13] D. D. S. Price.

A general theory of bibliometric and other cumulative advantage processes.

Journal of the American Society for Information Science, pages 292–306, 1976. pdf

[14] H. A. Simon.
On a class of skew distribution functions.
Biometrika, 42:425–440, 1955. pdf

[15] G. U. Yule.

A mathematical theory of evolution, based on the conclusions of Dr J. C. Willis, F.R.S. Phil. Trans. B, 213:21–87, 1925. pdf

The PoCSverse Power-Law Mechanisms, Pt. 3 55 of 56

Rich-Get-Richer Mechanism

Simon's Model

Words

Catchphrases

First Mover Advantag

References V

[16] G. K. Zipf. Human Behaviour and the Principle of Least-Effort. Addison-Wesley, Cambridge, MA, 1949. The PoCSverse Power-Law Mechanisms, Pt. 3 56 of 56

Rich-Get-Richer Mechanism

Simon's Model

Mords

Catchphrase

First Mover Advantage

