Branching Networks II Last updated: 2024/10/17, 08:41:39 EDT Principles of Complex Systems, Vols. 1, 2, & 3D CSYS/MATH 6701, 6713, & a pretend number, 2024-2025 #### Prof. Peter Sheridan Dodds Computational Story Lab | Vermont Complex Systems Center Santa Fe Institute | University of Vermont Licensed under the Creative Commons Attribution 4.0 International The PoCSverse Branching Networks 1 of 85 Reducing Horton Scaling relations Models Nurshell ### These slides are brought to you by: The PoCSverse Branching Networks II 2 of 85 Horton ⇔ Tokunaga Reducing Horton Scaling relations Fluctuations Models Nutshell ## These slides are also brought to you by: Special Guest Executive Producer On Instagram at pratchett_the_cat The PoCSverse Branching Networks II 3 of 85 Horton ⇔ Tokunaga Reducing Horton Scaling relations Fluctuations Models Nutshell #### Outline Horton ⇔ Tokunaga Reducing Horton Scaling relations Fluctuations Models Nutshell References The PoCSverse Branching Networks II 4 of 85 $Horton \Leftrightarrow Tokunaga$ Reducing Horton Scaling relations Fluctuations Models Nutshell # Piracy on the high χ 's: "Dynamic Reorganization of River Basins" Willett et al., Science, **343**, 1248765, 2014. [21] $$\begin{split} \frac{\partial z(x,t)}{\partial t} &= U {-} K A^m \left| \frac{\partial z(x,t)}{\partial x} \right|^n \\ z(x) &= z_{\rm b} + \left(\frac{U}{K A_0^m} \right)^{1/n} \chi \\ \chi &= \int_{x_{\rm b}}^x \left(\frac{A_0}{A(x')} \right)^{m/n} {\rm d}x' \end{split}$$ ### Piracy on the high χ 's: Story: How river networks move across a landscape (Science Daily) The PoCSverse Branching Networks II 7 of 85 Horton ⇔ Tokunaga Reducing Horton Scaling relations Fluctuations Models Models Nutshell Horton and Tokunaga seem different: The PoCSverse Branching Networks II 10 of 85 $Horton \Leftrightarrow Tokunaga$ Reducing Horton Scaling relations Fluctuations Models Nutshell #### Horton and Tokunaga seem different: 🙈 In terms of network achitecture, Horton's laws appear to contain less detailed information than Tokunaga's law. The PoCSverse Branching Networks 10 of 85 Horton ⇔ Tokunaga Reducing Horton Scaling relations Models Nurshell #### Horton and Tokunaga seem different: In terms of network achitecture, Horton's laws appear to contain less detailed information than Tokunaga's law. The PoCSverse Branching Networks II 10 of 85 Horton ⇔ Tokunaga Reducing Horton Scaling relations • Models Nurshell #### Horton and Tokunaga seem different: In terms of network achitecture, Horton's laws appear to contain less detailed information than Tokunaga's law. Oddly, Horton's laws have four parameters and Tokunaga has two parameters. R_n, R_a, R_ℓ , and R_s versus T_1 and R_T . One simple redundancy: $R_\ell = R_s$. Insert assignment question \square The PoCSverse Branching Networks II 10 of 85 Horton ⇔ Tokunaga Reducing Horton Scaling relations Models Nutshell #### Horton and Tokunaga seem different: - In terms of network achitecture, Horton's laws appear to contain less detailed information than Tokunaga's law. - Oddly, Horton's laws have four parameters and Tokunaga has two parameters. - R_n, R_a, R_ℓ , and R_s versus T_1 and R_T . One simple redundancy: $R_\ell = R_s$. Insert assignment question - To make a connection, clearest approach is to start with Tokunaga's law ... The PoCSverse Branching Networks II 10 of 85 Horton ⇔ Tokunaga Reducing Horton Scaling relations . Models Nutshell #### Horton and Tokunaga seem different: - In terms of network achitecture, Horton's laws appear to contain less detailed information than Tokunaga's law. - Oddly, Horton's laws have four parameters and Tokunaga has two parameters. - R_n, R_a, R_ℓ , and R_s versus T_1 and R_T . One simple redundancy: $R_\ell = R_s$. Insert assignment question - To make a connection, clearest approach is to start with Tokunaga's law ... - & Known result: Tokunaga \rightarrow Horton [18, 19, 20, 9, 2] The PoCSverse Branching Networks II 10 of 85 Horton ⇔ Tokunaga Reducing Horton Scaling relations cannig relation Models vioucis Nutshell We need one more ingredient: The PoCSverse Branching Networks II 11 of 85 Horton ⇔ Tokunaga Reducing Horton Scaling relations Fluctuations Models Nutshell We need one more ingredient: Space-fillingness The PoCSverse Branching Networks II 11 of 85 Horton ⇔ Tokunaga Reducing Horton Scaling relations Fluctuations Models Nutshell We need one more ingredient: #### Space-fillingness A network is space-filling if the average distance between adjacent streams is roughly constant. The PoCSverse Branching Networks 11 of 85 Horton ⇔ Tokunaga Reducing Horton Scaling relations Fluctuations Models Nutshell We need one more ingredient: #### Space-fillingness A network is space-filling if the average distance between adjacent streams is roughly constant. Reasonable for river and cardiovascular networks The PoCSverse Branching Networks II 11 of 85 Horton ⇔ Tokunaga Reducing Horton Scaling relations Models Nutshell We need one more ingredient: #### Space-fillingness For river networks: Reasonable for river and cardiovascular networks Drainage density ρ_{dd} = inverse of typical distance between channels in a landscape. The PoCSverse Branching Networks II 11 of 85 Horton ⇔ Tokunaga Reducing Horton Scaling relations Models VIOUCIS Nutshell We need one more ingredient: For river networks: #### Space-fillingness A network is space-filling if the average distance between adjacent streams is roughly constant. Reasonable for river and cardiovascular networks Drainage density ρ_{dd} = inverse of typical distance between channels in a landscape. In terms of basin characteristics: $$\rho_{\rm dd} \simeq \frac{\sum {\rm stream \ segment \ lengths}}{{\rm basin \ area}}$$ The PoCSverse Branching Networks II 11 of 85 Horton ⇔ Tokunaga Reducing Horton Scaling relations Models Nutshell We need one more ingredient: #### Space-fillingness A network is space-filling if the average distance between adjacent streams is roughly constant. Reasonable for river and cardiovascular networks For river networks: Drainage density ρ_{dd} = inverse of typical distance between channels in a landscape. In terms of basin characteristics: $$\rho_{\rm dd} \simeq \frac{\sum {\rm stream\ segment\ lengths}}{{\rm basin\ area}} = \frac{\sum_{\omega=1}^{M} n_{\omega} \bar{s}_{\omega}}{a_{\Omega}}$$ The PoCSverse Branching Networks II 11 of 85 Horton ⇔ Tokunaga Reducing Horton Scaling relations Models Nutshell Start with Tokunaga's law: $T_k = T_1 R_T^{k-1}$ The PoCSverse Branching Networks II 12 of 85 Horton ⇔ Tokunaga Reducing Horton Scaling relations Fluctuations Models Nutshell Start with Tokunaga's law: $T_k = T_1 R_T^{k-1}$ Start looking for Horton's stream number law: $$n_{\omega}/n_{\omega+1} = R_n$$. The PoCSverse Branching Networks 12.of 85 Horton ⇔ Tokunaga Reducing Horton Scaling relations Fluctuations Models Nutshell Start with Tokunaga's law: $T_k = T_1 R_T^{k-1}$ The PoCSverse Branching Networks II 12 of 85 Horton ⇔ Tokunaga Reducing Horton Scaling relations Models Nutshell Start with Tokunaga's law: $T_k = T_1 R_T^{k-1}$ The PoCSverse Branching Networks II 12 of 85 Horton ⇔ Tokunaga Reducing Horton Scaling relations 0 Models Nutshell Start with Tokunaga's law: $T_k = T_1 R_T^{k-1}$ & Estimate n_{ω} , the number of streams of order ω in terms of other $n_{\omega'}$, $\omega' > \omega$. Observe that each stream of order ω terminates by either: 1. Running into another stream of order ω and generating a stream of order $\omega+1$... The PoCSverse Branching Networks II 12 of 85 Horton ⇔ Tokunaga Reducing Horton Scaling relations canng relation Models Models Nutshell Start with Tokunaga's law: $T_k = T_1 R_T^{k-1}$ & Estimate n_{ω} , the number of streams of order ω in terms of other $n_{\omega'}$, $\omega' > \omega$. angle Observe that each stream of order ω terminates by either: - 1. Running into another stream of order ω and generating a stream of order $\omega+1$... - 2. Running into and being absorbed by a stream of higher order $\omega'>\omega$... The PoCSverse Branching Networks II 12 of 85 Horton ⇔ Tokunaga Reducing Horton Scaling relations Models Nutshell Start with Tokunaga's law: $T_k = T_1 R_T^{k-1}$ & Estimate n_{ω} , the number of streams of order ω in terms of other $n_{\omega'}$, $\omega' > \omega$. $\red {\Bbb S}$ Observe that each stream of order ω terminates by either: 1. Running into another stream of order ω and generating a stream of order $\omega+1$... $ightharpoonup 2n_{\omega+1}$ streams of order ω do this 2. Running into and being absorbed by a stream of higher order $\omega'>\omega$... The PoCSverse Branching Networks II 12 of 85 Horton ⇔ Tokunaga Reducing Horton Scaling relations Models Nutshell Nutsnell Start with Tokunaga's law: $T_k = T_1 R_T^{k-1}$ & Estimate n_{ω} , the number of streams of order ω in terms of other $n_{\omega'}$, $\omega' > \omega$. & Observe that each stream of order ω terminates by either: - 1. Running into another stream of order ω and generating a stream of order $\omega+1$... - $ightharpoonup 2n_{\omega+1}$ streams of order ω do this - 2. Running into and being absorbed by a stream of higher order $\omega'>\omega$... - $ightharpoonup n_{\omega'}T_{\omega'-\omega}$ streams of order ω do this The PoCSverse Branching Networks II 12 of 85 Horton ⇔ Tokunaga Reducing Horton Scaling relations Models Nurshell #### Putting things together: $$n_{\omega} = \underbrace{2n_{\omega+1}}_{\text{generation}} +$$ The PoCSverse Branching Networks II 13 of 85 $Horton \Leftrightarrow Tokunaga$ Reducing Horton Scaling relations Fluctuations Models AL LONG Nutshell #### Putting things together: $$n_{\omega} = \underbrace{\frac{2n_{\omega+1}}{\text{generation}}} + \sum_{\omega'=\omega+1}^{M}
\underbrace{\frac{T_{\omega'-\omega}n_{\omega'}}{\text{absorption}}}$$ The PoCSverse Branching Networks II 13 of 85 Horton ⇔ Tokunaga Reducing Horton Scaling relations Models Nutshell #### Putting things together: $$n_{\omega} = \underbrace{\frac{2n_{\omega+1}}_{\text{generation}}} + \sum_{\omega'=\omega+1}^{\Omega} \underbrace{\frac{T_{\omega'-\omega}n_{\omega'}}_{\text{absorption}}}$$ Use Tokunaga's law and manipulate expression to find Horton's law for stream numbers follows and hence obtain R_n . Insert assignment question The PoCSverse Branching Networks II 13 of 85 Horton ⇔ Tokunaga Reducing Horton Scaling relations canng relation Models Nutshell #### Putting things together: $$n_{\omega} = \underbrace{\frac{2}{n_{\omega+1}}}_{\text{generation}} + \sum_{\omega'=\omega+1}^{\Omega} \underbrace{T_{\omega'-\omega}n_{\omega'}}_{\text{absorption}}$$ $lap{.}{.}$ Use Tokunaga's law and manipulate expression to find Horton's law for stream numbers follows and hence obtain R_n . Solution: $$R_n = \frac{(2 + R_T + T_1) \pm \sqrt{(2 + R_T + T_1)^2 - 8R_T}}{2}$$ (The larger value is the one we want.) The PoCSverse Branching Networks II 13 of 85 Horton ⇔ Tokunaga Reducing Horton Scaling relations Models Nutshell ### Finding other Horton ratios Connect Tokunaga to R_s Now use uniform drainage density ρ_{dd} . The PoCSverse Branching Networks 14 of 85 Horton ⇔ Tokunaga Reducing Horton Scaling relations Fluctuations Models Nutshell ### Finding other Horton ratios #### Connect Tokunaga to R_s Now use uniform drainage density ρ_{dd} . Assume side streams are roughly separated by distance $1/\rho_{dd}$. The PoCSverse Branching Networks 14 of 85 Horton ⇔ Tokunaga Reducing Horton Scaling relations Fluctuations Models Nutshell ### Finding other Horton ratios ### Connect Tokunaga to R_s Now use uniform drainage density ρ_{dd} . Assume side streams are roughly separated by distance $1/\rho_{dd}$. For an order ω stream segment, expected length is $$\bar{s}_{\omega} \simeq \rho_{\mathrm{dd}}^{-1} \left(1 + \sum_{k=1}^{\omega - 1} T_k \right)$$ The PoCSverse Branching Networks 14 of 85 Horton ⇔ Tokunaga Reducing Horton Scaling relations Models Nurshell ## Finding other Horton ratios ### Connect Tokunaga to R_s Assume side streams are roughly separated by distance $1/ ho_{ m dd}$. $\ref{eq:continuous}$ For an order ω stream segment, expected length is $$\bar{s}_{\omega} \simeq \rho_{\mathrm{dd}}^{-1} \left(1 + \sum_{k=1}^{\omega-1} T_k \right)$$ $\ref{Substitute}$ in Tokunaga's law $T_k = T_1 R_T^{k-1}$: $$\bar{s}_{\omega} \simeq \rho_{\mathrm{dd}}^{-1} \left(1 + T_1 \sum_{k=1}^{\omega-1} R_T^{\,k-1} \right)$$ The PoCSverse Branching Networks II 14 of 85 Horton ⇔ Tokunaga Reducing Horton Scaling relations Models Nutshell References ### Finding other Horton ratios ### Connect Tokunaga to R_s Now use uniform drainage density ρ_{dd} . Assume side streams are roughly separated by distance $1/\rho_{dd}$. $$\bar{s}_{\omega} \simeq \rho_{\mathrm{dd}}^{-1} \left(1 + \sum_{k=1}^{\omega-1} T_k \right)$$ Substitute in Tokunaga's law $T_k = T_1 R_T^{k-1}$: $$\bar{s}_{\omega} \simeq \rho_{\mathrm{dd}}^{-1} \left(1 + T_1 \sum_{k=1}^{\omega - 1} R_T^{\ k - 1} \right) \ \propto R_T^{\ \omega}$$ The PoCSverse Branching Networks 14 of 85 Horton ⇔ Tokunaga Reducing Horton Scaling relations Models Nurshell ### Altogether then: $$\Rightarrow \bar{s}_{\omega}/\bar{s}_{\omega-1} = R_T$$ The PoCSverse Branching Networks II 15 of 85 Horton ⇔ Tokunaga Reducing Horton Scaling relations Fluctuations Models Nutshell ### Altogether then: $$\Rightarrow \bar{s}_{\omega}/\bar{s}_{\omega-1} = R_T \Rightarrow R_s = R_T$$ The PoCSverse Branching Networks II 15 of 85 Horton ⇔ Tokunaga Reducing Horton Scaling relations Fluctuations Models Nutshell #### Altogether then: $$\Rightarrow \bar{s}_{\omega}/\bar{s}_{\omega-1} = R_T \Rightarrow R_s = R_T$$ $$R_{\ell} = R_s = R_T$$ The PoCSverse Branching Networks II Horton ⇔ Tokunaga Reducing Horton Scaling relations Fluctuations Models #### Altogether then: $$\Rightarrow \bar{s}_{\omega}/\bar{s}_{\omega-1} = R_T \Rightarrow R_s = R_T$$ $$R_{\ell} = R_s = R_T$$ And from before: $$R_n = \frac{(2+R_T+T_1)+\sqrt{(2+R_T+T_1)^2-8R_T}}{2}$$ The PoCSverse Branching Networks II 15 of 85 Horton ⇔ Tokunaga Reducing Horton Scaling relations Models #### Some observations: The PoCSverse Branching Networks II 16 of 85 Horton ⇔ Tokunaga Reducing Horton Scaling relations Fluctuations Models Nutshell #### Some observations: R_n and R_ℓ depend on T_1 and R_T . & Seems that R_a must as well ... The PoCSverse Branching Networks II Horton ⇔ Tokunaga Reducing Horton Scaling relations Fluctuations Models Nutshell #### Some observations: R_n and R_ℓ depend on T_1 and R_T . $\red seems$ seems that R_a must as well ... Suggests Horton's laws must contain some redundancy The PoCSverse Branching Networks II 16 of 85 Horton ⇔ Tokunaga Reducing Horton Scaling relations Instructions Models Nutshell #### Some observations: R_n and R_ℓ depend on T_1 and R_T . $\red seems$ seems that R_a must as well ... 🙈 Suggests Horton's laws must contain some redundancy $\ensuremath{\mathfrak{S}}$ We'll in fact see that $R_a=R_n$. The PoCSverse Branching Networks II 16 of 85 Horton ⇔ Tokunaga Reducing Horton Scaling relations Models Nutshell #### Some observations: $\red {\Bbb S}$ Seems that R_a must as well ... 🙈 Suggests Horton's laws must contain some redundancy $\ensuremath{\mathfrak{S}}$ We'll in fact see that $R_a=R_n$. Also: Both Tokunaga's law and Horton's laws can be generalized to relationships between non-trivial statistical distributions. [3, 4] The PoCSverse Branching Networks II 16 of 85 Horton ⇔ Tokunaga Reducing Horton Scaling relations 1..... Models Nutshell ### The other way round $\red R_n$ Note: We can invert the expresssions for R_n and R_ℓ to find Tokunaga's parameters in terms of Horton's parameters. The PoCSverse Branching Networks 17 of 85 Horton ⇔ Tokunaga Reducing Horton Scaling relations Models Nutshell ### The other way round $$R_T = R_\ell$$ $$T_1=R_n-R_\ell-2+2R_\ell/R_n.$$ The PoCSverse Branching Networks II 17 of 85 Horton ⇔ Tokunaga Reducing Horton Scaling relations Models Nurshell ### The other way round $$R_T = R_\ell,$$ $$T_1 = R_n - R_\ell - 2 + 2R_\ell / R_n.$$ The PoCSverse Branching Networks II 17 of 85 Horton ⇔ Tokunaga Reducing Horton Scaling relations Models Nutshell ### From Horton to Tokunaga [2] The PoCSverse Branching Networks II 18 of 85 Horton ⇔ Tokunaga Reducing Horton Scaling relations Fluctuations Models Nutshell ### From Horton to Tokunaga [2] Assume Horton's laws hold for number and length The PoCSverse Branching Networks II 18 of 85 Horton ⇔ Tokunaga Reducing Horton Scaling relations 1 ructuatio Models Nutshell ### From Horton to Tokunaga [2] Assume Horton's laws hold for number and length Start with picture showing an order ω stream and order $\omega-1$ generating and side streams. The PoCSverse Branching Networks II 18 of 85 Horton ⇔ Tokunaga Reducing Horton Scaling relations Tructuati Models Nutshell ### From Horton to Tokunaga [2] Assume Horton's laws hold for number and length Start with picture showing an order ω stream and order $\omega-1$ generating and side streams. Scale up by a factor of R_{ℓ} , orders increment to $\omega+1$ and ω . The PoCSverse Branching Networks II 18 of 85 Horton ⇔ Tokunaga Reducing Horton Scaling relations Models Nutshell ### From Horton to Tokunaga [2] Assume Horton's laws hold for number and length Start with picture showing an order ω stream and order $\omega-1$ generating and side streams. Scale up by a factor of R_{ℓ} , orders increment to $\omega + 1$ and ω . Maintain drainage density by adding new order $\omega-1$ streams The PoCSverse Branching Networks II 18 of 85 Horton ⇔ Tokunaga Reducing Horton Scaling relations Fluctuation Models Nutshell ...and in detail: Must retain same drainage density. The PoCSverse Branching Networks 19 of 85 Horton ⇔ Tokunaga Reducing Horton Scaling relations Fluctuations Models Nutshell #### ...and in detail: Must retain same drainage density. Add an extra $(R_{\ell}-1)$ first order streams for each original tributary. The PoCSverse Branching Networks 19 of 85 Horton ⇔ Tokunaga Reducing Horton Scaling relations Fluctuations Models Nutshell #### ...and in detail: Since by definition, an order $\omega+1$ stream segment has T_ω order 1 side streams, we have: The PoCSverse Branching Networks II 19 of 85 Horton ⇔ Tokunaga Reducing Horton Scaling relations scaling relations Models Nutshell #### ...and in detail: Since by definition, an order $\omega+1$ stream segment has T_ω order 1 side streams, we have: $$T_k = (R_\ell-1)\left(1+\sum_{i=1}^{k-1}T_i\right).$$ The PoCSverse Branching Networks II 19 of 85 Horton ⇔ Tokunaga Reducing Horton Scaling relations Models Nutshell #### ...and in detail: Must retain same drainage density. \mathbb{A} Add an extra $(R_{\ell}-1)$ first order streams for each original tributary. \Longrightarrow Since by definition, an order $\omega+1$ stream segment has T_{ω} order 1 side streams, we have: $$T_k = (R_\ell - 1) \left(1 + \sum_{i=1}^{k-1} T_i \right).$$ \clubsuit For large ω, Tokunaga's law is the solution—let's check ... The PoCSverse Branching Networks 19 of 85 Horton ⇔ Tokunaga Reducing Horton Scaling relations Models Nurshell ### Just checking: Substitute Tokunaga's law $T_i = T_1 R_T^{i-1} = T_1 R_\ell^{i-1}$ into $$T_k = (R_\ell-1)\left(1+\sum_{i=1}^{k-1}T_i\right)$$ The PoCSverse Branching Networks 20 of 85 Horton ⇔ Tokunaga Reducing Horton Scaling relations Fluctuations Models Nutshell ### Just checking: Substitute Tokunaga's law $T_i = T_1 R_T^{i-1} = T_1 R_\ell^{i-1}$ into $$T_k = (R_\ell - 1) \left(1 + \sum_{i=1}^{k-1} T_i \right)$$ $$T_k = (R_\ell - 1) \left(1 + \sum_{i=1}^{k-1} T_1 R_\ell^{i-1} \right)$$ The PoCSverse Branching
Networks 20 of 85 Horton ⇔ Tokunaga Reducing Horton Scaling relations Models Nurshell ### Just checking: Substitute Tokunaga's law $T_i = T_1 R_T^{i-1} = T_1 R_\ell^{i-1}$ into $$T_k = (R_\ell-1)\left(1+\sum_{i=1}^{k-1}T_i\right)$$ $$\begin{split} T_k &= (R_\ell - 1) \left(1 + \sum_{i=1}^{k-1} T_1 R_\ell^{i-1} \right) \\ &= (R_\ell - 1) \left(1 + T_1 \frac{R_\ell^{k-1} - 1}{R_\ell - 1} \right) \end{split}$$ The PoCSverse Branching Networks 20 of 85 Horton ⇔ Tokunaga Reducing Horton Scaling relations Models Nurshell ### Just checking: Substitute Tokunaga's law $T_i = T_1 R_T^{i-1} = T_1 R_\ell^{i-1}$ into $$T_k = (R_\ell-1)\left(1+\sum_{i=1}^{k-1}T_i\right)$$ $$\begin{split} T_k &= (R_\ell - 1) \left(1 + \sum_{i=1}^{k-1} T_1 R_\ell^{i-1} \right) \\ &= (R_\ell - 1) \left(1 + T_1 \frac{R_\ell^{k-1} - 1}{R_\ell - 1} \right) \\ &\simeq (R_\ell - 1) T_1 \frac{R_\ell^{k-1}}{R_\ell - 1} \end{split}$$ The PoCSverse Branching Networks 20 of 85 Horton ⇔ Tokunaga Reducing Horton Scaling relations Models Nurshell ### Just checking: Substitute Tokunaga's law $T_i = T_1 R_T^{i-1} = T_1 R_\ell^{i-1}$ into $$T_k = (R_\ell-1)\left(1+\sum_{i=1}^{k-1}T_i\right)$$ $$\begin{split} T_k &= (R_\ell - 1) \left(1 + \sum_{i=1}^{k-1} T_1 R_\ell^{\,i-1} \right) \\ &= (R_\ell - 1) \left(1 + T_1 \frac{R_\ell^{\,k-1} - 1}{R_\ell - 1} \right) \\ &\simeq (R_\ell - 1) T_1 \frac{R_\ell^{\,k-1}}{R_\ell - 1} = T_1 R_\ell^{k-1} \quad \text{...yep.} \end{split}$$ The PoCSverse Branching Networks 20 of 85 Horton ⇔ Tokunaga Reducing Horton Scaling relations Models Nurshell ### Horton's laws of area and number: In bottom plots, stream number graph has been flipped vertically. A Highly suggestive that $B \equiv B$ The PoCSverse Branching Networks II 21 of 85 Horton ⇔ Tokunaga #### Reducing Horton Scaling relations luctuations Models Nutshell ## Measuring Horton ratios is tricky: The PoCSverse Branching Networks 22 of 85 Horton ⇔ Tokunaga #### Reducing Horton Scaling relations Fluctuations Models Nutshell References How robust are our estimates of ratios? ## Measuring Horton ratios is tricky: The PoCSverse Branching Networks II 22 of 85 Horton ⇔ Tokunaga Reducing Horton Scaling relations Models Nutshell References A How robust are our estimates of ratios? Rule of thumb: discard data for two smallest and two largest orders. # Mississippi: | ω range | R_n | R_a | R_{ℓ} | R_s | R_a/R_n | |------------------|-------|-------|------------|-------|-----------| | [2, 3] | 5.27 | 5.26 | 2.48 | 2.30 | 1.00 | | [2, 5] | 4.86 | 4.96 | 2.42 | 2.31 | 1.02 | | [2, 7] | 4.77 | 4.88 | 2.40 | 2.31 | 1.02 | | [3, 4] | 4.72 | 4.91 | 2.41 | 2.34 | 1.04 | | [3, 6] | 4.70 | 4.83 | 2.40 | 2.35 | 1.03 | | [3, 8] | 4.60 | 4.79 | 2.38 | 2.34 | 1.04 | | [4, 6] | 4.69 | 4.81 | 2.40 | 2.36 | 1.02 | | [4, 8] | 4.57 | 4.77 | 2.38 | 2.34 | 1.05 | | [5, 7] | 4.68 | 4.83 | 2.36 | 2.29 | 1.03 | | [6, 7] | 4.63 | 4.76 | 2.30 | 2.16 | 1.03 | | [7, 8] | 4.16 | 4.67 | 2.41 | 2.56 | 1.12 | | mean μ | 4.69 | 4.85 | 2.40 | 2.33 | 1.04 | | std dev σ | 0.21 | 0.13 | 0.04 | 0.07 | 0.03 | | σ/μ | 0.045 | 0.027 | 0.015 | 0.031 | 0.024 | The PoCSverse Branching Networks II 23 of 85 $Horton \Leftrightarrow Tokunaga$ Reducing Horton Scaling relations Fluctuations Models Nutshell ### Amazon: | ω range | R_n | R_a | R_{ℓ} | R_s | R_a/R_n | |------------------|-------|-------|------------|-------|-----------| | [2, 3] | 4.78 | 4.71 | 2.47 | 2.08 | 0.99 | | [2, 5] | 4.55 | 4.58 | 2.32 | 2.12 | 1.01 | | [2, 7] | 4.42 | 4.53 | 2.24 | 2.10 | 1.02 | | [3, 5] | 4.45 | 4.52 | 2.26 | 2.14 | 1.01 | | [3, 7] | 4.35 | 4.49 | 2.20 | 2.10 | 1.03 | | [4, 6] | 4.38 | 4.54 | 2.22 | 2.18 | 1.03 | | [5, 6] | 4.38 | 4.62 | 2.22 | 2.21 | 1.06 | | [6, 7] | 4.08 | 4.27 | 2.05 | 1.83 | 1.05 | | mean μ | 4.42 | 4.53 | 2.25 | 2.10 | 1.02 | | std dev σ | 0.17 | 0.10 | 0.10 | 0.09 | 0.02 | | σ/μ | 0.038 | 0.023 | 0.045 | 0.042 | 0.019 | | | | | | | | The PoCSverse Branching Networks II 24 of 85 $Horton \Leftrightarrow Tokunaga$ Reducing Horton Scaling relations Fluctuations Models Nutshell ### Reducing Horton's laws: Rough first effort to show $R_n \equiv R_a$: The PoCSverse Branching Networks II 25 of 85 Horton ⇔ Tokunaga #### Reducing Horton Scaling relations Fluctuations Models Nutshell ### Rough first effort to show $R_n \equiv R_a$: $a_{\Omega} \propto$ sum of all stream segment lengths in a order Ω basin (assuming uniform drainage density) The PoCSverse Branching Networks II 25 of 85 Horton ⇔ Tokunaga #### Reducing Horton Scaling relations Fluctuations Models Nutshell ### Rough first effort to show $R_n \equiv R_a$: $a_{\Omega} \propto$ sum of all stream segment lengths in a order Ω basin (assuming uniform drainage density) 🚜 So: $$a_{\Omega} \simeq \sum_{\omega=1}^{\Omega} n_{\omega} \bar{s}_{\omega} / \rho_{\mathrm{dd}}$$ The PoCSverse Branching Networks II 25 of 85 Horton ⇔ Tokunaga #### Reducing Horton Scaling relations ructuation. Models Nutshell ### Rough first effort to show $R_n \equiv R_a$: $a_{\Omega} \propto$ sum of all stream segment lengths in a order Ω basin (assuming uniform drainage density) 🚜 So: $$a_{\Omega} \simeq \sum_{\omega=1}^{\Omega} n_{\omega} \bar{s}_{\omega} / \rho_{\mathrm{dd}}$$ $$\propto \sum_{\omega=1}^{\Omega}$$ The PoCSverse Branching Networks II 25 of 85 Horton ⇔ Tokunaga Reducing Horton Scaling relations Models Nutshell ### Rough first effort to show $R_n \equiv R_a$: $a_{\Omega} \propto$ sum of all stream segment lengths in a order Ω basin (assuming uniform drainage density) 🚜 So: $$a_{\Omega} \simeq \sum_{\omega=1}^{\Omega} n_{\omega} \bar{s}_{\omega} / \rho_{\mathrm{dd}}$$ $$\sum_{P} \sum_{\Omega=\omega}^{\Omega} \hat{s}_{\omega}$$ $$\propto \sum_{\omega=1}^{\Omega} \underbrace{R_n^{\Omega-\omega} \cdot \hat{1}}_{n_{\omega}}$$ The PoCSverse Branching Networks II 25 of 85 Horton ⇔ Tokunaga Reducing Horton Scaling relations Models Nutshell ### Rough first effort to show $R_n \equiv R_a$: $a_{\Omega} \propto$ sum of all stream segment lengths in a order Ω basin (assuming uniform drainage density) 🚜 So: $$a_\Omega \simeq \sum_{\omega=1}^\Omega n_\omega ar{s}_\omega/ ho_{\mathrm{dd}}$$ Ω $$\propto \sum_{\omega=1}^{\Omega} \underbrace{R_n^{\Omega-\omega} \cdot \stackrel{\boldsymbol{n}_{\Omega}}{\widehat{\boldsymbol{1}}}}_{\boldsymbol{n}_{\omega}} \underbrace{\bar{\boldsymbol{s}}_1 \cdot R_s^{\,\omega-1}}_{\bar{\boldsymbol{s}}_{\omega}}$$ The PoCSverse Branching Networks II 25 of 85 Horton ⇔ Tokunaga Reducing Horton Scaling relations Models Nutshell ### Rough first effort to show $R_n \equiv R_a$: $a_{\Omega} \propto$ sum of all stream segment lengths in a order Ω basin (assuming uniform drainage density) 🚜 So: $$\begin{split} a_{\Omega} &\simeq \sum_{\omega=1}^{\Omega} n_{\omega} \bar{s}_{\omega} / \rho_{\mathrm{dd}} \\ &\propto \sum_{\omega=1}^{\Omega} \underbrace{R_{n}^{\Omega-\omega} \cdot \hat{1}}_{n_{\omega}} \underbrace{\bar{s}_{1} \cdot R_{s}^{\omega-1}}_{\bar{s}_{\omega}} \\ &= \underbrace{R_{n}^{\Omega}}_{R_{s}} \bar{s}_{1} \sum_{\omega=1}^{\Omega} \left(\frac{R_{s}}{R_{n}}\right)^{\omega} \end{split}$$ The PoCSverse Branching Networks II 25 of 85 Horton ⇔ Tokunaga #### Reducing Horton Scaling relations ructuation Models Nutshell #### Continued ... $${\color{red}a_{\Omega} \propto \frac{R_n^{\Omega}}{R_s}\bar{s}_1 \sum_{\omega=1}^{\Omega} \left(\frac{R_s}{R_n}\right)^{\omega}}$$ The PoCSverse Branching Networks II 26 of 85 Horton ⇔ Tokunaga #### Reducing Horton Scaling relations Fluctuations Models Nutshell #### Continued ... $$\begin{split} & \frac{\mathbf{a}_{\Omega}}{\mathbf{a}_{\Omega}} \propto \frac{R_n^{\Omega}}{R_s} \bar{s}_1 \sum_{\omega=1}^{\Omega} \left(\frac{R_s}{R_n}\right)^{\omega} \\ & = \frac{R_n^{\Omega}}{R_s} \bar{s}_1 \frac{R_s}{R_n} \frac{1 - (R_s/R_n)^{\Omega}}{1 - (R_s/R_n)} \end{split}$$ The PoCSverse Branching Networks II 26 of 85 Horton ⇔ Tokunaga #### Reducing Horton Scaling relations Fluctuations Models Nutshell #### Continued ... $$\begin{split} & \frac{\mathbf{a}_{\Omega}}{\mathbf{a}_{\Omega}} \propto \frac{R_{n}^{\Omega}}{R_{s}} \bar{s}_{1} \sum_{\omega=1}^{\Omega} \left(\frac{R_{s}}{R_{n}}\right)^{\omega} \\ & = \frac{R_{n}^{\Omega}}{R_{s}} \bar{s}_{1} \frac{R_{s}}{R_{n}} \frac{1 - (R_{s}/R_{n})^{\Omega}}{1 - (R_{s}/R_{n})} \\ & \sim \frac{R_{n}^{\Omega-1}}{s_{1}} \frac{1}{1 - (R_{s}/R_{n})} \text{ as } \Omega \nearrow \end{split}$$ The PoCSverse Branching Networks II 26 of 85 Horton ⇔ Tokunaga #### Reducing Horton Scaling relations Fluctuations Models Nutshell #### Continued ... $$\begin{split} & \frac{a_{\Omega}}{R_{o}} \propto \frac{R_{n}^{\Omega}}{R_{s}} \bar{s}_{1} \sum_{\omega=1}^{\Omega} \left(\frac{R_{s}}{R_{n}}\right)^{\omega} \\ & = \frac{R_{n}^{\Omega}}{R_{s}} \bar{s}_{1} \frac{R_{s}}{R_{n}} \frac{1 - (R_{s}/R_{n})^{\Omega}}{1 - (R_{s}/R_{n})} \\ & \sim \frac{R_{n}^{\Omega-1}}{s_{1}} \bar{s}_{1} \frac{1}{1 - (R_{s}/R_{n})} \text{ as } \Omega \nearrow \end{split}$$ & So, a_{Ω} is growing like R_{n}^{Ω} and therefore: $$R_n \equiv R_a$$ The PoCSverse Branching Networks II 26 of 85 Horton ⇔ Tokunaga #### Reducing Horton Scaling relations riuctuation Models Nutshell Not quite: 🚵 ...But this only a rough argument as Horton's laws do not imply a strict hierarchy The PoCSverse Branching Networks 27 of 85 #### Reducing Horton Scaling relations Fluctuations Models Nutshell The PoCSverse Branching Networks II 27 of 85 Horton ⇔ Tokunaga #### Reducing Horton Scaling relations Fluctuations Models Nutshell References Not quite: ...But this only a rough argument as Horton's laws do not imply a strict hierarchy Need to account for sidebranching. The PoCSverse Branching Networks II 27 of 85 Horton ⇔ Tokunaga Reducing Horton Scaling relations Fluctuation Models Nutshell References Not quite: ...But this only a rough argument as Horton's laws do not imply a strict hierarchy Need to account for
sidebranching. Insert assignment question 🗹 #### Intriguing division of area: & Observe: Combined area of basins of order ω independent of ω . The PoCSverse Branching Networks 28 of 85 Horton ⇔ Tokunaga #### Reducing Horton Scaling relations Fluctuations Models Nutshell #### Intriguing division of area: Observe: Combined area of basins of order ω independent of ω . Not obvious: basins of low orders not necessarily contained in basis on higher orders. The PoCSverse Branching Networks II 28 of 85 Horton ⇔ Tokunaga #### Reducing Horton Scaling relations ructuation Models Nutshell #### Intriguing division of area: Not obvious: basins of low orders not necessarily contained in basis on higher orders. & Story: $$R_n \equiv R_a \Rightarrow n_\omega \bar{a}_\omega = \text{const}$$ The PoCSverse Branching Networks II 28 of 85 Horton ⇔ Tokunaga #### Reducing Horton Scaling relations Models Nurshell #### Intriguing division of area: - ε Observe: Combined area of basins of order ω independent of ω. - Not obvious: basins of low orders not necessarily contained in basis on higher orders. - & Story: $$R_n \equiv R_a \Rightarrow \boxed{n_\omega \bar{a}_\omega = \text{const}}$$ & Reason: $$n_\omega \propto (R_n)^{-\omega}$$ $$\bar{a}_\omega \propto (R_a)^\omega \propto n_\omega^{-1}$$ The PoCSverse Branching Networks II 28 of 85 Horton ⇔ Tokunaga #### Reducing Horton Scaling relations Models Nutshell ### Some examples: The PoCSverse Branching Networks II 29 of 85 Horton ⇔ Tokunaga Reducing Horton Scaling relations Fluctuations Models Nutshell #### Neural Reboot: Fwoompf The PoCSverse Branching Networks II 30 of 85 Horton ⇔ Tokunaga Reducing Horton Scaling relations Fluctuations Models Nutshell The story so far: The PoCSverse Branching Networks II 31 of 85 $Horton \Leftrightarrow Tokunaga$ Reducing Horton Scaling relations Fluctuations Models Nutshell #### The story so far: Natural branching networks are hierarchical, self-similar structures The PoCSverse Branching Networks 31 of 85 Horton ⇔ Tokunaga Reducing Horton Scaling relations Fluctuations Models Nutshell #### The story so far: Natural branching networks are hierarchical, self-similar structures A Hierarchy is mixed The PoCSverse Branching Networks II 31 of 85 Horton ⇔ Tokunaga Reducing Horton Scaling relations Fluctuations Models viodeis Nutshell #### The story so far: - Natural branching networks are hierarchical, self-similar structures - A Hierarchy is mixed - Tokunaga's law describes detailed architecture: $T_k = T_1 R_T^{k-1}$. The PoCSverse Branching Networks II 31 of 85 Horton ⇔ Tokunaga Reducing Horton Scaling relations Models Nutshell #### The story so far: - Natural branching networks are hierarchical, self-similar structures - A Hierarchy is mixed - Tokunaga's law describes detailed architecture: $T_k = T_1 R_T^{k-1}$. - We have connected Tokunaga's and Horton's laws The PoCSverse Branching Networks II 31 of 85 Horton ⇔ Tokunaga Reducing Horton Scaling relations Scaling relations Models Nutshell #### The story so far: - Natural branching networks are hierarchical, self-similar structures - A Hierarchy is mixed - Tokunaga's law describes detailed architecture: $T_k = T_1 R_T^{k-1}. \label{eq:Tokunaga}$ - & We have connected Tokunaga's and Horton's laws - \mathfrak{S} Only two Horton laws are independent $(R_n = R_a)$ The PoCSverse Branching Networks II 31 of 85 Horton ⇔ Tokunaga Reducing Horton Scaling relations Models ivioucis Nutshell #### The story so far: - Natural branching networks are hierarchical, self-similar structures - A Hierarchy is mixed - Tokunaga's law describes detailed architecture: $T_k = T_1 R_T^{k-1}$. - & We have connected Tokunaga's and Horton's laws - $\ensuremath{\mathfrak{S}}$ Only two Horton laws are independent $(R_n = R_a)$ - Only two parameters are independent: $(T_1, R_T) \Leftrightarrow (R_n, R_s)$ The PoCSverse Branching Networks II 31 of 85 Horton ⇔ Tokunaga Reducing Horton Scaling relations Models iviodels Nutshell A little further ... The PoCSverse Branching Networks II 32 of 85 Horton ⇔ Tokunaga Reducing Horton Scaling relations Fluctuations Models Nutshell #### A little further ... Ignore stream ordering for the moment The PoCSverse Branching Networks 32 of 85 Horton ⇔ Tokunaga Reducing Horton Scaling relations Fluctuations Models Nutshell #### A little further ... Ignore stream ordering for the moment Pick a random location on a branching network p. The PoCSverse Branching Networks 32 of 85 Horton ⇔ Tokunaga Reducing Horton Scaling relations Fluctuations Models Nutshell A little further ... Ignore stream ordering for the moment Pick a random location on a branching network p. length The PoCSverse Branching Networks 32. of 85 Reducing Horton Scaling relations Models Nurshell #### A little further ... $\ensuremath{\mathfrak{S}}$ Pick a random location on a branching network p. \Leftrightarrow Each point p is associated with a basin and a longest stream length \mathbb{Q} : What is probability that the p's drainage basin has area a? The PoCSverse Branching Networks II 32 of 85 Horton ⇔ Tokunaga Reducing Horton Scaling relations ----- Models Nutshell A little further ... $\ensuremath{\mathfrak{S}}$ Pick a random location on a branching network p. \Leftrightarrow Each point p is associated with a basin and a longest stream length $\ensuremath{\mathfrak{S}}$ Q: What is probability that the p's drainage basin has area a? Q: What is probability that the longest stream from p has length ℓ ? The PoCSverse Branching Networks II 32 of 85 Horton ⇔ Tokunaga Reducing Horton Scaling relations Models Nurshell #### A little further ... - A Ignore stream ordering for the moment - $\ensuremath{\mathfrak{S}}$ Pick a random location on a branching network p. - \Leftrightarrow Each point p is associated with a basin and a longest stream length - Q: What is probability that the p's drainage basin has area a? $P(a) \propto a^{-\tau}$ for large a The PoCSverse Branching Networks II 32 of 85 Horton ⇔ Tokunaga Reducing Horton Scaling relations ____ Models Nutshell #### A little further ... - A Ignore stream ordering for the moment - $\ensuremath{\mathfrak{S}}$ Pick a random location on a branching network p. - \Leftrightarrow Each point p is associated with a basin and a longest stream length - Q: What is probability that the p's drainage basin has area a? $P(a) \propto a^{-\tau}$ for large a - Q: What is probability that the longest stream from p has length ℓ ? $P(\ell) \propto \ell^{-\gamma}$ for large ℓ The PoCSverse Branching Networks II 32 of 85 Horton ⇔ Tokunaga Reducing Horton Scaling relations . Models Nutshell #### A little further ... - Ignore stream ordering for the moment - $\ensuremath{\mathfrak{S}}$ Pick a random location on a branching network p. - \Leftrightarrow Each point p is associated with a basin and a longest stream length - Q: What is probability that the p's drainage basin has area a? $P(a) \propto a^{-\tau}$ for large a - Q: What is probability that the longest stream from p has length ℓ ? $P(\ell) \propto \ell^{-\gamma}$ for large ℓ - Roughly observed: $1.3 \lesssim \tau \lesssim 1.5$ and $1.7 \lesssim \gamma \lesssim 2.0$ The PoCSverse Branching Networks II 32 of 85 Horton ⇔ Tokunaga Reducing Horton Scaling relations Models Nutshell Probability distributions with power-law decays The PoCSverse Branching Networks II 33 of 85 Horton ⇔ Tokunaga Reducing Horton Scaling relations Fluctuations Models Nutshell #### Probability distributions with power-law decays We see them everywhere: The PoCSverse Branching Networks 33 of 85 Horton ⇔ Tokunaga Reducing Horton Scaling relations Fluctuations Models Nutshell #### Probability distributions with power-law decays We see them everywhere: Earthquake magnitudes (Gutenberg-Richter law) The PoCSverse Branching Networks 33 of 85 Reducing Horton Scaling relations Fluctuations Models Nutshell #### Probability distributions with power-law decays We see them everywhere: - Earthquake magnitudes (Gutenberg-Richter law) - City sizes (Zipf's law) The PoCSverse Branching Networks 33 of 85 Reducing Horton Scaling relations Fluctuations Models Nutshell #### Probability distributions with power-law decays We see them everywhere: - Earthquake magnitudes (Gutenberg-Richter law) - City sizes (Zipf's law) - Word frequency (Zipf's law) [22] The PoCSverse Branching Networks 33 of 85 Reducing Horton Scaling relations Models Nurshell #### Probability distributions with power-law decays - Earthquake magnitudes (Gutenberg-Richter law) - City sizes (Zipf's law) - Word frequency (Zipf's law) [22] - Wealth (maybe not—at least heavy tailed) The PoCSverse Branching Networks 33 of 85 Reducing Horton Scaling relations Models Nutshell #### Probability distributions with power-law decays We see them everywhere: - Earthquake magnitudes (Gutenberg-Richter law) - City sizes (Zipf's law) - Word frequency (Zipf's law) [22] - Wealth (maybe not—at least heavy tailed) - Statistical mechanics (phase transitions) [5] The PoCSverse Branching Networks 33 of 85 Reducing Horton Scaling relations Models Nutshell #### Probability distributions with power-law decays We see them everywhere: - Earthquake magnitudes (Gutenberg-Richter law) - City sizes (Zipf's law) - Word frequency (Zipf's law) [22] - Wealth (maybe not—at least heavy tailed) - Statistical mechanics (phase transitions) [5] The PoCSverse Branching Networks 33 of 85 Reducing Horton Scaling relations Models Nutshell #### Probability distributions with power-law decays - & We see them everywhere: - Farthquake magnitudes (Gutenberg-Richter law) - City sizes (Zipf's law) - Word frequency (Zipf's law) [22] - Wealth (maybe not—at least heavy tailed) - Statistical mechanics (phase transitions) [5] - A big part of the story of complex systems - Arise from mechanisms: growth, randomness, optimization, ... The PoCSverse Branching Networks II 33 of 85 Horton ⇔ Tokunaga Reducing Horton Scaling relations calling
relations Models Nutshell References #### Probability distributions with power-law decays - & We see them everywhere: - Farthquake magnitudes (Gutenberg-Richter law) - City sizes (Zipf's law) - Word frequency (Zipf's law) [22] - Wealth (maybe not—at least heavy tailed) - Statistical mechanics (phase transitions) [5] - A big part of the story of complex systems - Arise from mechanisms: growth, randomness, optimization, - . - Our task is always to illuminate the mechanism ... The PoCSverse Branching Networks II 33 of 85 Horton ⇔ Tokunaga Reducing Horton Scaling relations scanng relation Models Nutshell References Kererences Connecting exponents The PoCSverse Branching Networks II 34 of 85 34 01 85 $Horton \Leftrightarrow Tokunaga$ Reducing Horton Scaling relations Fluctuations Models Nutshell #### Connecting exponents We have the detailed picture of branching networks (Tokunaga and Horton) The PoCSverse Branching Networks 34 of 85 Horton ⇔ Tokunaga Reducing Horton Scaling relations Fluctuations Models Nutshell #### Connecting exponents $\ \,$ Plan: Derive $P(a) \propto a^{-\tau}$ and $P(\ell) \propto \ell^{-\gamma}$ starting with Tokunaga/Horton story $^{[17,\,1,\,2]}$ The PoCSverse Branching Networks II 34 of 85 Horton ⇔ Tokunaga Reducing Horton Scaling relations Models Nutshell #### Connecting exponents - We have the detailed picture of branching networks (Tokunaga and Horton) - $\ \,$ Plan: Derive $P(a) \propto a^{-\tau}$ and $P(\ell) \propto \ell^{-\gamma}$ starting with Tokunaga/Horton story $^{[17,\,1,\,2]}$ - \clubsuit Let's work on $P(\ell)$... The PoCSverse Branching Networks II 34 of 85 Horton ⇔ Tokunaga Reducing Horton Scaling relations scanng relations Models Nutshell #### Connecting exponents - We have the detailed picture of branching networks (Tokunaga and Horton) - $\ref{Plan: Derive } P(a) \propto a^{-\tau} \ { m and} \ P(\ell) \propto \ell^{-\gamma} \ { m starting with Tokunaga/Horton story}^{[17,\,1,\,2]}$ - \clubsuit Let's work on $P(\ell)$... - \Leftrightarrow Our first fudge: assume Horton's laws hold throughout a basin of order Ω . The PoCSverse Branching Networks II 34 of 85 Horton ⇔ Tokunaga Reducing Horton Scaling relations Models Nutshell #### Connecting exponents - We have the detailed picture of branching networks (Tokunaga and Horton) - $\ref{Plan: Derive } P(a) \propto a^{- au}$ and $P(\ell) \propto \ell^{-\gamma}$ starting with Tokunaga/Horton story $^{[17,\,1,\,2]}$ - \clubsuit Let's work on $P(\ell)$... - Our first fudge: assume Horton's laws hold throughout a basin of order Ω . - (We know they deviate from strict laws for low ω and high ω but not too much.) The PoCSverse Branching Networks II 34 of 85 Horton ⇔ Tokunaga Reducing Horton Scaling relations ---- Models Nutshell #### Connecting exponents - We have the detailed picture of branching networks (Tokunaga and Horton) - $\ref{Plan: Derive } P(a) \propto a^{- au}$ and $P(\ell) \propto \ell^{-\gamma}$ starting with Tokunaga/Horton story $^{[17,\,1,\,2]}$ - \clubsuit Let's work on $P(\ell)$... - Our first fudge: assume Horton's laws hold throughout a basin of order Ω . - (We know they deviate from strict laws for low ω and high ω but not too much.) - Next: place stick between teeth. The PoCSverse Branching Networks II 34 of 85 Horton ⇔ Tokunaga Reducing Horton Scaling relations Models Models Nutshell #### Connecting exponents - We have the detailed picture of branching networks (Tokunaga and Horton) - $\ref{Plan: Derive } P(a) \propto a^{-\tau} \ { m and} \ P(\ell) \propto \ell^{-\gamma} \ { m starting with Tokunaga/Horton story}^{[17,\,1,\,2]}$ - \clubsuit Let's work on $P(\ell)$... - & Our first fudge: assume Horton's laws hold throughout a basin of order Ω . - (We know they deviate from strict laws for low ω and high ω but not too much.) - Next: place stick between teeth. Bite stick. The PoCSverse Branching Networks II 34 of 85 Horton ⇔ Tokunaga Reducing Horton Scaling relations Models Nutshell #### Connecting exponents - We have the detailed picture of branching networks (Tokunaga and Horton) - $\ref{Plan: Derive } P(a) \propto a^{- au} \ { m and} \ P(\ell) \propto \ell^{-\gamma} \ { m starting with Tokunaga/Horton story}^{[17,\,1,\,2]}$ - \clubsuit Let's work on $P(\ell)$... - Our first fudge: assume Horton's laws hold throughout a basin of order Ω . - (We know they deviate from strict laws for low ω and high ω but not too much.) - Next: place stick between teeth. Bite stick. Proceed. The PoCSverse Branching Networks II 34 of 85 $Horton \Leftrightarrow Tokunaga$ Reducing Horton Scaling relations Models Nutshell Finding γ : The PoCSverse Branching Networks II 35 of 85 Horton ⇔ Tokunaga Reducing Horton Scaling relations Fluctuations Models Nutshell #### Finding γ : Often useful to work with cumulative distributions, especially when dealing with power-law distributions. The PoCSverse Branching Networks 35 of 85 Reducing Horton Scaling relations Fluctuations Models Nutshell #### Finding γ : The complementary cumulative distribution turns out to be most useful: $$P_{>}(\ell_*) = P(\ell > \ell_*) = \int_{\ell = \ell_*}^{\ell_{\mathrm{max}}} P(\ell) \mathrm{d}\ell$$ The PoCSverse Branching Networks II 35 of 85 Horton ⇔ Tokunaga Reducing Horton Scaling relations Scaling relations Models Nutshell #### Finding γ : Often useful to work with <u>cumulative distributions</u>, especially when dealing with power-law distributions. The complementary cumulative distribution turns out to be most useful: $$P_{>}(\ell_*) = P(\ell > \ell_*) = \int_{\ell=\ell_*}^{\ell_{\mathrm{max}}} P(\ell) \mathrm{d}\ell$$ $$P_>(\ell_*) = 1 - P(\ell < \ell_*)$$ The PoCSverse Branching Networks II 35 of 85 $Horton \Leftrightarrow Tokunaga$ Reducing Horton Scaling relations Models Nutshell #### Finding γ : Often useful to work with <u>cumulative distributions</u>, especially when dealing with power-law distributions. The complementary cumulative distribution turns out to be most useful: $$P_{>}(\ell_*) = P(\ell > \ell_*) = \int_{\ell=\ell_*}^{\ell_{\mathrm{max}}} P(\ell) \mathrm{d}\ell$$ $$P_>(\ell_*) = 1 - P(\ell < \ell_*)$$ Also known as the exceedance probability. The PoCSverse Branching Networks II 35 of 85 $Horton \Leftrightarrow Tokunaga$ Reducing Horton Scaling relations Scaling relations Models Nurshell ### Finding γ : \clubsuit The connection between P(x) and $P_{>}(x)$ when P(x) has a power law tail is simple: The PoCSverse Branching Networks 36 of 85 Horton ⇔ Tokunaga Reducing Horton Scaling relations Fluctuations Models Nutshell ### Finding γ : The connection between P(x) and $P_{>}(x)$ when P(x) has a power law tail is simple: $\mbox{\ensuremath{\&}}\mbox{\ensuremath{B}}$ Given $P(\ell) \sim \ell^{-\gamma}$ large ℓ then for large enough ℓ_* $$P_{>}(\ell_*) = \int_{\ell=\ell_*}^{\ell_{\rm max}} P(\ell) \, \mathrm{d}\ell$$ The PoCSverse Branching Networks II 36 of 85 Horton ⇔ Tokunaga Reducing Horton Scaling relations Fluctuations Models Nutshell ### Finding γ : The connection between P(x) and $P_{>}(x)$ when P(x) has a power law tail is simple: $\mbox{\ensuremath{\&}}\mbox{\ensuremath{B}}$ Given $P(\ell) \sim \ell^{-\gamma}$ large ℓ then for large enough ℓ_* $$\begin{split} P_>(\ell_*) &= \int_{\ell=\ell_*}^{\ell_{\rm max}} P(\ell) \, \mathrm{d}\ell \\ &\sim \int_{\ell=\ell_*}^{\ell_{\rm max}} \frac{\ell^{-\gamma}}{\ell} \mathrm{d}\ell \end{split}$$ The PoCSverse Branching Networks II 36 of 85 36 01 83 Reducing Horton Scaling relations ·luctuatio Models Nutshell ### Finding γ : The connection between P(x) and $P_{>}(x)$ when P(x) has a power law tail is simple: $\mbox{\ensuremath{\&}}\mbox{\ensuremath{B}}$ Given $P(\ell) \sim \ell^{-\gamma}$ large ℓ then for large enough ℓ_* $$\begin{split} P_{>}(\ell_*) &= \int_{\ell=\ell_*}^{\ell_{\text{max}}} P(\ell) \, \mathrm{d}\ell \\ &\sim \int_{\ell=\ell_*}^{\ell_{\text{max}}} \frac{\ell^{-\gamma}}{\ell} \mathrm{d}\ell \\ &= \frac{\ell^{-(\gamma-1)}}{-(\gamma-1)} \bigg|_{\ell=\ell_*}^{\ell_{\text{max}}} \end{split}$$ The PoCSverse Branching Networks II 36 of 85 Horton ⇔ Tokunaga Reducing Horton Scaling relations Models Nutshell ### Finding γ : The connection between P(x) and $P_{>}(x)$ when P(x) has a power law tail is simple: $\mbox{\ensuremath{\&}}\mbox{\ensuremath{B}}$ Given $P(\ell) \sim \ell^{-\gamma}$ large ℓ then for large enough ℓ_* $$\begin{split} P_{>}(\ell_*) &= \int_{\ell=\ell_*}^{\ell_{\text{max}}} P(\ell) \, \mathrm{d}\ell \\ &\sim \int_{\ell=\ell_*}^{\ell_{\text{max}}} \frac{\ell^{-\gamma} \, \mathrm{d}\ell}{\ell} \\ &= \frac{\ell^{-(\gamma-1)}}{-(\gamma-1)} \bigg|_{\ell=\ell_*}^{\ell_{\text{max}}} \\ &\propto \ell_*^{-(\gamma-1)} \quad \text{for } \ell_{\text{max}} \gg \ell_* \end{split}$$ The PoCSverse Branching Networks II 36 of 85 Horton ⇔ Tokunaga Reducing Horton Scaling relations Models Nutshell #### Finding γ : Aim: determine probability of randomly choosing a point on a network with main stream length $> \ell_*$ The PoCSverse Branching Networks 37 of 85 Horton ⇔ Tokunaga Reducing Horton Scaling relations Fluctuations Models Nutshell #### Finding γ : Aim: determine probability of randomly choosing a point on a network with main stream length $> \ell_*$ \clubsuit Assume some spatial sampling resolution Δ The PoCSverse Branching Networks 37 of 85 Reducing Horton Scaling relations Fluctuations Models Nutshell #### Finding γ : Aim: determine probability of randomly choosing a point on a network with main stream length $> \ell_*$ $\red {\Bbb R}$ Assume some spatial sampling resolution Δ & Landscape is broken up into grid of $\Delta \times \Delta$ sites The PoCSverse Branching Networks II 37 of 85 Horton ⇔ Tokunaga Reducing Horton Scaling relations Scaling relations Models WIOUCIS Nutshell #### Finding γ : Aim: determine
probability of randomly choosing a point on a network with main stream length $> \ell_*$ \ref{Assume} Assume some spatial sampling resolution Δ $\red {\Bbb L}$ Landscape is broken up into grid of $\Delta imes \Delta$ sites \red{lambda} Approximate $P_{>}(\ell_*)$ as $$P_>(\ell_*) = \frac{N_>(\ell_*;\Delta)}{N_>(0;\Delta)}.$$ where $N_>(\ell_*;\Delta)$ is the number of sites with main stream length $>\ell_*.$ The PoCSverse Branching Networks II 37 of 85 Horton ⇔ Tokunaga Reducing Horton Scaling relations Models WIOUCI Nutshell #### Finding γ : $\red {\Bbb S}$ Assume some spatial sampling resolution Δ \ref{A} Landscape is broken up into grid of $\Delta imes \Delta$ sites $\red{solution}$ Approximate $P_{>}(\ell_*)$ as $$P_>(\ell_*) = \frac{N_>(\ell_*;\Delta)}{N_>(0;\Delta)}.$$ where $N_>(\ell_*;\Delta)$ is the number of sites with main stream length $>\ell_*$. $\mbox{\&}$ Use Horton's law of stream segments: $\bar{s}_{\omega}/\bar{s}_{\omega-1}=R_s$... The PoCSverse Branching Networks II 37 of 85 Horton ⇔ Tokunaga Reducing Horton Scaling relations Scaling relations Models Nurshell ### Finding γ : The PoCSverse Branching Networks II 38 of 85 Horton ⇔ Tokunaga Reducing Horton Scaling relations Fluctuations Models Nutshell #### Finding γ : \mathfrak{S} Set $\ell_* = \bar{\ell}_{\omega}$ for some $1 \ll \omega \ll \Omega$. $$P_{>}(\bar{\ell}_{\omega}) = \frac{N_{>}(\bar{\ell}_{\omega}; \Delta)}{N_{>}(0; \Delta)}$$ The PoCSverse Branching Networks 38 of 85 Horton ⇔ Tokunaga Reducing Horton Scaling relations Fluctuations Models Nutshell #### Finding γ : \mathfrak{S} Set $\ell_* = \bar{\ell}_\omega$, for some $1 \ll \omega \ll \Omega$. $$P_{>}(\bar{\ell}_{\omega}) = \frac{N_{>}(\bar{\ell}_{\omega}; \Delta)}{N_{>}(0; \Delta)} \simeq \frac{\sum_{\omega' = \omega + 1}^{\Omega} n_{\omega'} \bar{s}_{\omega'} / \Delta}{\sum_{\omega' = 1}^{\Omega} n_{\omega'} \bar{s}_{\omega'} / \Delta}$$ The PoCSverse Branching Networks 38 of 85 Reducing Horton Scaling relations Fluctuations Models Nurshell #### Finding γ : \mathfrak{S} Set $\ell_* = \bar{\ell}_\omega$, for some $1 \ll \omega \ll \Omega$. $$P_{>}(\bar{\ell}_{\omega}) = \frac{N_{>}(\bar{\ell}_{\omega}; \Delta)}{N_{>}(0; \Delta)} \simeq \frac{\sum_{\omega' = \omega + 1}^{\Omega} n_{\omega'} \bar{s}_{\omega'} / \cancel{\mathcal{K}}}{\sum_{\omega' = 1}^{\Omega} n_{\omega'} \bar{s}_{\omega'} / \cancel{\mathcal{K}}}$$ The PoCSverse Branching Networks 38 of 85 Horton ⇔ Tokunaga Reducing Horton Scaling relations Fluctuations Models Nurshell #### Finding γ : \mathfrak{S} Set $\ell_* = \overline{\ell}_\omega$ for some $1 \ll \omega \ll \Omega$. $$P_{>}(\bar{\ell}_{\omega}) = \frac{N_{>}(\bar{\ell}_{\omega}; \Delta)}{N_{>}(0; \Delta)} \simeq \frac{\sum_{\omega' = \omega + 1}^{\Omega} n_{\omega'} \bar{s}_{\omega'} / \cancel{\mathcal{K}}}{\sum_{\omega' = 1}^{\Omega} n_{\omega'} \bar{s}_{\omega'} / \cancel{\mathcal{K}}}$$ \triangle Δ 's cancel \bowtie Denominator is $a_{\Omega} \rho_{dd}$, a constant. The PoCSverse Branching Networks 38 of 85 Reducing Horton Scaling relations Models Nurshell #### Finding γ : \mathfrak{S} Set $\ell_* = \bar{\ell}_{\omega}$ for some $1 \ll \omega \ll \Omega$. $$P_{>}(\bar{\ell}_{\omega}) = \frac{N_{>}(\bar{\ell}_{\omega}; \Delta)}{N_{>}(0; \Delta)} \simeq \frac{\sum_{\omega' = \omega + 1}^{\Omega} n_{\omega'} \bar{s}_{\omega'} / \cancel{\measuredangle}}{\sum_{\omega' = 1}^{\Omega} n_{\omega'} \bar{s}_{\omega'} / \cancel{\measuredangle}}$$ 80 ... $$P_{>}(\bar{\ell}_{\omega}) \propto \sum_{\omega'=\omega+1}^{\Omega} n_{\omega'} \bar{s}_{\omega'}$$ The PoCSverse Branching Networks 38 of 85 Reducing Horton Scaling relations Models Nurshell #### Finding γ : \mathfrak{S} Set $\ell_* = \overline{\ell}_\omega$ for some $1 \ll \omega \ll \Omega$. $$P_{>}(\bar{\ell}_{\omega}) = \frac{N_{>}(\bar{\ell}_{\omega}; \Delta)}{N_{>}(0; \Delta)} \simeq \frac{\sum_{\omega' = \omega + 1}^{\Omega} n_{\omega'} \bar{s}_{\omega'} / \cancel{\measuredangle}}{\sum_{\omega' = 1}^{\Omega} n_{\omega'} \bar{s}_{\omega'} / \cancel{\measuredangle}}$$ $\begin{cases} \& \& \end{cases}$ Denominator is $a_{\Omega} \rho_{\rm dd}$, a constant. ♣ So ... $$P_{>}(\bar{\ell}_{\omega}) \propto \sum_{\omega'=\omega+1}^{\Omega} n_{\omega'} \bar{s}_{\omega'} \simeq \sum_{\omega'=\omega+1}^{\Omega}$$ The PoCSverse Branching Networks 38 of 85 Reducing Horton Scaling relations Models Nurshell #### Finding γ : \mathfrak{S} Set $\ell_* = \overline{\ell}_\omega$ for some $1 \ll \omega \ll \Omega$. $$P_{>}(\bar{\ell}_{\omega}) = \frac{N_{>}(\bar{\ell}_{\omega}; \Delta)}{N_{>}(0; \Delta)} \simeq \frac{\sum_{\omega' = \omega + 1}^{\Omega} n_{\omega'} \bar{s}_{\omega'} / \cancel{\Delta}}{\sum_{\omega' = 1}^{\Omega} n_{\omega'} \bar{s}_{\omega'} / \cancel{\Delta}}$$ \bowtie Denominator is $a_{\Omega} \rho_{dd}$, a constant. So ...using Horton's laws ... $$P_{>}(\bar{\ell}_{\omega}) \propto \sum_{\omega'=\omega+1}^{\Omega} n_{\omega'} \bar{s}_{\omega'} \simeq \sum_{\omega'=\omega+1}^{\Omega} \frac{(1 \cdot R_n^{\Omega-\omega'})}{}$$ The PoCSverse Branching Networks 38 of 85 Reducing Horton Scaling relations Models Nurshell #### Finding γ : \mathfrak{S} Set $\ell_* = \overline{\ell}_\omega$ for some $1 \ll \omega \ll \Omega$. $$P_{>}(\bar{\ell}_{\omega}) = \frac{N_{>}(\bar{\ell}_{\omega}; \Delta)}{N_{>}(0; \Delta)} \simeq \frac{\sum_{\omega' = \omega+1}^{\Omega} n_{\omega'} \bar{s}_{\omega'} / \cancel{\Delta}}{\sum_{\omega'=1}^{\Omega} n_{\omega'} \bar{s}_{\omega'} / \cancel{\Delta}}$$ \triangle Δ 's cancel \bowtie Denominator is $a_{\Omega} \rho_{dd}$, a constant. So ...using Horton's laws ... $$P_{>}(\bar{\ell}_{\omega}) \propto \sum_{\omega'=\omega+1}^{\Omega} n_{\omega'} \bar{s}_{\omega'} \simeq \sum_{\omega'=\omega+1}^{\Omega} (1 \cdot R_n^{\Omega-\omega'}) (\bar{s}_1 \cdot R_s^{\omega'-1})$$ The PoCSverse Branching Networks 38 of 85 Reducing Horton Scaling relations Models Nurshell #### Finding γ : We are here: $$P_{>}(\bar{\ell}_{\omega}) \propto \sum_{\omega'=\omega+1}^{\Omega} (1 \cdot R_n^{\Omega-\omega'}) (\bar{s}_1 \cdot R_s^{\omega'-1})$$ The PoCSverse Branching Networks II 39 of 85 Horton ⇔ Tokunaga Reducing Horton Scaling relations Fluctuations Models Nutshell #### Finding γ : We are here: $$P_{>}(\bar{\ell}_{\omega}) \propto \sum_{\omega'=\omega+1}^{\Omega} (1 \cdot R_n^{\Omega-\omega'}) (\bar{s}_1 \cdot R_s^{\omega'-1})$$ Cleaning up irrelevant constants: $$P_{>}(\bar{\ell}_{\omega}) \propto \sum_{\omega'=\omega+1}^{\Omega} \left(\frac{R_s}{R_n}\right)^{\omega'}$$ The PoCSverse Branching Networks 39 of 85 Reducing Horton Scaling relations Fluctuations Models Nurshell #### Finding γ : We are here: $$P_{>}(\bar{\ell}_{\omega}) \propto \sum_{\omega'=\omega+1}^{\Omega} (1 \cdot R_n^{\Omega-\omega'}) (\bar{s}_1 \cdot R_s^{\omega'-1})$$ & Cleaning up irrelevant constants: $$P_{>}(\bar{\ell}_{\omega}) \propto \sum_{\omega'=\omega+1}^{\Omega} \left(\frac{R_s}{R_n}\right)^{\omega'}$$ $\ensuremath{\&}$ Change summation order by substituting $\omega'' = \Omega - \omega'$. The PoCSverse Branching Networks II 39 of 85 Horton ⇔ Tokunaga Reducing Horton Scaling relations Models Nutshell #### Finding γ : We are here: $$P_{>}(\bar{\ell}_{\omega}) \propto \sum_{\omega'=\omega+1}^{\Omega} (1 \cdot R_n^{\Omega-\omega'}) (\bar{s}_1 \cdot R_s^{\omega'-1})$$ & Cleaning up irrelevant constants: $$P_{>}(\bar{\ell}_{\omega}) \propto \sum_{\omega'=\omega+1}^{\Omega} \left(\frac{R_s}{R_n}\right)^{\omega'}$$ The PoCSverse Branching Networks II 39 of 85 Horton ⇔ Tokunaga Reducing Horton Scaling relations Models Nutshell #### Finding γ : We are here: $$P_{>}(\bar{\ell}_{\omega}) \propto \sum_{\omega'=\omega+1}^{\Omega} (1 \cdot R_n^{\Omega-\omega'}) (\bar{s}_1 \cdot R_s^{\omega'-1})$$ & Cleaning up irrelevant constants: $$P_{>}(\bar{\ell}_{\omega}) \propto \sum_{\omega'=\omega+1}^{\Omega} \left(\frac{R_s}{R_n}\right)^{\omega'}$$ The PoCSverse Branching Networks II 39 of 85 Horton ⇔ Tokunaga Reducing Horton Scaling relations Models Nutshell #### Finding γ : $$P_{>}(\bar{\ell}_{\omega}) \propto \sum_{\omega''=0}^{\Omega-\omega-1} \left(\frac{R_s}{R_n}\right)^{\Omega-\omega''}$$ The PoCSverse Branching Networks II 40 of 85 $Horton \Leftrightarrow Tokunaga$ Reducing Horton Scaling relations Fluctuations Models Nutshell #### Finding γ : $$P_{>}(\bar{\ell}_{\omega}) \propto \sum_{\omega''=0}^{\Omega-\omega-1} \left(\frac{R_s}{R_n}\right)^{\Omega-\omega''} \, \propto \sum_{\omega''=0}^{\Omega-\omega-1} \left(\frac{R_n}{R_s}\right)^{\omega''}$$ The PoCSverse Branching Networks II 40 of 85 Horton ⇔ Tokunaga Reducing Horton Scaling relations Fluctuations Models Nutshell #### Finding γ : $$P_{>}(\bar{\ell}_{\omega}) \propto \sum_{\omega''=0}^{\Omega-\omega-1} \left(\frac{R_s}{R_n}\right)^{\Omega-\omega''} \, \propto \sum_{\omega''=0}^{\Omega-\omega-1} \left(\frac{R_n}{R_s}\right)^{\omega''}$$ $\red {\mathbb S}$ Since $R_n > R_s$ and $1 \ll \omega \ll \Omega$, The PoCSverse Branching Networks II 40 of 85 Horton ⇔ Tokunaga Reducing Horton Scaling relations Models Nutshell #### Finding γ : $$P_{>}(\bar{\ell}_{\omega}) \propto \sum_{\omega''=0}^{\Omega-\omega-1} \left(\frac{R_s}{R_n}\right)^{\Omega-\omega''} \propto \sum_{\omega''=0}^{\Omega-\omega-1} \left(\frac{R_n}{R_s}\right)^{\omega''}$$ $\red since R_n > R_s \text{ and } 1 \ll \omega \ll \Omega,$ $$P_{>}(\bar{\ell}_{\omega}) \propto \left(\frac{R_n}{R_s}\right)^{\Omega-\omega}$$ again using $$\sum_{i=0}^{n-1} a^i = (a^n - 1)/(a-1)$$ The PoCSverse Branching Networks II 40 of 85 Horton ⇔ Tokunaga Reducing Horton Scaling relations Models Nutshell #### Finding γ : $$P_{>}(\bar{\ell}_{\omega}) \propto \sum_{\omega''=0}^{\Omega-\omega-1} \left(\frac{R_s}{R_n}\right)^{\Omega-\omega''} \propto \sum_{\omega''=0}^{\Omega-\omega-1} \left(\frac{R_n}{R_s}\right)^{\omega''}$$
$$P_{>}(\bar{\ell}_{\omega}) \propto \left(\frac{R_n}{R_s}\right)^{\Omega-\omega} \propto \left(\frac{R_n}{R_s}\right)^{-\omega}$$ again using $$\sum_{i=0}^{n-1} a^i = (a^n - 1)/(a-1)$$ The PoCSverse Branching Networks II 40 of 85 Horton ⇔ Tokunaga Reducing Horton Scaling relations Models Nutshell #### Finding γ : Nearly there: $$P_{>}(\bar{\ell}_{\omega}) \propto \left(\frac{R_n}{R_s}\right)^{-\omega}$$ The PoCSverse Branching Networks 41 of 85 Horton ⇔ Tokunaga Reducing Horton Scaling relations Fluctuations Models Nutshell #### Finding γ : Nearly there: $$P_{>}(\bar{\ell}_{\omega}) \propto \left(\frac{R_n}{R_s}\right)^{-\omega} = e^{-\omega \ln(R_n/R_s)}$$ The PoCSverse Branching Networks 41 of 85 Horton ⇔ Tokunaga Reducing Horton Scaling relations Fluctuations Models Nutshell #### Finding γ : $$P_{>}(\bar{\ell}_{\omega}) \propto \left(\frac{R_n}{R_s}\right)^{-\omega} = e^{-\omega \ln(R_n/R_s)}$$ \red Need to express right hand side in terms of $\bar{\ell}_{\omega}$. The PoCSverse Branching Networks II 41 of 85 Horton ⇔ Tokunaga Reducing Horton Scaling relations Fluctuations Models Nurshell #### Finding γ : $$P_{>}(\bar{\ell}_{\omega}) \propto \left(\frac{R_n}{R_s}\right)^{-\omega} = e^{-\omega \ln(R_n/R_s)}$$ - \ref{Need} Need to express right hand side in terms of $\bar{\ell}_{\omega}$. - $\red Recall that ar\ell_\omega \simeq ar\ell_1 R_\ell^{\,\omega-1}.$ The PoCSverse Branching Networks II 41 of 85 Horton ⇔ Tokunaga Reducing Horton Scaling relations Fluctuations Models VIOUCIS Nutshell #### Finding γ : $$P_{>}(\bar{\ell}_{\omega}) \propto \left(\frac{R_n}{R_s}\right)^{-\omega} = e^{-\omega \ln(R_n/R_s)}$$ \red Need to express right hand side in terms of $\bar{\ell}_{\omega}$. \red{abs} Recall that $\bar{\ell}_{\omega} \simeq \bar{\ell}_1 R_{\ell}^{\omega-1}$. 8 $$\bar{\ell}_\omega \propto R_\ell^{\,\omega} = R_s^{\,\omega} = e^{\,\omega {\rm ln} R_s}$$ The PoCSverse Branching Networks II 41 of 85 Horton ⇔ Tokunaga Reducing Horton Scaling relations Fluctuations Models Nutshell ### Finding γ : A Therefore: $$P_>(\bar{\ell}_\omega) \propto e^{-\omega \ln(R_n/R_s)}$$ The PoCSverse Branching Networks 42 of 85 Horton ⇔ Tokunaga Reducing Horton Scaling relations Fluctuations Models Nutshell ### Finding γ : Therefore: $$P_>(\bar{\ell}_\omega) \propto e^{-\omega \ln(R_n/R_s)} = \left(\underline{e}^{\,\omega \ln R_s} \right)^{-\ln(R_n/R_s)/\ln(R_s)}$$ The PoCSverse Branching Networks 42 of 85 Horton ⇔ Tokunaga Reducing Horton Scaling relations Fluctuations Models Nutshell ### Finding γ : $$P_>(\bar{\ell}_\omega) \propto e^{-\omega \ln(R_n/R_s)} = \left(\underline{e}^{\,\omega \ln R_s} \right)^{-\ln(R_n/R_s)/\ln(R_s)}$$ $$\propto ar{\ell}_{\omega}^{-\ln(R_n/R_s)/\ln R_s}$$ The PoCSverse Branching Networks 42 of 85 Reducing Horton Scaling relations Fluctuations Models Nutshell #### Finding γ : $$P_>(\bar{\ell}_\omega) \propto e^{-\omega \ln(R_n/R_s)} = \left(e^{\omega \ln R_s}\right)^{-\ln(R_n/R_s)/\ln(R_s)}$$ $$\propto ar{\ell}_{\omega}^{-\ln(R_n/R_s)/\ln R_s}$$ $$=\bar{\ell}_\omega^{-(\ln\!R_n-\ln\!R_s)/\ln\!R_s}$$ The PoCSverse Branching Networks II 42 of 85 Horton ⇔ Tokunaga Reducing Horton Scaling relations Models - Line Nutshell #### Finding γ : Therefore: $$P_>(\bar{\ell}_\omega) \propto e^{-\omega \ln(R_n/R_s)} = \left(e^{\omega \ln R_s}\right)^{-\ln(R_n/R_s)/\ln(R_s)}$$ 8 $$\propto ar{\ell}_{\pmb{\omega}}^{} - \ln(R_n/R_s) / \ln R_s$$ $$=\bar{\ell}_\omega^{-(\ln\!R_n-\ln\!R_s)/\ln\!R_s}$$ $$= \bar{\ell}_{\omega}^{-\ln R_n/\ln R_s + 1}$$ The PoCSverse Branching Networks II 42 of 85 Horton ⇔ Tokunaga Reducing Horton Scaling relations Models 44 Nutshell #### Finding γ : Therefore: $$P_>(\bar{\ell}_\omega) \propto e^{-\omega \ln(R_n/R_s)} = \left(e^{\omega \ln R_s}\right)^{-\ln(R_n/R_s)/\ln(R_s)}$$ 8 $$\propto \overline{\ell}_{\omega}^{-\ln(R_n/R_s)/\ln R_s}$$ $$=\bar{\ell}_{\omega}^{-(\ln\!R_n-\ln\!R_s)/\ln\!R_s}$$ $$= \bar{\ell}_{\omega}^{-\ln R_n/\ln R_s + 1}$$ $$=\bar{\ell}_{\omega}^{-\gamma+1}$$ The PoCSverse Branching Networks II 42 of 85 Horton ⇔ Tokunaga Reducing Horton Scaling relations Models Nutshell #### Finding γ : And so we have: $$\gamma = \ln\!R_n/\!\ln\!R_s$$ The PoCSverse Branching Networks 43 of 85 Horton ⇔ Tokunaga Reducing Horton Scaling relations Fluctuations Models Nutshell #### Finding γ : And so we have: $$\gamma = {\rm ln} R_n / {\rm ln} R_s$$ Proceeding in a similar fashion, we can show $$\tau = 2 - \mathrm{ln}R_s/\mathrm{ln}R_n = 2 - 1/\gamma$$ Insert assignment question The PoCSverse Branching Networks 43 of 85 Reducing Horton Scaling relations Models Nurshell ### Finding γ : And so we have: $$\gamma = {\rm ln} R_n/{\rm ln} R_s$$ Proceeding in a similar fashion, we can show $$\tau = 2 - \mathrm{ln}R_s/\mathrm{ln}R_n = 2 - 1/\gamma$$ Insert assignment question Such connections between exponents are called scaling relations The PoCSverse Branching Networks 43 of 85 Reducing Horton Scaling relations Models Nurshell #### Finding γ : And so we have: $$\gamma = {\rm ln} R_n/{\rm ln} R_s$$ Proceeding in a similar fashion, we can show $$\tau = 2 - \mathrm{ln}R_s/\mathrm{ln}R_n = 2 - 1/\gamma$$ Insert assignment question Such connections between exponents are called scaling relations Let's connect to one last relationship: Hack's law The PoCSverse Branching Networks 43 of 85 Reducing Horton Scaling relations Models Nurshell Hack's law: [6] $\ell \propto a^h$ The PoCSverse Branching Networks II 44 of 85 Horton ⇔ Tokunaga Reducing Horton Scaling relations Fluctuations Models Nutshell Hack's law: [6] $\ell \propto a^h$ \clubsuit Typically observed that $0.5 \lesssim h \lesssim 0.7$. The PoCSverse Branching Networks II 44 of 85 Horton ⇔ Tokunaga Reducing Horton Scaling relations Fluctuations Models - Land Nutshell Hack's law: [6] $\ell \propto a^h$ \clubsuit Typically observed that $0.5 \lesssim h \lesssim 0.7$. \clubsuit Use Horton laws to connect h to Horton ratios: $\bar{\ell}_\omega \propto R_s^{\,\omega}$ and $\bar{a}_\omega \propto R_n^{\,\omega}$ The PoCSverse Branching Networks II 44 of 85 Horton ⇔ Tokunaga Reducing Horton Scaling relations Fluctuations Models Nutshell #### Hack's law: [6] $\ell \propto a^h$ - \clubsuit Typically observed that $0.5 \lesssim h \lesssim 0.7$. - \clubsuit Use Horton laws to connect h to Horton ratios: $$\bar{\ell}_\omega \propto R_s^{\,\omega}$$ and $\bar{a}_\omega \propto R_n^{\,\omega}$ Observe: $\bar{\ell}_{\omega} \propto e^{\,\omega \ln R_s}$ The PoCSverse Branching Networks II 44 of 85 Horton ⇔ Tokunaga Reducing Horton Scaling relations Fluctuations Models Nutshell #### Hack's law: [6] $\ell \propto a^h$ \clubsuit Typically observed that $0.5 \lesssim h \lesssim 0.7$. & Use Horton laws to connect h to Horton ratios: $$\bar{\ell}_\omega \propto R_s^{\,\omega}$$ and $\bar{a}_\omega \propto R_n^{\,\omega}$ Observe: $$\bar{\ell}_{\omega} \propto e^{\,\omega {\rm ln} R_s} \propto \left(e^{\,\omega {\rm ln} R_n}\right)^{{\rm ln} R_s/{\rm ln} R_n}$$ The PoCSverse Branching Networks II 44 of 85 Horton ⇔ Tokunaga Reducing Horton Scaling relations Fluctuations Models Nurshell # Scaling laws ### Hack's law: [6] $$\ell \propto a^h$$ - \clubsuit Typically observed that $0.5 \lesssim h \lesssim 0.7$. - Superflower Use Horton laws to connect h to Horton ratios: $$\bar{\ell}_\omega \propto R_s^{\,\omega}$$ and $\bar{a}_\omega \propto R_n^{\,\omega}$ Observe: $$\bar{\ell}_{\omega} \propto e^{\,\omega {\rm ln} R_s} \propto \left(e^{\,\omega {\rm ln} R_n}\right)^{{\rm ln} R_s/{\rm ln} R_n}$$ $$\propto (R_n^{\,\omega})^{{\rm ln}R_s/{\rm ln}R_n}$$ The PoCSverse Branching Networks II 44 of 85 Horton ⇔ Tokunaga Reducing Horton Scaling relations Fluctuations Models Nutshell # Scaling laws ### Hack's law: [6] $$\ell \propto a^h$$ - \clubsuit Typically observed that $0.5 \lesssim h \lesssim 0.7$. - \clubsuit Use Horton laws to connect h to Horton ratios: $$\bar{\ell}_\omega \propto R_s^{\,\omega}$$ and $\bar{a}_\omega \propto R_n^{\,\omega}$ Observe: $$\bar{\ell}_{\omega} \propto e^{\,\omega {\rm ln} R_s} \propto \left(e^{\,\omega {\rm ln} R_n}\right)^{{\rm ln} R_s/{\rm ln} R_n}$$ $$\propto (R_n^{\,\omega})^{{\rm ln}R_s/{\rm ln}R_n} \, \propto \bar{a}_\omega^{\,{\rm ln}R_s/{\rm ln}R_n}$$ The PoCSverse Branching Networks II 44 of 85 Horton ⇔ Tokunaga Reducing Horton Scaling relations Fluctuations Models Nutshell IVUISITEII # Scaling laws #### Hack's law: [6] $$\ell \propto a^h$$ - \clubsuit Typically observed that $0.5 \lesssim h \lesssim 0.7$. - \clubsuit Use Horton laws to connect h to Horton ratios: $$\bar{\ell}_\omega \propto R_s^{\,\omega}$$ and $\bar{a}_\omega \propto R_n^{\,\omega}$ Observe: $$\bar{\ell}_{\omega} \propto e^{\,\omega {\rm ln} R_s} \propto \left(e^{\,\omega {\rm ln} R_n}\right)^{{\rm ln} R_s/{\rm ln} R_n}$$ $$\propto (R_n^{\,\omega})^{{\rm ln}R_s/{\rm ln}R_n} \, \propto \bar{a}_\omega^{\,{\rm ln}R_s/{\rm ln}R_n} \, \Rightarrow \boxed{h = {\rm ln}R_s/{\rm ln}R_n}$$ The PoCSverse Branching Networks II 44 of 85 Horton ⇔ Tokunaga Reducing Horton Scaling relations Scaling relations Models Nutshell # We mentioned there were a good number of 'laws': [2] ### Relation: Name or description: | $T_k = T_1(R_T)^{k-1}$ | Tokunaga's law | |--|--| | $\ell \sim L^d$ | self-affinity of single channels | | $n_{\omega}/n_{\omega+1} = R_n$ | Horton's law of stream numbers | | $\bar{\ell}_{\omega+1}/\bar{\ell}_{\omega} = R_{\ell}$ | Horton's law of main stream lengths | | $\bar{a}_{\omega+1}/\bar{a}_{\omega} = R_a$ | Horton's law of basin areas | | $\bar{s}_{\omega+1}/\bar{s}_{\omega} = R_s$ | Horton's law of stream segment lengths | | $L_{\perp} \sim L^H$ | scaling of basin widths | | $P(a) \sim a^{- au}$ | probability of basin areas | | $P(\ell) \sim \ell^{-\gamma}$ | probability of stream lengths | | $\ell \sim a^h$ | Hack's law | | $a
\sim L^D$ | scaling of basin areas | | $\Lambda \sim a^{eta}$ | Langbein's law | | $\lambda \sim L^{\varphi}$ | variation of Langbein's law | The PoCSverse Branching Networks II 45 of 85 Horton ⇔ Tokunaga Reducing Horton Scaling relations Fluctuations Models Nutshell ### Connecting exponents Only 3 parameters are independent: e.g., take d, R_n , and R_s | scaling relation/parameter: [2] | |----------------------------------| | d | | $T_1 = R_n - R_s - 2 + 2R_s/R_n$ | | $R_T = \frac{R_s}{R_s}$ | | R_n | | $R_a = \frac{R_n}{n}$ | | $R_{\ell} = \frac{R_s}{r}$ | | $h = \ln \frac{R_s}{\ln R_n}$ | | D = d/h | | H = d/h - 1 | | $\tau = 2 - h$ | | $\gamma = 1/h$ | | $\beta = 1 + h$ | | $\varphi = d$ | | | The PoCSverse Branching Networks II 46 of 85 Horton ⇔ Tokunaga Reducing Horton Scaling relations Fluctuations Models A Library Nutshell #### Directed random networks [11, 12] $$P(\searrow) = P(\swarrow) = 1/2$$ The PoCSverse Branching Networks II 47 of 85 Horton ⇔ Tokunaga Reducing Horton Scaling relations Fluctuations Models Nutshell ## A toy model—Scheidegger's model #### Random walk basins: Boundaries of basins are random walks The PoCSverse Branching Networks 48 of 85 Horton ⇔ Tokunaga Reducing Horton Scaling relations Fluctuations Models Nutshell The PoCSverse Branching Networks II 49 of 85 Horton ⇔ Tokunaga Reducing Horton Scaling relations Fluctuations Models Nutshell Prob for first return of a random walk in (1+1) dimensions (from CSYS/MATH 300): The PoCSverse Branching Networks II 50 of 85 Horton ⇔ Tokunaga Reducing Horton Scaling relations Models Nutshell Prob for first return of a random walk in (1+1) dimensions (from CSYS/MATH 300): $$P(n) \sim \frac{1}{2\sqrt{\pi}} n^{-3/2}$$. and so $P(\ell) \propto \ell^{-3/2}$. The PoCSverse Branching Networks II 50 of 85 Horton ⇔ Tokunaga Reducing Horton Scaling relations Fluctuations Models Nutshell Prob for first return of a random walk in (1+1) dimensions (from CSYS/MATH 300): $$P(n) \sim \frac{1}{2\sqrt{\pi}} n^{-3/2}.$$ and so $P(\ell) \propto \ell^{-3/2}$. Typical area for a walk of length n is $\propto n^{3/2}$: $$\ell \propto a^{2/3}$$. The PoCSverse Branching Networks 50 of 85 Reducing Horton Scaling relations Fluctuations Models Nurshell Prob for first return of a random walk in (1+1) dimensions (from CSYS/MATH 300): $$P(n) \sim \frac{1}{2\sqrt{\pi}} n^{-3/2}.$$ and so $P(\ell) \propto \ell^{-3/2}$. Typical area for a walk of length n is $\propto n^{3/2}$: $$\ell \propto a^{2/3}$$. The PoCSverse Branching Networks 50 of 85 Reducing Horton Scaling relations Fluctuations Models Nurshell Prob for first return of a random walk in (1+1) dimensions (from CSYS/MATH 300): $$P(n) \sim \frac{1}{2\sqrt{\pi}} n^{-3/2}.$$ and so $P(\ell) \propto \ell^{-3/2}$. Typical area for a walk of length n is $\propto n^{3/2}$: $$\ell \propto a^{2/3}$$. \Rightarrow Find $\tau = 4/3, h = 2/3, \gamma = 3/2, d = 1.$ Note $\tau = 2 - h$ and $\gamma = 1/h$. The PoCSverse Branching Networks 50 of 85 Reducing Horton Scaling relations Fluctuations Models Nurshell Prob for first return of a random walk in (1+1) dimensions (from CSYS/MATH 300): $$P(n) \sim \frac{1}{2\sqrt{\pi}} n^{-3/2}.$$ and so $P(\ell) \propto \ell^{-3/2}$. Typical area for a walk of length n is $\propto n^{3/2}$: $$\ell \propto a^{2/3}$$. \Rightarrow Find $\tau = 4/3, h = 2/3, \gamma = 3/2, d = 1.$ Note $\tau = 2 - h$ and $\gamma = 1/h$. R_n and R_ℓ have not been derived analytically. The PoCSverse Branching Networks 50 of 85 Reducing Horton Scaling relations Models Nurshell ## Equipartitioning reexamined: Recall this story: The PoCSverse Branching Networks II 51 of 85 Horton ⇔ Tokunaga Reducing Horton Scaling relations Fluctuations Models Nutshell What about $$P(a) \sim a^{-\tau}$$? The PoCSverse Branching Networks 52 of 85 Horton ⇔ Tokunaga Reducing Horton Scaling relations Fluctuations Models Nutshell What about $$P(a) \sim a^{-\tau}$$? Since $\tau > 1$, suggests no equipartitioning: $$aP(a) \sim a^{-\tau+1} \neq \text{const}$$ The PoCSverse Branching Networks 52 of 85 Reducing Horton Scaling relations Fluctuations Models Nutshell What about $$P(a) \sim a^{-\tau}$$ Since $\tau > 1$, suggests no equipartitioning: $$aP(a) \sim a^{-\tau+1} \neq \text{const}$$ A P(a) overcounts basins within basins ... The PoCSverse Branching Networks 52. of 85 Reducing Horton Scaling relations Models Nutshell What about $$P(a) \sim a^{-\tau}$$ Since $\tau > 1$, suggests no equipartitioning: $$aP(a) \sim a^{-\tau+1} \neq \text{const}$$ A P(a) overcounts basins within basins ... 🚳 while stream ordering separates basins ... The PoCSverse Branching Networks 52. of 85 Reducing Horton Scaling relations Models Nurshell Moving beyond the mean: The PoCSverse Branching Networks II 53 of 85 $Horton \Leftrightarrow Tokunaga$ Reducing Horton Scaling relations cum g retations Fluctuations Models Nutshell ### Moving beyond the mean: Both Horton's laws and Tokunaga's law relate average properties, e.g., $$\bar{s}_{\omega}/\bar{s}_{\omega-1} = R_s$$ The PoCSverse Branching Networks 53 of 85 Horton ⇔ Tokunaga Reducing Horton Scaling relations Fluctuations Models Nutshell ### Moving beyond the mean: $$\bar{s}_{\omega}/\bar{s}_{\omega-1} = R_s$$ Natural generalization to consider relationships between probability distributions The PoCSverse Branching Networks II 53 of 85 Horton ⇔ Tokunaga Reducing Horton Scaling relations scaling relations Fluctuations Models iviodeis Nutshell ### Moving beyond the mean: Both Horton's laws and Tokunaga's law relate average properties, e.g., $$\bar{s}_{\omega}/\bar{s}_{\omega-1}=R_s$$ - Natural generalization to consider relationships between probability distributions - Yields rich and full description of branching network structure The PoCSverse Branching Networks II 53 of 85 Horton ⇔ Tokunaga Reducing Horton Scaling relations Scaling relation Fluctuations Models Nutshell ### Moving beyond the mean: Both Horton's laws and Tokunaga's law relate average properties, e.g., $$\bar{s}_{\omega}/\bar{s}_{\omega-1} = R_s$$ - Natural generalization to consider relationships between probability distributions - Yields rich and full description of branching network structure - See into the heart of randomness ... The PoCSverse Branching Networks II 53 of 85 Horton ⇔ Tokunaga Reducing Horton Scaling relations Scaling relation Fluctuations Models A Line Nutshell ## A toy model—Scheidegger's model ### Directed random networks [11, 12] $$P(\searrow) = P(\swarrow) = 1/2$$ Row is directed downwards The PoCSverse Branching Networks II 54 of 85 $Horton \Leftrightarrow Tokunaga$ Reducing Horton Scaling relations Fluctuations Models Nutshell The PoCSverse Branching Networks II 55 of 85 Horton ⇔ Tokunaga Reducing Horton Scaling relations Fluctuations Models Nutshell $$\begin{split} & \stackrel{?}{\otimes} \ \bar{\ell}_{\omega} \propto (R_{\ell})^{\omega} \Rightarrow N(\ell|\omega) = (R_n R_{\ell})^{-\omega} F_{\ell}(\ell/R_{\ell}^{\omega}) \\ & \stackrel{?}{\otimes} \ \bar{a}_{\omega} \propto (R_a)^{\omega} \Rightarrow N(a|\omega) = (R_n^2)^{-\omega} F_a(a/R_n^{\omega}) \end{split}$$ The PoCSverse Branching Networks II 55 of 85 Horton ⇔ Tokunaga Reducing Horton Scaling relations Fluctuations Models Nurshell $$\hat{\bar{e}}_{\omega} \propto (R_{\ell})^{\omega} \Rightarrow N(\ell|\omega) = (R_n R_{\ell})^{-\omega} F_{\ell}(\ell/R_{\ell}^{\omega})$$ $$\hat{\bar{e}}_{\omega} \propto (R_a)^{\omega} \Rightarrow N(a|\omega) = (R_n^2)^{-\omega} F_a(a/R_n^{\omega})$$ The PoCSverse Branching Networks II 55 of 85 Horton ⇔ Tokunaga Reducing Horton Scaling relations Fluctuations Models Nurshell $$\hat{\bar{e}}_{\omega} \propto (R_{\ell})^{\omega} \Rightarrow N(\ell|\omega) = (R_n R_{\ell})^{-\omega} F_{\ell}(\ell/R_{\ell}^{\omega})$$ $$\hat{\bar{a}}_{\omega} \propto (R_a)^{\omega} \Rightarrow N(a|\omega) = (R_n^2)^{-\omega} F_a(a/R_n^{\omega})$$ Scaling collapse works well for intermediate orders The PoCSverse Branching Networks II 55 of 85 Horton ⇔ Tokunaga Reducing Horton Scaling relations Fluctuations Models Nutshell Mississippi: length distributions $$\hat{\bar{\ell}}_{\omega} \propto (R_{\ell})^{\omega} \Rightarrow N(\ell|\omega) = (R_n R_{\ell})^{-\omega} F_{\ell}(\ell/R_{\ell}^{\omega})$$ $$\label{eq:alpha} \hat{\bar{a}}_\omega \propto (R_a)^\omega \Rightarrow N(a|\omega) = (R_n^2)^{-\omega} F_a(a/R_n^\omega)$$ Scaling collapse works well for intermediate orders All moments grow exponentially with order The PoCSverse Branching Networks 55 of 85 Reducing Horton Scaling relations Fluctuations Models How well does overall basin fit internal pattern? The PoCSverse Branching Networks 56 of 85 Horton ⇔ Tokunaga Reducing Horton Scaling relations Fluctuations Models Nutshell 8 How well does overall basin fit internal pattern? Actual length = 4920 km (at 1 km res) The PoCSverse Branching Networks II 56 of 85 Horton ⇔ Tokunaga Reducing Horton Scaling relations Fluctuations Models Nutshell How well does overall basin fit internal pattern? Actual length = 4920 km (at 1 km res) Predicted Mean length = 11100 km The PoCSverse Branching Networks 56 of 85 Reducing Horton Scaling relations Fluctuations Models Nutshell How well does overall basin fit internal pattern? Actual length = 4920 km (at 1 km res) Predicted Mean length = 11100 km Predicted Std dev = 5600km The PoCSverse Branching Networks 56 of 85 Horton ⇔ Tokunaga Reducing Horton Scaling relations Fluctuations Models Nutshell How well does overall basin fit internal pattern? Actual length = 4920 km (at 1 km res) Predicted Mean length = 11100 km Actual length/Mean length = 44 % The PoCSverse Branching Networks 56 of 85 Reducing Horton Scaling relations Fluctuations Models Nurshell How well does overall basin fit internal pattern? Actual length = 4920 km (at 1 km res) Predicted Mean length = 11100 km Actual length/Mean length = 44 % The PoCSverse Branching Networks 56 of 85 Reducing Horton Scaling relations Fluctuations Models Nutshell Comparison of predicted versus measured
main stream lengths for large scale river networks (in 10^3 km): | basin: | ℓ_Ω | $ar{\ell}_{\Omega}$ | σ_ℓ | $\ell_\Omega/ar\ell_\Omega$ | $\sigma_\ell/ar\ell_\Omega$ | |-----------------------|----------------------|-----------------------|----------------------|------------------------------------|--| | Mississippi | 4.92 | 11.10 | 5.60 | 0.44 | 0.51 | | Amazon | 5.75 | 9.18 | 6.85 | 0.63 | 0.75 | | Nile | 6.49 | 2.66 | 2.20 | 2.44 | 0.83 | | Congo | 5.07 | 10.13 | 5.75 | 0.50 | 0.57 | | Kansas | 1.07 | 2.37 | 1.74 | 0.45 | 0.73 | | | | | | | | | | a_{Ω} | $ar{a}_{\Omega}$ | σ_a | $a_\Omega/ar{a}_\Omega$ | $\sigma_a/ar{a}_\Omega$ | | Mississippi | a_{Ω} 2.74 | $ar{a}_{\Omega}$ 7.55 | σ_a 5.58 | $a_{\Omega}/\bar{a}_{\Omega}$ 0.36 | $\frac{\sigma_a/\bar{a}_\Omega}{0.74}$ | | Mississippi
Amazon | | | - Co | 22, 22 | co / 11 | | | 2.74 | 7.55 | 5.58 | 0.36 | 0.74 | | Amazon | 2.74
5.40 | 7.55
9.07 | 5.58
8.04 | 0.36 | 0.74
0.89 | | Amazon
Nile | 2.74
5.40
3.08 | 7.55
9.07
0.96 | 5.58
8.04
0.79 | 0.36
0.60
3.19 | 0.74
0.89
0.82 | The PoCSverse Branching Networks II 57 of 85 Horton ⇔ Tokunag: Reducing Horton Scaling relations Fluctuations Models Nutshell ### Combining stream segments distributions: Stream segments sum to give main stream lengths $\ell_{\omega} = \sum_{\mu=1}^{\mu=\omega} s_{\mu}$ The PoCSverse Branching Networks II 58 of 85 Horton ⇔ Tokunaga Reducing Horton Scaling relations Fluctuations Models Nutshell ### Combining stream segments distributions: Stream segments sum to give main stream lengths s_{ω} The PoCSverse Branching Networks II 58 of 85 $Horton \Leftrightarrow Tokunaga$ Reducing Horton Scaling relations Fluctuations Models Nutshell $\mbox{\ensuremath{\&}}\mbox{\ensuremath{Sum}}$ of variables $\ell_{\omega} = \sum_{\mu=1}^{\mu=\omega} s_{\mu}$ leads to convolution of distributions: $$N(\ell|\omega) = N(s|1) * N(s|2) * \cdots * N(s|\omega)$$ The PoCSverse Branching Networks 59 of 85 Reducing Horton Scaling relations Fluctuations Models Nutshell $\red sum of variables <math>\ell_\omega = \sum_{\mu=1}^{\mu=\omega} s_\mu$ leads to convolution of distributions: $$N(\ell|\omega) = N(s|1)*N(s|2)*\cdots*N(s|\omega)$$ $$N(s|\omega) = rac{1}{R_n^{\omega} R_{\ell}^{\omega}} F(s/R_{\ell}^{\omega})$$ $$F(x) = e^{-x/\xi}$$ eigeippi, $\xi \approx 000 \ \mathrm{m}$ Mississippi: $\xi \simeq 900$ m. The PoCSverse Branching Networks 59 of 85 Reducing Horton Scaling relations Fluctuations Models Nurshell Next level up: Main stream length distributions must combine to give overall distribution for stream length The PoCSverse Branching Networks 60 of 85 Reducing Horton Scaling relations Fluctuations Models Nurshell Next level up: Main stream length distributions must combine to give overall distribution for stream length $P(\ell) \sim \ell^{-\gamma}$ Another round of convolutions [3] Interesting ... The PoCSverse Branching Networks 60 of 85 Reducing Horton Scaling relations Fluctuations Models Nutshell Number and area distributions for the Scheidegger model [3] $P(n_{1,6})$ versus $P(a_6)$ for a randomly selected $\omega=6$ basin. The PoCSverse Branching Networks II 61 of 85 Horton ⇔ Tokunaga Reducing Horton Scaling relations Fluctuations Models Nutshell #### Scheidegger: 8 Observe exponential distributions for $T_{\mu,\nu}$ 8 Scaling collapse works using R_s The PoCSverse Branching Networks II 62 of 85 Horton ⇔ Tokunaga Reducing Horton Scaling relations Fluctuations Models Nutshell #### Mississippi: 🙈 Same data collapse for Mississippi ... The PoCSverse Branching Networks 63 of 85 Horton ⇔ Tokunaga Reducing Horton Scaling relations Fluctuations Models Nutshell So $$P(T_{\mu,\nu}) = (R_s)^{\mu-\nu-1} P_t \left[T_{\mu,\nu}/(R_s)^{\mu-\nu-1} \right]$$ where $$P_t(z) = \frac{1}{\xi_t} e^{-z/\xi_t}.$$ $$\boxed{P(s_{\mu}) \Leftrightarrow P(T_{\mu,\nu})}$$ Exponentials arise from randomness. \Leftrightarrow Look at joint probability $P(s_{\mu}, T_{\mu,\nu})$. The PoCSverse Branching Networks 64 of 85 Reducing Horton Scaling relations Fluctuations Models Nurshell #### Network architecture: - Inter-tributary lengths exponentially distributed - Leads to random spatial distribution of stream segments The PoCSverse Branching Networks 65 of 85 Reducing Horton Scaling relations Fluctuations Models Nutshell References Horton ⇔ Tokunaga Follow streams segments down stream from their beginning The PoCSverse Branching Networks 66 of 85 Horton ⇔ Tokunaga Reducing Horton Scaling relations Fluctuations Models Nutshell 🧩 Follow streams segments down stream from their beginning \red Probability (or rate) of an order μ stream segment terminating is constant: $$\tilde{p}_{\mu} \simeq 1/(R_s)^{\mu-1} \xi_s$$ The PoCSverse Branching Networks 66 of 85 Reducing Horton Scaling relations Fluctuations Models Nurshell 🧩 Follow streams segments down stream from their beginning \red Probability (or rate) of an order μ stream segment terminating is constant: $$\tilde{p}_{\mu} \simeq 1/(R_s)^{\mu-1} \xi_s$$ Probability decays exponentially with stream order The PoCSverse Branching Networks 66 of 85 Reducing Horton Scaling relations Fluctuations Models Nurshell 🧩 Follow streams segments down stream from their beginning \red Probability (or rate) of an order μ stream segment terminating is constant: $$\tilde{p}_{\mu} \simeq 1/(R_s)^{\mu-1} \xi_s$$ Probability decays exponentially with stream order Inter-tributary lengths exponentially distributed The PoCSverse Branching Networks 66 of 85 Reducing Horton Scaling relations Fluctuations Models Nurshell 🧩 Follow streams segments down stream from their beginning \Longrightarrow Probability (or rate) of an order μ stream segment terminating is constant: $$\tilde{p}_{\mu} \simeq 1/(R_s)^{\mu-1} \xi_s$$ Probability decays exponentially with stream order Inter-tributary lengths exponentially distributed ⇒ random spatial distribution of stream segments The PoCSverse Branching Networks 66 of 85 Reducing Horton Scaling relations Fluctuations Models Nurshell 💫 Joint distribution for generalized version of Tokunaga's law: $$P(s_{\mu},T_{\mu,\nu}) = \tilde{p}_{\mu} \binom{s_{\mu}-1}{T_{\mu,\nu}} p_{\nu}^{T_{\mu,\nu}} (1-p_{\nu}-\tilde{p}_{\mu})^{s_{\mu}-T_{\mu,\nu}-1}$$ where p_{ν} = probability of absorbing an order ν side stream The PoCSverse Branching Networks 67 of 85 Reducing Horton Scaling relations Fluctuations Models Nutshell 💫 Joint distribution for generalized version of Tokunaga's law: $$P(s_{\mu},T_{\mu,\nu}) = \tilde{p}_{\mu} \binom{s_{\mu}-1}{T_{\mu,\nu}} p_{\nu}^{T_{\mu,\nu}} (1-p_{\nu}-\tilde{p}_{\mu})^{s_{\mu}-T_{\mu,\nu}-1}$$ where p_{ν} = probability of absorbing an order ν side stream \tilde{p}_{μ} = probability of an order μ stream terminating The PoCSverse Branching Networks 67 of 85 Reducing Horton Scaling relations Fluctuations Models Nutshell The PoCSverse Branching Networks II 67 of 85 Horton ⇔ Tokunaga Reducing Horton Scaling relations Fluctuations Models Nutshell References 🚵 Joint distribution for generalized version of Tokunaga's law: $$P(s_{\mu},T_{\mu,\nu}) = \tilde{p}_{\mu} \binom{s_{\mu}-1}{T_{\mu,\nu}} p_{\nu}^{T_{\mu,\nu}} (1-p_{\nu}-\tilde{p}_{\mu})^{s_{\mu}-T_{\mu,\nu}-1}$$ where $p_{\nu}=$ probability of absorbing an order ν side stream $\widetilde{p}_{\mu}=$ probability of an order μ stream terminating ${\begin{subarray}{l} {\begin{subarray}{l} {\begin$ In each unit of distance along stream, there is one chance of a side stream entering or the stream terminating. Now deal with this thing: $$P(s_{\mu},T_{\mu,\nu}) = \tilde{p}_{\mu} \binom{s_{\mu}-1}{T_{\mu,\nu}} p_{\nu}^{T_{\mu,\nu}} (1-p_{\nu}-\tilde{p}_{\mu})^{s_{\mu}-T_{\mu,\nu}-1}$$ The PoCSverse Branching Networks 68 of 85 Reducing Horton Scaling relations Fluctuations Models Nurshell Now deal with this thing: $$P(s_{\mu},T_{\mu,\nu}) = \tilde{p}_{\mu} \binom{s_{\mu}-1}{T_{\mu,\nu}} p_{\nu}^{T_{\mu,\nu}} (1-p_{\nu}-\tilde{p}_{\mu})^{s_{\mu}-T_{\mu,\nu}-1}$$ \Leftrightarrow Set $(x,y)=(s_{\mu},T_{\mu,\nu})$ and $q=1-p_{\nu}-\tilde{p}_{\mu}$, approximate liberally. The PoCSverse Branching Networks 68 of 85 Reducing Horton Scaling relations Fluctuations Models Nurshell Now deal with this thing: $$P(s_{\mu},T_{\mu,\nu}) = \tilde{p}_{\mu} \binom{s_{\mu}-1}{T_{\mu,\nu}} p_{\nu}^{T_{\mu,\nu}} (1-p_{\nu}-\tilde{p}_{\mu})^{s_{\mu}-T_{\mu,\nu}-1}$$ liberally. - Obtain $$P(x,y) = Nx^{-1/2} [F(y/x)]^x$$ where $$F(v) = \left(\frac{1-v}{q}\right)^{-(1-v)} \left(\frac{v}{p}\right)^{-v}.$$ The PoCSverse Branching Networks 68 of 85 Reducing Horton Scaling relations Fluctuations Models Nutshell A Checking form of $P(s_{\mu}, T_{\mu,\nu})$ works: #### Scheidegger: The PoCSverse Branching Networks 69 of 85 Reducing Horton Scaling relations Fluctuations Models Nutshell $\ \, \ \, \mbox{ Checking form of } P(s_{\mu},T_{\mu,\nu}) \mbox{ works:}$ Scheidegger: The PoCSverse Branching Networks II 70 of 85 Horton ⇔ Tokunaga Reducing Horton Scaling relations Fluctuations Models Nutshell A Checking form of $P(s_{\mu}, T_{\mu,\nu})$ works: Scheidegger: The PoCSverse Branching Networks 71 of 85 Horton ⇔ Tokunaga Reducing Horton Scaling relations Fluctuations Models Nutshell \Leftrightarrow Checking form of $P(s_{\mu}, T_{\mu,\nu})$ works: #### Mississippi: The PoCSverse Branching Networks 72 of 85 Reducing Horton Scaling relations Fluctuations Models Nutshell Random subnetworks on a Bethe lattice [13] The PoCSverse Branching Networks II 74 of 85 Horton ⇔ Tokunaga Reducing Horton Scaling relations 0 Fluctuations Models Nutshell #### Random subnetworks on a Bethe lattice [13] Dominant theoretical concept for several decades. The PoCSverse Branching Networks 74 of 85 Horton ⇔ Tokunaga Reducing Horton Scaling relations Fluctuations Models Nutshell #### Random subnetworks on a Bethe lattice [13] Dominant theoretical concept for several decades.
The PoCSverse Branching Networks II 74 of 85 Horton ⇔ Tokunaga Reducing Horton Scaling relations Fluctuation Models Nutshell #### Random subnetworks on a Bethe lattice [13] Dominant theoretical concept for several decades. Led to idea of "Statistical inevitability" of river network statistics [7] The PoCSverse Branching Networks II 74 of 85 Horton ⇔ Tokunaga Reducing Horton Scaling relations Fluctuation Models Nurshell ### Random subnetworks on a Bethe lattice [13] Dominant theoretical concept for several decades. Bethe lattices are fun and tractable. Led to idea of "Statistical inevitability" of river network statistics [7] But Bethe lattices unconnected with surfaces. The PoCSverse Branching Networks II 74 of 85 Horton ⇔ Tokunaga Reducing Horton Scaling relations Fluctuation Models Nurshell Nutshell ### Random subnetworks on a Bethe lattice [13] Dominant theoretical concept for several decades. Bethe lattices are fun and tractable. - Led to idea of "Statistical inevitability" of river network statistics [7] - But Bethe lattices unconnected with surfaces. - A In fact, Bethe lattices ≃ infinite dimensional spaces (oops). The PoCSverse Branching Networks II 74 of 85 Horton ⇔ Tokunaga Reducing Horton Scaling relations Models Nutshell Nutshell ### Random subnetworks on a Bethe lattice [13] - Dominant theoretical concept for several decades. - & Bethe lattices are fun and tractable. - Led to idea of "Statistical inevitability" of river network statistics [7] - But Bethe lattices unconnected with surfaces. - A In fact, Bethe lattices ≃ infinite dimensional spaces (oops). - So let's move on ... The PoCSverse Branching Networks II 74 of 85 Horton ⇔ Tokunaga Reducing Horton Scaling relations Tractantic Models Nutshell # Scheidegger's model #### Directed random networks [11, 12] $$P(\searrow) = P(\swarrow) = 1/2$$ The PoCSverse Branching Networks II 75 of 85 Horton ⇔ Tokunaga Reducing Horton Scaling relations Fluctuation #### Models Nutshell Rodríguez-Iturbe, Rinaldo, et al. [10] The PoCSverse Branching Networks II 76 of 85 Horton ⇔ Tokunaga Reducing Horton Scaling relations Fluctuations #### Models Nutshell Rodríguez-Iturbe, Rinaldo, et al. [10] \Leftrightarrow Landscapes $h(\vec{x})$ evolve such that energy dissipation $\dot{\varepsilon}$ is minimized, where The PoCSverse Branching Networks 76 of 85 Horton ⇔ Tokunaga Reducing Horton Scaling relations Fluctuations Models Nutshell ## Rodríguez-Iturbe, Rinaldo, et al. [10] \Longrightarrow Landscapes $h(\vec{x})$ evolve such that energy dissipation $\dot{\varepsilon}$ is minimized, where $$\dot{arepsilon} \propto \int \mathrm{d} \vec{r} \; (\mathrm{flux}) \times (\mathrm{force})$$ The PoCSverse Branching Networks 76 of 85 Reducing Horton Scaling relations Models Nutshell ### Rodríguez-Iturbe, Rinaldo, et al. [10] \Leftrightarrow Landscapes $h(\vec{x})$ evolve such that energy dissipation $\dot{\varepsilon}$ is minimized, where $$\dot{\varepsilon} \propto \int \mathrm{d}\vec{r} \; (\mathrm{flux}) \times (\mathrm{force}) \sim \sum_i a_i \nabla h_i$$ The PoCSverse Branching Networks 76 of 85 Reducing Horton Scaling relations Models Nurshell ### Rodríguez-Iturbe, Rinaldo, et al. [10] \Longrightarrow Landscapes $h(\vec{x})$ evolve such that energy dissipation $\dot{\varepsilon}$ is minimized, where $$\dot{\varepsilon} \propto \int \mathrm{d}\vec{r} \; (\mathrm{flux}) \times (\mathrm{force}) \sim \sum_i a_i \nabla h_i \sim \sum_i a_i^{\gamma}$$ The PoCSverse Branching Networks 76 of 85 Reducing Horton Scaling relations Models Nurshell ## Rodríguez-Iturbe, Rinaldo, et al. [10] & Landscapes $h(\vec{x})$ evolve such that energy dissipation $\dot{\varepsilon}$ is minimized, where $$\dot{\varepsilon} \propto \int \mathrm{d}\vec{r} \; (\mathrm{flux}) \times (\mathrm{force}) \sim \sum_i a_i \nabla h_i \sim \sum_i a_i^\gamma$$ Landscapes obtained numerically give exponents near that of real networks. The PoCSverse Branching Networks II 76 of 85 Horton ⇔ Tokunaga Reducing Horton Scaling relations Fluctuation Models Nutshell ## Rodríguez-Iturbe, Rinaldo, et al. [10] & Landscapes $h(\vec{x})$ evolve such that energy dissipation $\dot{\varepsilon}$ is minimized, where $$\dot{\varepsilon} \propto \int \mathrm{d}\vec{r} \; (\mathrm{flux}) \times (\mathrm{force}) \sim \sum_i a_i \nabla h_i \sim \sum_i a_i^{\gamma}$$ Landscapes obtained numerically give exponents near that of real networks. But: numerical method used matters. The PoCSverse Branching Networks II 76 of 85 Horton ⇔ Tokunaga Reducing Horton Scaling relations Fluctuations Models Nutshell ### Rodríguez-Iturbe, Rinaldo, et al. [10] & Landscapes $h(\vec{x})$ evolve such that energy dissipation $\dot{\varepsilon}$ is minimized, where $$\dot{\varepsilon} \propto \int \mathrm{d}\vec{r} \; (\mathrm{flux}) \times (\mathrm{force}) \sim \sum_i a_i \nabla h_i \sim \sum_i a_i^\gamma$$ Landscapes obtained numerically give exponents near that of real networks. But: numerical method used matters. And: Maritan et al. find basic universality classes are that of Scheidegger, self-similar, and a third kind of random network [8] The PoCSverse Branching Networks II 76 of 85 Horton ⇔ Tokunaga Reducing Horton Scaling relations Fluctuations Models Nutshell #### Theoretical networks #### Summary of universality classes: | network | h | d | |---------------------|---------|---------| | Non-convergent flow | 1 | 1 | | Directed random | 2/3 | 1 | | Undirected random | 5/8 | 5/4 | | Self-similar | 1/2 | 1 | | OCN's (I) | 1/2 | 1 | | OCN's (II) | 2/3 | 1 | | OCN's (III) | 3/5 | 1 | | Real rivers | 0.5-0.7 | 1.0-1.2 | $h \Rightarrow \ell \propto a^h$ (Hack's law). $d \Rightarrow \ell \propto L^d_{\parallel}$ (stream self-affinity). The PoCSverse Branching Networks II 77 of 85 Horton ⇔ Tokunaga Reducing Horton Scaling relations TI . Models Nutshell ### Branching networks II Key Points: The PoCSverse Branching Networks II 78 of 85 Horton ⇔ Tokunaga Reducing Horton Scaling relations Fluctuations Models Nutshell #### Branching networks II Key Points: For 2-d networks, these laws are 'planform' laws and ignore slope. The PoCSverse Branching Networks 78 of 85 Reducing Horton Scaling relations Models Nutshell ### Branching networks II Key Points: For 2-d networks, these laws are 'planform' laws and ignore slope. Abundant scaling relations can be derived. The PoCSverse Branching Networks II 78 of 85 Horton ⇔ Tokunaga Reducing Horton Scaling relations Models Nutshell #### Branching networks II Key Points: For 2-d networks, these laws are 'planform' laws and ignore slope. Abundant scaling relations can be derived. \Leftrightarrow Can take R_n , R_ℓ , and d as three independent parameters necessary to describe all 2-d branching networks. The PoCSverse Branching Networks II 78 of 85 Horton ⇔ Tokunaga Reducing Horton Scaling relations ocalling relation Models Nutshell #### Branching networks II Key Points: - A Horton's laws and Tokunaga's law all fit together. - For 2-d networks, these laws are 'planform' laws and ignore slope. - Abundant scaling relations can be derived. - $\mbox{\ensuremath{\&}}\mbox{\ensuremath{\&}}\mbox{\ensuremath{For}}$ scaling laws, only $h=\ln R_\ell/\ln R_n$ and d are needed. - & Laws can be extended nicely to laws of distributions. The PoCSverse Branching Networks II 78 of 85 Horton ⇔ Tokunaga Reducing Horton Scaling relations Models Nutshell #### Branching networks II Key Points: - A Horton's laws and Tokunaga's law all fit together. - For 2-d networks, these laws are 'planform' laws and ignore slope. - Abundant scaling relations can be derived. - $\mbox{\ensuremath{\&}}\mbox{\ensuremath{\&}}\mbox{\ensuremath{For}}$ scaling laws, only $h=\ln\!R_\ell/\!\ln\!R_n$ and d are needed. - & Laws can be extended nicely to laws of distributions. - Numerous models of branching network evolution exist: nothing rock solid yet ...? The PoCSverse Branching Networks II 78 of 85 Horton ⇔ Tokunaga Reducing Horton Scaling relations Models Nutshell #### References I [1] H. de Vries, T. Becker, and B. Eckhardt. Power law distribution of discharge in ideal networks. Water Resources Research, 30(12):3541–3543, 1994. pdf [2] P. S. Dodds and D. H. Rothman. Unified view of scaling laws for river networks. Physical Review E, 59(5):4865–4877, 1999. pdf [3] P. S. Dodds and D. H. Rothman. Geometry of river networks. II. Distributions of component size and number. Physical Review E, 63(1):016116, 2001. pdf [4] P. S. Dodds and D. H. Rothman. Geometry of river networks. III. Characterization of component connectivity. Physical Review E, 63(1):016117, 2001. pdf The PoCSverse Branching Networks II 79 of 85 Horton ⇔ Tokunaga Reducing Horton Scaling relations Models Nutshell #### References II [5] N. Goldenfeld. Lectures on Phase Transitions and the Renormalization Group, volume 85 of Frontiers in Physics. Addison-Wesley, Reading, Massachusetts, 1992. [6] J. T. Hack. Studies of longitudinal stream profiles in Virginia and Maryland. United States Geological Survey Professional Paper, 294-B:45-97, 1957. pdf [7] J. W. Kirchner. Statistical inevitability of Horton's laws and the apparent randomness of stream channel networks. Geology, 21:591–594, 1993. pdf The PoCSverse Branching Networks II 80 of 85 Horton ⇔ Tokunaga Reducing Horton Scaling relations Models Nutshell #### References III [8] A. Maritan, F. Colaiori, A. Flammini, M. Cieplak, and J. R. Banavar. Universality classes of optimal channel networks. Science, 272:984-986, 1996. pdf [9] S. D. Peckham. New results for self-similar trees with applications to river networks. Water Resources Research, 31(4):1023-1029, 1995. [10] I. Rodríguez-Iturbe and A. Rinaldo. Fractal River Basins: Chance and Self-Organization. Cambridge University Press, Cambrigde, UK, 1997. [11] A. E. Scheidegger. A stochastic model for drainage patterns into an intramontane trench. Bull. Int. Assoc. Sci. Hydrol., 12(1):15-20, 1967. pdf The PoCSverse Branching Networks 81 of 85 Reducing Horton Scaling relations Models Nurshell ### References
IV [12] A. E. Scheidegger. Theoretical Geomorphology. Springer-Verlag, New York, third edition, 1991. [13] R. L. Shreve. Infinite topologically random channel networks. Journal of Geology, 75:178–186, 1967. pdf [14] H. Takayasu. Steady-state distribution of generalized aggregation system with injection. Physcial Review Letters, 63(23):2563–2565, 1989. pdf [15] H. Takayasu, I. Nishikawa, and H. Tasaki. Power-law mass distribution of aggregation systems with injection. Physical Review A, 37(8):3110–3117, 1988. The PoCSverse Branching Networks II 82 of 85 Horton ⇔ Tokunaga Reducing Horton Scaling relations Models Nutshell ### References V [16] M. Takayasu and H. Takayasu. Apparent independency of an aggregation system with injection. Physical Review A, 39(8):4345-4347, 1989. pdf [17] D. G. Tarboton, R. L. Bras, and I. Rodríguez-Iturbe. Comment on "On the fractal dimension of stream networks" by Paolo La Barbera and Renzo Rosso. Water Resources Research, 26(9):2243-4, 1990. pdf [18] E. Tokunaga. The composition of drainage network in Toyohira River Basin and the valuation of Horton's first law. Geophysical Bulletin of Hokkaido University, 15:1–19, 1966. The PoCSverse Branching Networks II 83 of 85 Horton ⇔ Tokunaga Reducing Horton Scaling relations Models ivioucis Nutshell ### References VI [19] E. Tokunaga. Consideration on the composition of drainage networks and their evolution. Geographical Reports of Tokyo Metropolitan University, 13:G1−27, 1978. pdf ✓ [20] E. Tokunaga. Ordering of divide segments and law of divide segment numbers. Transactions of the Japanese Geomorphological Union, 5(2):71–77, 1984. [21] S. D. Willett, S. W. McCoy, J. T. Perron, L. Goren, and C.-Y. Chen. Dynamic reorganization of river basins. Science, 343(6175):1248765, 2014. pdf The PoCSverse Branching Networks II 84 of 85 Horton ⇔ Tokunaga Reducing Horton Scaling relations Models Nutshell #### References VII [22] G. K. Zipf. Human Behaviour and the Principle of Least-Effort. Addison-Wesley, Cambridge, MA, 1949. The PoCSverse Branching Networks II 85 of 85 Horton ⇔ Tokunaga Reducing Horton Scaling relations Models Nutshell