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Piracy on the high x’s:

“Dynamic Reorganization of River Basins” &

— | Willett et al.,
Science, 343, 1248765, 2014. 2]
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Can Horton and Tokunaga be happy?

Horton and Tokunaga seem different:

&5 In terms of network achitecture, Horton’s laws appear to
contain less detailed information than Tokunaga’s law.

&% 0Oddly, Horton’s laws have four parameters and Tokunaga has
two parameters.

& R, R,, Ry and R, versus T) and R;p. One simple
redundancy: R, = R,.
Insert assignment question &

& To make a connection, clearest approach is to start with
Tokunaga’s law ...

& Known result: Tokunaga — Horton (18,19,20,9,2]

Let us make them happy

We need one more ingredient:

Space-fillingness

& A network is space-filling if the average distance between
adjacent streams is roughly constant.

&% Reasonable for river and cardiovascular networks

& For river networks:
Drainage density pyy = inverse of typical distance between
channels in a landscape.

& In terms of basin characteristics:

Q _

w=1

> stream segment lengths
~ =
Pdd basin area aq

More with the happy-making thing

Start with Tokunaga’s law: T}, = T} Rk

&% Start looking for Horton’s stream number law:

& Estimate n,, the number of streams of order w in terms of
othern,/,w > w.

&% Observe that each stream of order w terminates by either:

1. Running into another stream of order w and
generating a stream of order w + 1 ...

P 2n,,, streams of order w do this

2. Running into and being absorbed by a stream of
higher order w’ > w ...

» n_ T, ., streams of order w do this
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More with the happy-making thing

Putting things together:

&

Q
"y, = 2nw+1 + E Tuﬂ—wnw’
romeration W =w+1 i
genera(lon abSOfPthn
&5 Use Tokunaga’s law and manipulate expression to find

Horton’s law for stream numbers follows and hence obtain

R

& Insert assignment question &

&% Solution:

ne

R — (2+Rr+T) £ V2+Rr+T)?—8Ry
" 2

(The larger value is the one we want.)

Finding other Horton ratios

Connect Tokunaga to R,

&% Now use uniform drainage density pgq.
&% Assume side streams are roughly separated by distance 1/pgy.

&% For an order w stream segment, expected length is
w—1
Sopd (14T
k=1
&% Substitute in Tokunaga’s law T}, = T} R

w—1
Sopy (1+Th ZRﬁ_l o« Ry
k=1

Horton and Tokunaga are happy
Altogether then:
&

=5,/5,1=Rr=R,=Rp

&> Recall R, = R, so

&% And from before:

R — 2+ Rp+T) + 2+ Rr+1,)*>—8Ry
L=
2
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Horton and Tokunaga are happy

Some observations:

R, and R, depend on T} and R

Seems that R, must as well ...

Suggests Horton’s laws must contain some redundancy
We'll in fact see that R, = R,,.

Also: Both Tokunaga’s law and Horton’s laws can be
generalized to relationships between non-trivial statistical
distributions. !

Horton and Tokunaga are happy

The other way round

Note: We can invert the expresssions for R,, and R, to find
Tokunaga’s parameters in terms of Horton’s parameters.

R =Ry,

Tl = Rn - RZ -2+ QRZ/RR'

Suggests we should be able to argue that Horton’s laws imply
Tokunaga’s laws (if drainage density is uniform) ...

Horton and Tokunaga are friends

From Horton to Tokunaga )

Assume Horton’s laws hold
for number and length

Start with picture showing
an order w stream and order
w — 1 generating and side
streams.

Scale up by a factor of R,
orders increment tow + 1
and w.

Maintain drainage density
by adding new order w — 1

streams
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...and in detail:

Horton and Tokunaga are friends

Must retain same drainage density.

Add an extra (R, — 1) first order streams for each original

tributary.

Since by definition, an order w + 1 stream segment has T,

order 1 side streams, we have:

T,=(R,—1) (1+§Ti> .
i=1

For large w, Tokunaga’s law is the solution—let’s check ...

Just checking:

Horton and Tokunaga are friends

Substitute Tokunaga’s law T; = T} R}A =T R;'*l into

T, =(R,—1) (1+§Ti>
i—1

Tk_(RZ_l)(

=(R,—1) <1+T1

R
~ (R, — 1)T, =4
(R, )11?.[

1

k—1
1+) TR}~

i=1

R/ —1

k—1

— TlRéc—l

Horton’s laws of area and number:
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Measuring Horton ratios is tricky:

How robust are our estimates of ratios?

Rule of thumb: discard data for two smallest and two largest

orders.
Mississippi:
wrange R, R, R, R, R,/R,
[2,3] 527 526 248 230 100
[27 5} 4.86 4.96 2.42 231 1.02
[2,7] 477 488 240 231  1.02
[3,4) 472 491 241 234 104
[3,6] 470 483 240 235  1.03
[3,8] 460 479 238 234 104
[4,6] 469 481 240 236 102
[4,8] 457 477 238 234 105
[5,7] 468 483 236 229 103
[6,7] 463 476 230 216  1.03
(7,8] 416 467 241 256 112
mean [, 4.69 4.85 2.40 2.33 1.04
stddevo  0.21 0.13 0.04 0.07 0.03
G'/p, 0.045 0.027 0.015 0.031 0.024
Amazon:
wrange R, R, R, R, R,/R,

[2,3] 478 471 247 208  0.99
[2,5] 455 458 232 212 101
[2,7] 442 453 224 210 102
[3,5] 445 452 226 214 101
[3,7] 435 449 220 210 103
[4,6] 438 454 222 218 103
[5,6] 438 462 222 221 106
[6,7] 408 427 205 18 105
meany 442 453 225 210 102
stddevo 017 010 010 009  0.02
o/up 0038 0023 0045 0042 0.019
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Reducing Horton’s laws:

Rough first effort to show R, = R, :

&5 ag oc sum of all stream segment lengths in a order {2 basin
(assuming uniform drainage density)

& So:

Reducing Horton’s laws:

Continued ...

& 0 o
R"L — RS ¢
oo g ) ()

_ R'r? = Rs 1-— (Rs/Rn)Q

Rs lRin 1- (Rs/Rn)

~Ry'5

1
slm asQy N

& So, ag, is growing like RnQ and therefore:

Reducing Horton’s laws:

Not quite:

&5 ...But this only a rough argument as Horton’s laws do not
imply a strict hierarchy

&% Need to account for sidebranching.

&a Insert assignment question 2
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Equipartitioning:

Intriguing division of area:
&% Observe: Combined area of basins of order w independent of
w.

&% Not obvious: basins of low orders not necessarily contained in
basis on higher orders.

& Story:

R, const
&2 Reason:
1
Equipartitioning:
Some examples:
nma\mlalQ nmam/aQ
o o o o o o o o
S 2 2.8 g 2
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Neural Reboot: Fwoompf
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Scaling laws

The story so far:

Natural branching networks are hierarchical, self-similar
structures

Hierarchy is mixed

Tokunaga’s law describes detailed architecture:

T, =T, Rk

‘We have connected Tokunaga’s and Horton’s laws

Only two Horton laws are independent (R, = R,,)

PHH P B

Only two parameters are independent:

(T17 RT) < (Rm Rs)

Scaling laws

A little further ...

& Ignore stream ordering for the moment

& Pick a random location on a branching network p.

&% Each point p is associated with a basin and a longest stream
length

&% Q: What s probability that the p’s drainage basin has area a?
P(a) oca 7 forlargea

&

&

Q: What is probability that the longest stream from p has
length £2 P({) o< {7 forlarge ¢

Roughly observed: 1.3 <7< 1.5and 1.7 S v 5 2.0

Scaling laws

Probability distributions with power-law decays

&% We see them everywhere:
&0 Earthquake magnitudes (Gutenberg-Richter law)
&0 City sizes (Zipfs law)
&0 Word frequency (Zipf’s law) (22]
& Wealth (maybe not—at least heavy tailed)
&0 Statistical mechanics (phase transitions) 6]

& A big part of the story of complex systems

& Arise from mechanisms: growth, randomness, optimization,

& Ourtask s always to illuminate the mechanism ...
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Scaling laws

(We know they deviate from strict laws for low w and high w
but not too much.)

Connecting exponents

&% We have the detailed picture of branching networks
(Tokunaga and Horton)

&% DPlan: Derive P(a) o< a™ " and P({) o< £77 starting with
Tokunaga/Horton story |7 1-?]

&5 Let’s work on P({) ...

&% Our first fudge: assume Horton’s laws hold throughout a
basin of order 2.

&R

&

Next: place stick between teeth. Bite stick. Proceed.

Scaling laws

Finding :

&2 Often useful to work with cumulative distributions, especially
when dealing with power-law distributions.

&% The complementary cumulative distribution turns out to be

most useful:

‘max

£,
P(t)=P(>1)= / P(0)de
.

=0,

&

P.(t)=1-P( <L)

&5 Also known as the exceedance probability.

Scaling laws
Finding :
&% The connection between P(z) and P, (z) when P(z) hasa

power law tail is simple:

& Given P(£) ~ £77 large { then for large enough ¢,

(v=1)

x Uy for £, > ¢,
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Scaling laws

Finding 7:

&% Aim: determine probability of randomly choosing a point on
a network with main stream length > £,

&5 Assume some spatial sampling resolution A

& Landscape is broken up into grid of A x A sites

& Approximate P (£,) as

N, (6;A)

BRI SN

where N (£,; A) is the number of sites with main stream

length > £,.

&% Use Horton’s law of stream segments: 5,,/5,,_; = R, ...

Scaling laws

Finding :
&5 Setl, = Zw forsomel € w <K .

& - Q
N> (Zw; A) ~ Ew/:w+1 nw/g“-’/ /K
N, (0;A) 22/21 le/gw//ﬁ

P> (Zw) =

&5 A’scancel
& Denominator is Qg Pqeq> A CONSLaNt.

&5 So ...using Horton’s laws ...

Scaling laws

Finding 7:
&5 We are here:
- Q ’ ’
P.(f) o Y (1-RY)(5 - R
w'=w+1

Py Cleaning up irrelevant constants:

ris Y (E)

w'=w+1 n

&% Change summation order by substitutingw” = Q — w’.

& Sumisnow fromw” =0tow” =N —w—1 (equivalent to
w =QNdowntow =w+1)
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Q—w—1 Q-w” Q—w—1 w”
_ R R Nutshell
P> (fw) o Z (FS X Z Fn References
w” =0 n w”—0 s
& Since R, > R,and 1 € w < €,
Q—w —w
- R R
P (f,)ox | =2 o "
>( w) Rs RS
again using E::OI a=(a"—1)/(a—1)
. The PoCSverse
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Finding 7: salin
&5 Nearly there: Hlucruadons
Models
_ R —w N Nutshell
P o () e
S

&% Need to express right hand side in terms of Zw.
&5 Recall that Zw o~ lel -1,
&

l,x R =Ry = ewInks
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e Z vfln(R,,,,/Rs)/lnRs

_ Z;(lnR"—lnRé)/lnRa

= §InRa/R+1

& & & P

7—+1
=0,



Scaling laws

Finding :
&% And so we have:

v=1nR, /InR,

< Proceeding in a similar fashion, we can show

"7’227111R,5/1IIR”:271/7‘

Insert assignment question &

&5 Such connections between exponents are called scaling

relations

&% Let’s connect to one last relationship: Hack’s law

Scaling laws

Hack’s law: L]
&

X a

P2} Typically observed that 0.5 < h < 0.7.

&% Use Horton laws to connect h to Horton ratios:

&% Observe:

. (R;z))lnRs/lan

We mentioned there were a good number of ‘laws’:

Relation:

Ty, = Ty (Rp)*!

f, o R¥and @, o< RY

ewWnRy (ewlan)lnRs/lan

Name or description:

Tokunaga’s law

£~ L% self-affinity of single channels
w ny,/Nyy1 = R, Horton’s law of stream numbers
l,,1/0, =R, Horton’slaw of main stream lengths
u+1 /a,, = R, Horton’slaw of basin areas
S.41/5, = R, Horton’s law of stream segment lengths
L, ~L”  scaling of basin widths
P(a) ~ a7 probability of basin areas
P(¢) ~ =7 probability of stream lengths
0~ a" Hack’slaw
a~ LP  scaling of basin areas
A ~a’  Langbein’s law
A~ L¥? variation of Langbein’s law

G/ o [ —InR,/InR,
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Connecting exponents

Only 3 parameters are independent:

e.g.,taked, R, and R,
relation: scaling relation/parameter: [*/
¢~ L4 d
T,=T,(Rp)** Ty,=R,—R,—2+2R,/R,
Rr=R,
w/anrl - Rn Rn
w+1/a 7R Ra:Rn
w+1/€w - Rl RZ = Rs
{~a =InR,/InR,
a~ LP D=d/h
L, ~ " H=d/h—1
Pla)~a " T=2—h
P(l) ~ vy=1/h
A~ d? B=1+h
A~ L¥ p=d
Scheidegger’s model
Directed random networks [+ 12!
&S\\E?%\E\" sqf\g\gﬁ;
-r L v.».»,», ':_}"
}
L" %,
/ }}' {
\\ \ 'S'S'S' gy
L L ‘ ﬂ ’ vg

y w:z N
f{ﬁ f IO

&

P(N) = P() =1/2

&% Functional form of all scaling laws exhibited but exponents

differ from real world 11516 14

&% Useful and interesting test case

A toy model—Scheidegger’s model

Random walk basins:

&% Boundaries of basins are random walks

X

area a
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Scheidegger’s model

Increasing partition of N=64

8 8 8

Scheidegger’s model

Prob for first return of a random walk in (1+1) dimensions

(from CSYS/MATH 300):
&

1
P(n) ~ —=n"3/2,

2ym

and'so P(£) o< £73/2,

& Typical area for a walk of length n is o< n
0o a?/3.

&> FindT =4/3,h=2/3,v
&> NoteT =2 —handy = 1/h.

=3/2,d=1.

3/2,

&% R, and R, have not been derived analytically.

Equipartitioning reexamined:

Recall this story:
n a /a n a la
() %' %
o o o o o o o
S S R S
~ . z .
© . 8 .
@
N . e s .
]
o . -3 o .
€ o . g € o .
~ . El ~ .
B
® . g8 = .
© . §- © .
5 °5 =5
e e u
= B
n.a la,
s o o o

6 8 L 9 S v £ 2 T
Buiuoniued uiseq ajIN

Buluonired uiseq uozewy
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Same data collapse for Mississippi ...
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Directed random networks
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Random subnetworks on a Bethe lattice [/

Dominant theoretical concept for
several decades.

Bethe lattices are fun and tractable.

Led to idea of “Statistical
inevitability” of river network
statistics |7/

But Bethe lattices unconnected
with surfaces.

In fact, Bethe lattices ~ infinite
dimensional spaces (oops).

So let’s move on ...

[11,12]

OV, 5“*3,’5 N

i

s

'f‘"/@;f ;
VAR
A -./".-r;(?.ﬁ §

( AR

LR

)=1/2

& Functional form of all scaling laws exhibited but exponents
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differ from real world 1> ¢

14]

Optimal channel networks

Rodriguez-Tturbe, Rinaldo, et al. (10]

Landscapes h(Z) evolve such that energy dissipation € is
minimized, where

€ ox /d? (flux) x (force) ~ Zathi ~ Za;’

Landscapes obtained numerically give exponents near that of

real networks.

But: numerical method used matters.

And: Maritan et al. find basic universality classes are that of
Scheidegger, self-similar, and a third kind of random

network [
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Theoretical networks

Summary of universality classes:

network
Non-convergent flow
Directed random
Undirected random

Self-similar
OCN’s (I)
OCN’s (II)
OCN’s (III)

Real rivers

h
1
2/3
5/8
1/2
1/2
2/3
3/5

0.5-0.7

— = ol

5/4

1
1
1
1

1.0-1.2

h = { oc a” (Hack’s law).

d={x Lﬁ (stream self-affinity).

Nutshell

Branching networks IT Key Points:

slope.

For scaling laws, only h =

PHH HH SO

nothing rock solid yet ...?
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