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Piracy on the high 𝜒’s:

Dynamic Reorganization of River 
Basins
Sean D. Willett,* Scott W. McCoy, J. Taylor Perron, Liran Goren, Chia-Yu Chen

Introduction: River networks, the backbone of most landscapes on Earth, collect and transport 
water, sediment, organic matter, and nutrients from upland mountain regions to the oceans. 
Dynamic aspects of these networks include channels that shift laterally or expand upstream, ridges 
that migrate across Earth’s surface, and river capture events whereby fl ow from one branch of the 
network is rerouted in a new direction. These processes result in a constantly changing map of the 
network with implications for mass transport and the geographic connectivity between species or 
ecosystems. Ultimately, this dynamic system strives to establish equilibrium between tectonic uplift 
and river erosion. Determining whether or not a river network is in equilibrium, and, if not, what 
changes are required to bring it to equilibrium, will help us understand the processes underlying 
landscape evolution and the implications for river ecosystems.

Methods: We developed the use of a proxy, referred to as χ, for steady-state river channel eleva-
tion. This proxy is based on the current geometry of the river network and provides a snapshot of 
the dynamic state of river basins. Geometric equilibrium in planform requires that a network map 
of χ exhibit equal values across all water divides (the ridges separating river basins). Disequilibrium 
river networks adjust their drainage area through divide migration (geometric change) or river 
capture (topologic change) until this condition is met. We constructed a numerical model to demon-
strate that this is a fundamental characteristic of a stable river network. We applied this principle to 
natural landscapes using digital elevation models to calculate χ for three, very different, systems: 
the Loess Plateau in China, the eastern Central Range of Taiwan, and the southeastern United States. 

Results: The Loess Plateau is close to geometric equilibrium, with χ exhibiting nearly equal values 
across water divides. By contrast, the young and tectonically active Taiwan mountain belt is not in 
equilibrium, with numerous examples of actively migrating water divides and river network reor-
ganization. The southeastern United States also appears to be far from equilibrium, with the Blue 
Ridge escarpment migrating to the northwest and the coastal plain rivers reorganizing in response 
to this change in boundary geom-
etry. Major reorganization events, 
such as the capture of the head-
waters of the Apalachicola River 
by the Savannah River, are readily 
identifi able in our maps.

Discussion: Disequilibrium con-
ditions in a river network imply 
greater variation of weathering, 
soil production, and erosion rates. 
Disequilibrium also implies more 
frequent river capture with impli-
cations for exchange of aquatic 
species and genetic diversifica-
tion. Transient conditions in river 
basins are often interpreted in 
terms of tectonic perturbation, but 
our results show that river basin 
reorganization can occur even in 
tectonically quiescent regions such 
as the southeastern United States.

FIGURES IN THE FULL ARTICLE

Fig. 1. River basins and river profi les in 

equilibrium and disequilibrium.

Fig. 2. Effect of drainage area change on χ.

Fig. 3. Numerical model of drainage divide 

migration.

Fig. 4. Map of χ for part of the Loess Plateau, 

China.

Fig. 5. Map and perspective views of χ for 

part of the eastern Central Range, Taiwan.

Fig. 6. Map of χ in river basins of the 

southeastern United States.

Fig. 7. The Savannah and Apalachicola river 

capture.

Fig. 8. Disequilibrium basins of the North 

Carolina coastal plain.

SUPPLEMENTARY MATERIALS

Figs. S1 to S15
Tables S1 and S2
Movie S1
Databases S1 to S9

Maps of χ for two river networks. (A) Part of the 
Loess Plateau, China. The values of χ are nearly equal 
across drainage divides at all scales, indicating that 
the river is in topologic and geometric equilibrium. 
Map is centered on 37°4' N 109°35' E. (B) Part of the 
coastal plain of North Carolina, southeastern United 
States. Large discontinuities in χ across divides indi-
cate that the network is not in geometric equilibrium. 
Water divides generally move in the direction of 
higher χ to achieve equilibrium, so subbasins with 
prominent high values of χ are inferred to be shrink-
ing and will eventually disappear. Map is centered on 
35°10' N 79°8' W.
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For the simple case of U and K constant in space
and time, the steady-state solution of Eq. 1 is

zðxÞ ¼ zb þ
U
KAm

0

! "1
n

c ð2Þ

where zb is the elevation at the river network’s
base level at x = xb. The quantity c is an integral
function of position in the channel network (29),

c ¼ ∫
x

xb

A0

Aðx′Þ

! "m
n

dx′ ð3Þ

where A0 is an arbitrary scaling area, and the
integration is performed upstream from base lev-
el to location x. c is the characteristic parameter
for transient solutions of the linear (n = 1) version
of Eq. 1 (30), and it remains the fundamental
scaling parameter for the nonlinear case. The in-
clusion of the scaling area, A0, gives c dimen-
sions of length, but the kinematic wave nature of
Eq. 1 implies that c could equally well represent
a time. In particular, if KnA0

m is included in the
denominator of the integrand, c takes on dimen-
sions of time and, for the case of n = 1, it becomes
the characteristic time required for a perturbation
at the river’s base level to reach a point x in the
channel (12).

The term in parentheses in Eq. 2 represents
the relative magnitudes of tectonic forcing and
erosivity, and scales the magnitude of elevation.
The parameter c characterizes the river network
topology and geometry, which determine how
tectonic forcing generates variable topography
throughout a river basin. Given the linear form of
Eq. 2, it is apparent that c serves as a metric for
the steady-state elevation of a channel at location
x. Thus, with constant tectonic forcing and homo-
geneous physical properties, a difference inc across
a divide implies disequilibrium and, presumably,
motion of the divide in the direction of larger c to
achieve equilibrium (Fig. 1). This observation is
the basis for our subsequent analysis: Mapping c
throughout a channel network and comparing c
values across drainage divides yield a snapshot of
the dynamic reshaping of drainage basins.

Elevation-c Scaling with Changing
Drainage Area
As a divide moves, either by continuous mi-
gration or through discrete river capture, drainage
area is removed from one basin and added to the
other. The channel length of each affected tribu-
tary also changes, leading to a change in the steady-
state elevation of each channel head bounding the
moving divide, presumably moving the channels
toward equilibrium as in Fig. 1. However, analy-
sis of a simplified scenario—the effect of a sud-
den change in drainage area on an equilibrium
elevation profile (see Materials and Methods)—
illustrates a feedback between erosion rate and
divide motion that complicates this system. An
instantaneous change in area induces an instan-
taneous change in c, throwing the affected profile
into a state of disequilibrium. Figure 2 shows the

change in the c plot (elevation against c) of the
perturbed channel for a given fractional increase
or decrease of the upstream area. Area gain shifts
the c plot to the left, above the steady-state trend,
and increases its length and thereby its maximum
c value, whereas area loss shifts the profile to the
right, below the steady-state trend, and decreases
its length and maximum c value. A channel that
lies above the steady-state trend on a c plot erodes
faster, on average, than the tectonic uplift rate (29),
so a channel gaining area experiences an increase
in average erosion rate, whereas a channel losing
area experiences a decrease in average erosion rate.
Branches of the channel network that connect to
the affected channels do not necessarily experi-
ence any change in channel length, but they do ex-
perience the indirect effect of the change in erosion
rate that propagates throughout the basin. This de-
fines an important positive feedback in the system:
A transfer of drainage area from one basin to an-
other leads to changes throughout the affected
drainage basins that encourage motion of the en-
tire perimeters of the basins in the same direction
as the original perturbation. The ultimate configu-
ration of drainage divides if andwhen a landscape

reaches equilibrium depends on the nonlinear
interactions of multiple adjacent drainage basins
and cannot easily be predicted. Here, we focus
only on the local direction of dividemotion toward
equilibrium, but we identify some situations in
which the positive feedback appears to dominate.

Spatial Variations in Uplift Rate, Runoff,
or Rock Erodibility
IfU or K varies in space, and these variations are
known, the solution for elevation can still be ob-
tained by integration of Eq. 1. In practice, how-
ever, U and K are seldom known. It is more
common to have information about relative val-
ues or spatial patterns. For example, uplift rate
may vary across a fault; precipitation and runoff,
which are included in K, may have a persistent
spatial pattern; or rock erodibility may vary with
rock type with a spatial distribution known from
geologic mapping. If we express the spatial pat-
tern of uplift and rock erodibility in terms of non-
dimensional functions of space, U* and K*, we
can bring this variability inside the definition of
c without changing its dimensionality. Defining
the uplift and erodibility as U = U0U

*(x) and
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Fig. 1. River basins and river profiles in equilibrium and disequilibrium. (A andB) Change in size
and shape of two drainage basins that share a common divide as they evolve from (A) a state of dis-
equilibrium to (B) a steady state. The parameter c (Eq. 3) provides a prediction of the steady-state
elevation for a given point on a channel. The basin on the left (aggressor) has lower steady-state elevation
at channel heads and therefore drives the drainage divide toward the basin on the right (victim). (C andD)
The lower panels show the evolution of the elevation of two channels that meet at the shared divide with
respect to (C) c and (D) distance along the channel. The slopes above the channel head attain a symmetric
form at steady state, but do not differ strongly from this form under disequilibrium conditions. The
disequilibrium channel profiles in (C) show that c is discontinuous across the drainage divide, with larger
c values in the “victim” basin. At steady state, all channel points in both basins lie on a single linear trend,
subject to the assumptions described in the text. Note that changes in elevation are subtle, whereas
changes in c are marked.
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CanHorton and Tokunaga be happy?

Horton and Tokunaga seem different:
� In terms of network achitecture, Horton’s laws appear to

contain less detailed information than Tokunaga’s law.
� Oddly, Horton’s laws have four parameters and Tokunaga has

two parameters.
� 𝑅𝑛,𝑅𝑎,𝑅ℓ, and𝑅𝑠 versus 𝑇1 and𝑅𝑇. One simple

redundancy: 𝑅ℓ = 𝑅𝑠.
Insert assignment question�

� Tomake a connection, clearest approach is to start with
Tokunaga’s law …

� Known result: Tokunaga→Horton [18, 19, 20, 9, 2]
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Let us make them happy

We need one more ingredient:

Space-fillingness
� A network is space-filling if the average distance between

adjacent streams is roughly constant.
� Reasonable for river and cardiovascular networks
� For river networks:

Drainage density 𝜌dd = inverse of typical distance between
channels in a landscape.

� In terms of basin characteristics:

𝜌dd ≃
∑ stream segment lengths

basin area
=

∑Ω
𝜔=1 𝑛𝜔 ̄𝑠𝜔

𝑎Ω
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More with the happy-making thing

Start with Tokunaga’s law: 𝑇𝑘 = 𝑇1𝑅𝑘−1
𝑇

� Start looking for Horton’s stream number law:
𝑛𝜔/𝑛𝜔+1 = 𝑅𝑛.

� Estimate 𝑛𝜔, the number of streams of order 𝜔 in terms of
other 𝑛𝜔′ , 𝜔′ > 𝜔.

� Observe that each stream of order 𝜔 terminates by either:
ω=3

ω=4

ω=3

ω=3

ω=4

ω=4

1. Running into another stream of order 𝜔 and
generating a stream of order 𝜔 + 1…

▶ 2𝑛𝜔+1 streams of order𝜔 do this

2. Running into and being absorbed by a stream of
higher order 𝜔′ > 𝜔…

▶ 𝑛𝜔′𝑇𝜔′−𝜔 streams of order𝜔 do this
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More with the happy-making thing

Putting things together:
�

𝑛𝜔 = 2𝑛𝜔+1⏟
generation

+
Ω
∑

𝜔′=𝜔+1
𝑇𝜔′−𝜔𝑛𝜔′⏟
absorption

� Use Tokunaga’s law and manipulate expression to find
Horton’s law for stream numbers follows and hence obtain
𝑅𝑛.

� Insert assignment question�
� Solution:

𝑅𝑛 =
(2 + 𝑅𝑇 + 𝑇1) ±√(2 + 𝑅𝑇 + 𝑇1)2 − 8𝑅𝑇

2

(The larger value is the one we want.)
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Finding other Horton ratios

Connect Tokunaga to𝑅𝑠

� Now use uniform drainage density 𝜌dd.
� Assume side streams are roughly separated by distance 1/𝜌dd.
� For an order 𝜔 stream segment, expected length is

̄𝑠𝜔 ≃ 𝜌−1
dd (1 +

𝜔−1
∑
𝑘=1

𝑇𝑘)

� Substitute in Tokunaga’s law 𝑇𝑘 = 𝑇1𝑅𝑘−1
𝑇 :

̄𝑠𝜔 ≃ 𝜌−1
dd (1 + 𝑇1

𝜔−1
∑
𝑘=1

𝑅 𝑘−1
𝑇 ) ∝ 𝑅 𝜔

𝑇
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Horton and Tokunaga are happy

Altogether then:
�

⇒ ̄𝑠𝜔/ ̄𝑠𝜔−1 = 𝑅𝑇 ⇒ 𝑅𝑠 = 𝑅𝑇

� Recall𝑅ℓ = 𝑅𝑠 so

𝑅ℓ = 𝑅𝑠 = 𝑅𝑇

� And from before:

𝑅𝑛 =
(2 + 𝑅𝑇 + 𝑇1) +√(2 + 𝑅𝑇 + 𝑇1)2 − 8𝑅𝑇

2
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Horton and Tokunaga are happy

Some observations:
� 𝑅𝑛 and𝑅ℓ depend on 𝑇1 and𝑅𝑇.
� Seems that𝑅𝑎 must as well …
� Suggests Horton’s laws must contain some redundancy
� We’ll in fact see that𝑅𝑎 = 𝑅𝑛.
� Also: Both Tokunaga’s law and Horton’s laws can be

generalized to relationships between non-trivial statistical
distributions. [3, 4]
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Horton and Tokunaga are happy

The other way round
� Note: We can invert the expresssions for𝑅𝑛 and𝑅ℓ to find

Tokunaga’s parameters in terms of Horton’s parameters.
�

𝑅𝑇 = 𝑅ℓ,

�

𝑇1 = 𝑅𝑛 −𝑅ℓ − 2 + 2𝑅ℓ/𝑅𝑛.

� Suggests we should be able to argue that Horton’s laws imply
Tokunaga’s laws (if drainage density is uniform) …
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Horton and Tokunaga are friends

FromHorton to Tokunaga [2]

(c)

(×R
s
)

(a)

(b)

� Assume Horton’s laws hold
for number and length

� Start with picture showing
an order 𝜔 stream and order
𝜔 − 1 generating and side
streams.

� Scale up by a factor of𝑅ℓ,
orders increment to 𝜔 + 1
and 𝜔.

� Maintain drainage density
by adding new order 𝜔 − 1
streams
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Horton and Tokunaga are friends

…and in detail:
� Must retain same drainage density.
� Add an extra (𝑅ℓ − 1) first order streams for each original

tributary.
� Since by definition, an order 𝜔 + 1 stream segment has 𝑇𝜔

order 1 side streams, we have:

𝑇𝑘 = (𝑅ℓ − 1)(1 +
𝑘−1
∑
𝑖=1

𝑇𝑖).

� For large 𝜔, Tokunaga’s law is the solution—let’s check …
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Horton and Tokunaga are friends

Just checking:
� Substitute Tokunaga’s law 𝑇𝑖 = 𝑇1𝑅 𝑖−1

𝑇 = 𝑇1𝑅 𝑖−1
ℓ into

𝑇𝑘 = (𝑅ℓ − 1)(1 +
𝑘−1
∑
𝑖=1

𝑇𝑖)

�

𝑇𝑘 = (𝑅ℓ − 1)(1 +
𝑘−1
∑
𝑖=1

𝑇1𝑅 𝑖−1
ℓ )

= (𝑅ℓ − 1)(1 + 𝑇1
𝑅 𝑘−1

ℓ − 1
𝑅ℓ − 1

)

≃ (𝑅ℓ − 1)𝑇1
𝑅 𝑘−1

ℓ
𝑅ℓ − 1

= 𝑇1𝑅𝑘−1
ℓ …yep.
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Horton’s laws of area and number:
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� In bottom plots, stream number graph has been flipped
vertically.

� Highly suggestive that𝑅𝑛 ≡ 𝑅𝑎 …
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Measuring Horton ratios is tricky:

� How robust are our estimates of ratios?
� Rule of thumb: discard data for two smallest and two largest

orders.
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Mississippi:

𝜔 range 𝑅𝑛 𝑅𝑎 𝑅ℓ 𝑅𝑠 𝑅𝑎/𝑅𝑛
[2, 3] 5.27 5.26 2.48 2.30 1.00
[2, 5] 4.86 4.96 2.42 2.31 1.02
[2, 7] 4.77 4.88 2.40 2.31 1.02
[3, 4] 4.72 4.91 2.41 2.34 1.04
[3, 6] 4.70 4.83 2.40 2.35 1.03
[3, 8] 4.60 4.79 2.38 2.34 1.04
[4, 6] 4.69 4.81 2.40 2.36 1.02
[4, 8] 4.57 4.77 2.38 2.34 1.05
[5, 7] 4.68 4.83 2.36 2.29 1.03
[6, 7] 4.63 4.76 2.30 2.16 1.03
[7, 8] 4.16 4.67 2.41 2.56 1.12
mean 𝜇 4.69 4.85 2.40 2.33 1.04
std dev 𝜎 0.21 0.13 0.04 0.07 0.03
𝜎/𝜇 0.045 0.027 0.015 0.031 0.024
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Amazon:

𝜔 range 𝑅𝑛 𝑅𝑎 𝑅ℓ 𝑅𝑠 𝑅𝑎/𝑅𝑛
[2, 3] 4.78 4.71 2.47 2.08 0.99
[2, 5] 4.55 4.58 2.32 2.12 1.01
[2, 7] 4.42 4.53 2.24 2.10 1.02
[3, 5] 4.45 4.52 2.26 2.14 1.01
[3, 7] 4.35 4.49 2.20 2.10 1.03
[4, 6] 4.38 4.54 2.22 2.18 1.03
[5, 6] 4.38 4.62 2.22 2.21 1.06
[6, 7] 4.08 4.27 2.05 1.83 1.05
mean 𝜇 4.42 4.53 2.25 2.10 1.02
std dev 𝜎 0.17 0.10 0.10 0.09 0.02
𝜎/𝜇 0.038 0.023 0.045 0.042 0.019
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Reducing Horton’s laws:

Rough first effort to show𝑅𝑛 ≡ 𝑅𝑎:
� 𝑎Ω ∝ sum of all stream segment lengths in a orderΩ basin

(assuming uniform drainage density)
� So:

𝑎Ω ≃
Ω
∑
𝜔=1

𝑛𝜔 ̄𝑠𝜔/𝜌dd

∝
Ω
∑
𝜔=1

𝑅 Ω−𝜔
𝑛 ⋅

𝑛Ω

⏞1⏟⏟⏟⏟⏟
𝑛𝜔

̄𝑠1 ⋅ 𝑅 𝜔−1
𝑠⏟⏟⏟⏟⏟

̄𝑠𝜔

= 𝑅 Ω
𝑛

𝑅𝑠
̄𝑠1

Ω
∑
𝜔=1

(𝑅𝑠
𝑅𝑛

)
𝜔
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Reducing Horton’s laws:

Continued …
�

𝑎Ω ∝ 𝑅Ω
𝑛

𝑅𝑠
̄𝑠1

Ω
∑
𝜔=1

(𝑅𝑠
𝑅𝑛

)
𝜔

= 𝑅Ω
𝑛

𝑅𝑠
̄𝑠1
𝑅𝑠
𝑅𝑛

1 − (𝑅𝑠/𝑅𝑛)Ω

1 − (𝑅𝑠/𝑅𝑛)

∼ 𝑅Ω−1
𝑛 ̄𝑠1

1
1 − (𝑅𝑠/𝑅𝑛)

asΩ ↗

� So, 𝑎Ω is growing like𝑅 Ω
𝑛 and therefore:

𝑅𝑛 ≡ 𝑅𝑎
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Reducing Horton’s laws:

Not quite:
� …But this only a rough argument as Horton’s laws do not

imply a strict hierarchy
� Need to account for sidebranching.
� Insert assignment question�

The PoCSverse
Branching Networks
II
25 of 82
Horton⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

References

Equipartitioning:

Intriguing division of area:
� Observe: Combined area of basins of order 𝜔 independent of

𝜔.
� Not obvious: basins of low orders not necessarily contained in

basis on higher orders.
� Story:

𝑅𝑛 ≡ 𝑅𝑎 ⇒ 𝑛𝜔 ̄𝑎𝜔 = const

� Reason:
𝑛𝜔 ∝ (𝑅𝑛)−𝜔

̄𝑎𝜔 ∝ (𝑅𝑎)𝜔 ∝ 𝑛−1
𝜔
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Equipartitioning:
Some examples:

1
2

3
4

5
6

7
8

9
10

11
0

0.2

0.4

0.6

0.8 1

ω

nω aω / aΩ

M
ississippi basin partitioning

[source=/data6/dodds/work/rivers/dems/mississippi/figures/figequipart_mispi.ps]

[15−Dec−2000 peter dodds]

1
2

3
4

5
6

7
8

9
10

11
0

0.2

0.4

0.6

0.8 1

ω

nω aω / aΩ

A
m

azon basin partitioning

[source=/data6/dodds/work/rivers/dems/amazon/figures/figequipart_amazon.ps]

[15−Dec−2000 peter dodds]

1
2

3
4

5
6

7
8

9
10

0

0.2

0.4

0.6

0.8 1

ω

nω aω / aΩ

N
ile basin partitioning

[source=/data11/dodds/work/rivers/dems/HYDRO1K/africa/nile/figures/figequipart_nile.ps]

[15−Dec−2000 peter dodds] The PoCSverse
Branching Networks
II
27 of 82
Horton⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

References
Neural Reboot: Fwoompf
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Scaling laws

The story so far:
� Natural branching networks are hierarchical, self-similar

structures
� Hierarchy is mixed
� Tokunaga’s law describes detailed architecture:

𝑇𝑘 = 𝑇1𝑅𝑘−1
𝑇 .

� We have connected Tokunaga’s and Horton’s laws
� Only two Horton laws are independent (𝑅𝑛 = 𝑅𝑎)
� Only two parameters are independent:

(𝑇1, 𝑅𝑇) ⇔ (𝑅𝑛, 𝑅𝑠)
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A little further …
� Ignore stream ordering for the moment
� Pick a random location on a branching network 𝑝.
� Each point 𝑝 is associated with a basin and a longest stream

length
� Q:What is probability that the 𝑝’s drainage basin has area 𝑎?

𝑃(𝑎) ∝ 𝑎−𝜏 for large 𝑎
� Q:What is probability that the longest stream from 𝑝 has

length ℓ? 𝑃(ℓ) ∝ ℓ−𝛾 for large ℓ
� Roughly observed: 1.3 ≲ 𝜏 ≲ 1.5 and 1.7 ≲ 𝛾 ≲ 2.0
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Probability distributions with power-law decays
� We see them everywhere:

� Earthquake magnitudes (Gutenberg-Richter law)
� City sizes (Zipf’s law)
� Word frequency (Zipf’s law) [22]
� Wealth (maybe not—at least heavy tailed)
� Statistical mechanics (phase transitions) [5]

� A big part of the story of complex systems
� Arise frommechanisms: growth, randomness, optimization,

…
� Our task is always to illuminate the mechanism …
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Connecting exponents
� We have the detailed picture of branching networks

(Tokunaga and Horton)
� Plan: Derive 𝑃(𝑎) ∝ 𝑎−𝜏 and 𝑃(ℓ) ∝ ℓ−𝛾 starting with

Tokunaga/Horton story [17, 1, 2]

� Let’s work on 𝑃(ℓ)…
� Our first fudge: assume Horton’s laws hold throughout a

basin of orderΩ.
� (We know they deviate from strict laws for low 𝜔 and high 𝜔

but not too much.)
� Next: place stick between teeth. Bite stick. Proceed.
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Scaling laws

Finding 𝛾:
� Often useful to work with cumulative distributions, especially

when dealing with power-law distributions.
� The complementary cumulative distribution turns out to be

most useful:

𝑃>(ℓ∗) = 𝑃(ℓ > ℓ∗) = ∫
ℓmax

ℓ=ℓ∗

𝑃(ℓ)dℓ

�

𝑃>(ℓ∗) = 1 − 𝑃(ℓ < ℓ∗)

� Also known as the exceedance probability.
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Finding 𝛾:
� The connection between 𝑃(𝑥) and 𝑃>(𝑥)when 𝑃(𝑥) has a

power law tail is simple:
� Given 𝑃(ℓ) ∼ ℓ−𝛾 large ℓ then for large enough ℓ∗

𝑃>(ℓ∗) = ∫
ℓmax

ℓ=ℓ∗

𝑃(ℓ) dℓ

∼ ∫
ℓmax

ℓ=ℓ∗

ℓ−𝛾dℓ

= ℓ−(𝛾−1)

−(𝛾 − 1)
∣
ℓmax

ℓ=ℓ∗

∝ ℓ−(𝛾−1)
∗ for ℓmax ≫ ℓ∗

The PoCSverse
Branching Networks
II
34 of 82
Horton⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

References

Scaling laws

Finding 𝛾:
� Aim: determine probability of randomly choosing a point on

a network with main stream length> ℓ∗

� Assume some spatial sampling resolutionΔ
� Landscape is broken up into grid ofΔ×Δ sites
� Approximate 𝑃>(ℓ∗) as

𝑃>(ℓ∗) =
𝑁>(ℓ∗;Δ)
𝑁>(0;Δ)

.

where𝑁>(ℓ∗;Δ) is the number of sites with main stream
length> ℓ∗.

� Use Horton’s law of stream segments: ̄𝑠𝜔/ ̄𝑠𝜔−1 = 𝑅𝑠 …
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Finding 𝛾:
� Set ℓ∗ = ̄ℓ𝜔 for some 1 ≪ 𝜔 ≪ Ω.
�

𝑃>( ̄ℓ𝜔) =
𝑁>( ̄ℓ𝜔;Δ)
𝑁>(0;Δ)

≃
∑Ω

𝜔′=𝜔+1 𝑛𝜔′ ̄𝑠𝜔′/��Δ

∑Ω
𝜔′=1 𝑛𝜔′ ̄𝑠𝜔′/��Δ

� Δ’s cancel
� Denominator is 𝑎Ω𝜌dd, a constant.
� So …using Horton’s laws …

𝑃>( ̄ℓ𝜔) ∝
Ω
∑

𝜔′=𝜔+1
𝑛𝜔′ ̄𝑠𝜔′ ≃

Ω
∑

𝜔′=𝜔+1
(1⋅𝑅Ω−𝜔′

𝑛 )( ̄𝑠1⋅𝑅𝜔′−1
𝑠 )

The PoCSverse
Branching Networks
II
36 of 82
Horton⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

References

Scaling laws

Finding 𝛾:
� We are here:

𝑃>( ̄ℓ𝜔) ∝
Ω
∑

𝜔′=𝜔+1
(1 ⋅ 𝑅Ω−𝜔′

𝑛 )( ̄𝑠1 ⋅ 𝑅𝜔′−1
𝑠 )

� Cleaning up irrelevant constants:

𝑃>( ̄ℓ𝜔) ∝
Ω
∑

𝜔′=𝜔+1
(𝑅𝑠
𝑅𝑛

)
𝜔′

� Change summation order by substituting 𝜔″ = Ω− 𝜔′.
� Sum is now from 𝜔″ = 0 to 𝜔″ = Ω− 𝜔 − 1 (equivalent to

𝜔′ = Ω down to 𝜔′ = 𝜔 + 1)
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Finding 𝛾:
�

𝑃>( ̄ℓ𝜔) ∝
Ω−𝜔−1
∑

𝜔″=0
(𝑅𝑠
𝑅𝑛

)
Ω−𝜔″

∝
Ω−𝜔−1
∑

𝜔″=0
(𝑅𝑛
𝑅𝑠

)
𝜔″

� Since𝑅𝑛 > 𝑅𝑠 and 1 ≪ 𝜔 ≪ Ω,

𝑃>( ̄ℓ𝜔) ∝ (𝑅𝑛
𝑅𝑠

)
Ω−𝜔

∝ (𝑅𝑛
𝑅𝑠

)
−𝜔

again using∑𝑛−1
𝑖=0 𝑎𝑖 = (𝑎𝑛 − 1)/(𝑎 − 1)
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Finding 𝛾:
� Nearly there:

𝑃>( ̄ℓ𝜔) ∝ (𝑅𝑛
𝑅𝑠

)
−𝜔

= 𝑒−𝜔ln(𝑅𝑛/𝑅𝑠)

� Need to express right hand side in terms of ̄ℓ𝜔.
� Recall that ̄ℓ𝜔 ≃ ̄ℓ1𝑅𝜔−1

ℓ .
�

̄ℓ𝜔 ∝ 𝑅𝜔
ℓ = 𝑅𝜔

𝑠 = 𝑒𝜔ln𝑅𝑠
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Finding 𝛾:
� Therefore:

𝑃>( ̄ℓ𝜔) ∝ 𝑒−𝜔ln(𝑅𝑛/𝑅𝑠) = (𝑒𝜔ln𝑅𝑠)−ln(𝑅𝑛/𝑅𝑠)/ln(𝑅𝑠)

�

∝ ̄ℓ𝜔
−ln(𝑅𝑛/𝑅𝑠)/ln𝑅𝑠

�

= ̄ℓ−(ln𝑅𝑛−ln𝑅𝑠)/ln𝑅𝑠𝜔

�

= ̄ℓ−ln𝑅𝑛/ln𝑅𝑠+1
𝜔

�

= ̄ℓ−𝛾+1
𝜔
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Finding 𝛾:
� And so we have:

𝛾 = ln𝑅𝑛/ln𝑅𝑠

� Proceeding in a similar fashion, we can show

𝜏 = 2 − ln𝑅𝑠/ln𝑅𝑛 = 2 − 1/𝛾

Insert assignment question�
� Such connections between exponents are called scaling

relations
� Let’s connect to one last relationship: Hack’s law
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Hack’s law: [6]

�

ℓ ∝ 𝑎ℎ

� Typically observed that 0.5 ≲ ℎ ≲ 0.7.
� Use Horton laws to connect ℎ to Horton ratios:

̄ℓ𝜔 ∝ 𝑅𝜔
𝑠 and ̄𝑎𝜔 ∝ 𝑅𝜔

𝑛

� Observe:

̄ℓ𝜔 ∝ 𝑒𝜔ln𝑅𝑠 ∝ (𝑒𝜔ln𝑅𝑛)ln𝑅𝑠/ln𝑅𝑛

∝ (𝑅𝜔
𝑛 )ln𝑅𝑠/ln𝑅𝑛 ∝ ̄𝑎 ln𝑅𝑠/ln𝑅𝑛𝜔 ⇒ ℎ = ln𝑅𝑠/ln𝑅𝑛
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Wementioned there were a good number of ‘laws’: [2]

Relation: Name or description:

𝑇𝑘 = 𝑇1(𝑅𝑇)𝑘−1 Tokunaga’s law
ℓ ∼ 𝐿𝑑 self-affinity of single channels

𝑛𝜔/𝑛𝜔+1 = 𝑅𝑛 Horton’s law of stream numbers
̄ℓ𝜔+1/ ̄ℓ𝜔 = 𝑅ℓ Horton’s law of main stream lengths
̄𝑎𝜔+1/ ̄𝑎𝜔 = 𝑅𝑎 Horton’s law of basin areas
̄𝑠𝜔+1/ ̄𝑠𝜔 = 𝑅𝑠 Horton’s law of stream segment lengths

𝐿⟂ ∼ 𝐿𝐻 scaling of basin widths
𝑃(𝑎) ∼ 𝑎−𝜏 probability of basin areas
𝑃(ℓ) ∼ ℓ−𝛾 probability of stream lengths

ℓ ∼ 𝑎ℎ Hack’s law
𝑎 ∼ 𝐿𝐷 scaling of basin areas
Λ ∼ 𝑎𝛽 Langbein’s law
𝜆 ∼ 𝐿𝜑 variation of Langbein’s law

The PoCSverse
Branching Networks
II
43 of 82
Horton⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

References

Connecting exponents

Only 3 parameters are independent:
e.g., take 𝑑,𝑅𝑛, and𝑅𝑠

relation: scaling relation/parameter: [2]
ℓ ∼ 𝐿𝑑 𝑑

𝑇𝑘 = 𝑇1(𝑅𝑇)𝑘−1 𝑇1 = 𝑅𝑛 −𝑅𝑠 − 2 + 2𝑅𝑠/𝑅𝑛
𝑅𝑇 = 𝑅𝑠

𝑛𝜔/𝑛𝜔+1 = 𝑅𝑛 𝑅𝑛
̄𝑎𝜔+1/ ̄𝑎𝜔 = 𝑅𝑎 𝑅𝑎 = 𝑅𝑛
̄ℓ𝜔+1/ ̄ℓ𝜔 = 𝑅ℓ 𝑅ℓ = 𝑅𝑠

ℓ ∼ 𝑎ℎ ℎ = ln𝑅𝑠/ ln𝑅𝑛
𝑎 ∼ 𝐿𝐷 𝐷 = 𝑑/ℎ
𝐿⟂ ∼ 𝐿𝐻 𝐻 = 𝑑/ℎ − 1
𝑃(𝑎) ∼ 𝑎−𝜏 𝜏 = 2 − ℎ
𝑃(ℓ) ∼ ℓ−𝛾 𝛾 = 1/ℎ
Λ ∼ 𝑎𝛽 𝛽 = 1 + ℎ
𝜆 ∼ 𝐿𝜑 𝜑 = 𝑑
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Scheidegger’s model

Directed random networks [11, 12]

�

𝑃(↘) = 𝑃(↙) = 1/2

� Functional form of all scaling laws exhibited but exponents
differ from real world [15, 16, 14]

� Useful and interesting test case
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A toy model—Scheidegger’s model

Random walk basins:
� Boundaries of basins are random walks

n

x

  area a
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Scheidegger’s model

n

2

6 6

8 8 8 8

9 9Increasing partition of N=64

x
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Scheidegger’s model

Prob for first return of a random walk in (1+1) dimensions
(from CSYS/MATH 300):
�

𝑃(𝑛) ∼ 1
2
√
𝜋
𝑛−3/2.

and so 𝑃(ℓ) ∝ ℓ−3/2.
� Typical area for a walk of length 𝑛 is∝ 𝑛3/2:

ℓ ∝ 𝑎2/3.

� Find 𝜏 = 4/3, ℎ = 2/3, 𝛾 = 3/2, 𝑑 = 1.
� Note 𝜏 = 2 − ℎ and 𝛾 = 1/ℎ.
� 𝑅𝑛 and𝑅ℓ have not been derived analytically.
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Equipartitioning reexamined:
Recall this story:
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Equipartitioning

� What about
𝑃(𝑎) ∼ 𝑎−𝜏 ?

� Since 𝜏 > 1, suggests no equipartitioning:

𝑎𝑃(𝑎) ∼ 𝑎−𝜏+1 ≠ const

� 𝑃(𝑎) overcounts basins within basins …
� while stream ordering separates basins …
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Fluctuations

Moving beyond the mean:
� Both Horton’s laws and Tokunaga’s law relate average

properties, e.g.,
̄𝑠𝜔/ ̄𝑠𝜔−1 = 𝑅𝑠

� Natural generalization to consider relationships between
probability distributions

� Yields rich and full description of branching network
structure

� See into the heart of randomness …
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A toy model—Scheidegger’s model

Directed random networks [11, 12]

�

𝑃(↘) = 𝑃(↙) = 1/2

� Flow is directed downwards
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Generalizing Horton’s laws

�

̄ℓ𝜔 ∝ (𝑅ℓ)𝜔 ⇒ 𝑁(ℓ|𝜔) = (𝑅𝑛𝑅ℓ)−𝜔𝐹ℓ(ℓ/𝑅𝜔
ℓ )

� ̄𝑎𝜔 ∝ (𝑅𝑎)𝜔 ⇒ 𝑁(𝑎|𝜔) = (𝑅2
𝑛)−𝜔𝐹𝑎(𝑎/𝑅𝜔

𝑛)
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� Scaling collapse works well for intermediate orders
� All moments grow exponentially with order
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Generalizing Horton’s laws

� Howwell does overall basin fit internal pattern?
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� Actual length = 4920 km (at
1 km res)

� PredictedMean length =
11100 km

� Predicted Std dev = 5600
km

� Actual length/Mean length
= 44 %

� Okay.
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Generalizing Horton’s laws

Comparison of predicted versus measured main stream lengths for
large scale river networks (in 103 km):

basin: ℓΩ
̄ℓΩ 𝜎ℓ ℓΩ/ ̄ℓΩ 𝜎ℓ/ ̄ℓΩ

Mississippi 4.92 11.10 5.60 0.44 0.51
Amazon 5.75 9.18 6.85 0.63 0.75
Nile 6.49 2.66 2.20 2.44 0.83
Congo 5.07 10.13 5.75 0.50 0.57
Kansas 1.07 2.37 1.74 0.45 0.73

𝑎Ω ̄𝑎Ω 𝜎𝑎 𝑎Ω/ ̄𝑎Ω 𝜎𝑎/ ̄𝑎Ω
Mississippi 2.74 7.55 5.58 0.36 0.74
Amazon 5.40 9.07 8.04 0.60 0.89
Nile 3.08 0.96 0.79 3.19 0.82
Congo 3.70 10.09 8.28 0.37 0.82
Kansas 0.14 0.49 0.42 0.28 0.86
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Combining stream segments distributions:

� Stream segments sum
to give main stream
lengths

�

ℓ𝜔 =
𝜇=𝜔

∑
𝜇=1

𝑠𝜇

� 𝑃(ℓ𝜔) is a
convolution of
distributions for the
𝑠𝜔
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Generalizing Horton’s laws

� Sum of variables ℓ𝜔 = ∑𝜇=𝜔
𝜇=1 𝑠𝜇 leads to convolution of

distributions:

𝑁(ℓ|𝜔) = 𝑁(𝑠|1) ∗ 𝑁(𝑠|2) ∗ ⋯ ∗ 𝑁(𝑠|𝜔)
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𝑁(𝑠|𝜔) = 1
𝑅𝜔

𝑛𝑅𝜔
ℓ
𝐹 (𝑠/𝑅𝜔

ℓ )

𝐹(𝑥) = 𝑒−𝑥/𝜉

Mississippi: 𝜉 ≃ 900m.
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Generalizing Horton’s laws

� Next level up: Main stream length distributions must
combine to give overall distribution for stream length
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� 𝑃(ℓ) ∼ ℓ−𝛾

� Another round of
convolutions [3]

� Interesting …
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Generalizing Horton’s laws

� Number and area
distributions for the
Scheidegger model [3]

� 𝑃(𝑛1,6) versus
𝑃(𝑎6) for a
randomly selected
𝜔 = 6 basin.
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Generalizing Tokunaga’s law

Scheidegger:
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� Observe exponential distributions for 𝑇𝜇,𝜈

� Scaling collapse works using𝑅𝑠
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Generalizing Tokunaga’s law

Mississippi:
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� Same data collapse for Mississippi …
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Generalizing Tokunaga’s law

So
𝑃(𝑇𝜇,𝜈) = (𝑅𝑠)𝜇−𝜈−1𝑃𝑡 [𝑇𝜇,𝜈/(𝑅𝑠)𝜇−𝜈−1]

where
𝑃𝑡(𝑧) =

1
𝜉𝑡
𝑒−𝑧/𝜉𝑡 .

𝑃 (𝑠𝜇) ⇔ 𝑃(𝑇𝜇,𝜈)

� Exponentials arise from randomness.
� Look at joint probability 𝑃(𝑠𝜇, 𝑇𝜇,𝜈).

The PoCSverse
Branching Networks
II
62 of 82
Horton⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

References

Generalizing Tokunaga’s law

Network architecture:

� Inter-tributary
lengths exponentially
distributed

� Leads to random
spatial distribution
of stream segments

��� 1�� 2
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Generalizing Tokunaga’s law

� Follow streams segments down stream from their beginning
� Probability (or rate) of an order 𝜇 stream segment

terminating is constant:

̃𝑝𝜇 ≃ 1/(𝑅𝑠)𝜇−1𝜉𝑠

� Probability decays exponentially with stream order
� Inter-tributary lengths exponentially distributed
� ⇒ random spatial distribution of stream segments
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Generalizing Tokunaga’s law

� Joint distribution for generalized version of Tokunaga’s law:

𝑃(𝑠𝜇, 𝑇𝜇,𝜈) = ̃𝑝𝜇(
𝑠𝜇 − 1
𝑇𝜇,𝜈

)𝑝𝑇𝜇,𝜈
𝜈 (1 − 𝑝𝜈 − ̃𝑝𝜇)𝑠𝜇−𝑇𝜇,𝜈−1

where
� 𝑝𝜈 = probability of absorbing an order 𝜈 side stream
� ̃𝑝𝜇 = probability of an order 𝜇 stream terminating

� Approximation: depends on distance units of 𝑠𝜇

� In each unit of distance along stream, there is one chance of a
side stream entering or the stream terminating.
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Generalizing Tokunaga’s law

� Now deal with this thing:

𝑃(𝑠𝜇, 𝑇𝜇,𝜈) = ̃𝑝𝜇(
𝑠𝜇 − 1
𝑇𝜇,𝜈

)𝑝𝑇𝜇,𝜈
𝜈 (1 − 𝑝𝜈 − ̃𝑝𝜇)𝑠𝜇−𝑇𝜇,𝜈−1

� Set (𝑥, 𝑦) = (𝑠𝜇, 𝑇𝜇,𝜈) and 𝑞 = 1 − 𝑝𝜈 − ̃𝑝𝜇, approximate
liberally.

� Obtain
𝑃(𝑥, 𝑦) = 𝑁𝑥−1/2 [𝐹 (𝑦/𝑥)]𝑥

where

𝐹(𝑣) = (1 − 𝑣
𝑞

)
−(1−𝑣)

(𝑣
𝑝
)

−𝑣

.
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Generalizing Tokunaga’s law

� Checking form of 𝑃(𝑠𝜇, 𝑇𝜇,𝜈)works:
Scheidegger:
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Generalizing Tokunaga’s law

� Checking form of 𝑃(𝑠𝜇, 𝑇𝜇,𝜈)works:
Scheidegger:
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Generalizing Tokunaga’s law

� Checking form of 𝑃(𝑠𝜇, 𝑇𝜇,𝜈)works:
Scheidegger:
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Generalizing Tokunaga’s law

� Checking form of 𝑃(𝑠𝜇, 𝑇𝜇,𝜈)works:
Mississippi:
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Models

Random subnetworks on a Bethe lattice [13]

� Dominant theoretical concept for
several decades.

� Bethe lattices are fun and tractable.
� Led to idea of “Statistical

inevitability” of river network
statistics [7]

� But Bethe lattices unconnected
with surfaces.

� In fact, Bethe lattices≃ infinite
dimensional spaces (oops).

� So let’s move on …
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Scheidegger’s model

Directed random networks [11, 12]

�

𝑃(↘) = 𝑃(↙) = 1/2

� Functional form of all scaling laws exhibited but exponents
differ from real world [15, 16, 14]
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Optimal channel networks

Rodríguez-Iturbe, Rinaldo, et al. [10]

� Landscapes ℎ( ⃗𝑥) evolve such that energy dissipation ̇𝜀 is
minimized, where

̇𝜀 ∝ ∫ d ⃗𝑟 (flux) × (force) ∼ ∑
𝑖

𝑎𝑖∇ℎ𝑖 ∼ ∑
𝑖

𝑎𝛾
𝑖

� Landscapes obtained numerically give exponents near that of
real networks.

� But: numerical method used matters.
� And: Maritan et al. find basic universality classes are that of

Scheidegger, self-similar, and a third kind of random
network [8]
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Theoretical networks

Summary of universality classes:

network h d
Non-convergent flow 1 1
Directed random 2/3 1
Undirected random 5/8 5/4

Self-similar 1/2 1
OCN’s (I) 1/2 1
OCN’s (II) 2/3 1
OCN’s (III) 3/5 1
Real rivers 0.5–0.7 1.0–1.2
ℎ ⇒ ℓ ∝ 𝑎ℎ (Hack’s law).

𝑑 ⇒ ℓ ∝ 𝐿𝑑
∥ (stream self-affinity).
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Nutshell

Branching networks II Key Points:
� Horton’s laws and Tokunaga’s law all fit together.
� For 2-d networks, these laws are ‘planform’ laws and ignore

slope.
� Abundant scaling relations can be derived.
� Can take𝑅𝑛,𝑅ℓ, and 𝑑 as three independent parameters

necessary to describe all 2-d branching networks.
� For scaling laws, only ℎ = ln𝑅ℓ/ln𝑅𝑛 and 𝑑 are needed.
� Laws can be extended nicely to laws of distributions.
� Numerous models of branching network evolution exist:

nothing rock solid yet …?
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