Branching Networks I

Last updated: 2024/10/17, 08:34:22 EDT

Principles of Complex Systems, Vols. 1, 2, & 3D CSYS/MATH 6701, 6713, & a pretend number, 2024-2025

Prof. Peter Sheridan Dodds

Computational Story Lab | Vermont Complex Systems Center Santa Fe Institute | University of Vermont

Licensed under the Creative Commons Attribution 4.0 International

The PoCSverse Branching Networks I 1 of 56

Stream Ordering

Horton's Laws

Tokunaga's Law

Nutshell

These slides are brought to you by:

The PoCSverse Branching Networks I 2 of 56

Introduction

Definition

Lav

Stream Ordering

Horton's Laws

Tokunaga's Law

Nutshell

These slides are also brought to you by:

Special Guest Executive Producer

On Instagram at pratchett_the_cat

The PoCSverse Branching Networks I 3 of 56

Introduction

Definitions

Law

Stream Ordering

Horton's Laws

Tokunaga's Law

Nutshell

Outline

Introduction
Definitions
Allometry
Laws

Stream Ordering

Horton's Laws

Tokunaga's Law

Nutshell

References

The PoCSverse Branching Networks I 4 of 56

Introduction

Definitio

Laws

Stream Ordering

Horton's Laws

Tokunaga's Law

Nutshell

Branching networks are useful things:

Fundamental to material supply and collection

The PoCSverse Branching Networks I 8 of 56

Introduction

Stream Ordering

Horton's Laws

Tokunaga's Law

Nutshell

Branching networks are useful things:

Fundamental to material supply and collection

Supply: From one source to many sinks in 2- or 3-d.

The PoCSverse Branching Networks I 8 of 56

Introduction

Stream Ordering

Horton's Laws

Tokunaga's Law

Nutshell

Branching networks are useful things:

Fundamental to material supply and collection

Supply: From one source to many sinks in 2- or 3-d.

Collection: From many sources to one sink in 2- or 3-d.

The PoCSverse Branching Networks I 8 of 56

Introduction

Stream Ordering

Horton's Laws

Tokunaga's Law

Nutshell

Branching networks are useful things:

Fundamental to material supply and collection

Supply: From one source to many sinks in 2- or 3-d.

Collection: From many sources to one sink in 2- or 3-d.

Typically observe hierarchical, recursive self-similar structure

The PoCSverse Branching Networks I 8 of 56

Introduction

Stream Ordering

Horton's Laws

Tokunaga's Law

Nutshell

Branching networks are useful things:

Fundamental to material supply and collection

Supply: From one source to many sinks in 2- or 3-d.

Collection: From many sources to one sink in 2- or 3-d.

Typically observe hierarchical, recursive self-similar structure

Examples:

The PoCSverse Branching Networks I 8 of 56

Introduction

Stream Ordering

Horton's Laws

Tokunaga's Law

Nutshell

Branching networks are useful things:

Fundamental to material supply and collection

Supply: From one source to many sinks in 2- or 3-d.

Collection: From many sources to one sink in 2- or 3-d.

Typically observe hierarchical, recursive self-similar structure

Examples:

River networks (our focus)

The PoCSverse Branching Networks I 8 of 56

Introduction

Stream Ordering

Horton's Laws

Tokunaga's Law

Nutshell

Branching networks are useful things:

Fundamental to material supply and collection

Supply: From one source to many sinks in 2- or 3-d.

Collection: From many sources to one sink in 2- or 3-d.

Typically observe hierarchical, recursive self-similar structure

Examples:

River networks (our focus)

Cardiovascular networks

The PoCSverse Branching Networks I 8 of 56

Introduction

Stream Ordering

Horton's Laws

Tokunaga's Law

Nutshell

Branching networks are useful things:

Fundamental to material supply and collection

Supply: From one source to many sinks in 2- or 3-d.

Collection: From many sources to one sink in 2- or 3-d.

Typically observe hierarchical, recursive self-similar structure

Branching Networks I 8 of 56 Introduction

The PoCSverse

Stream Ordering

Horton's Laws

Tokunaga's Law

Nutshell

References

Examples:

River networks (our focus)

Cardiovascular networks

Plants

Branching networks are useful things:

Fundamental to material supply and collection

Supply: From one source to many sinks in 2- or 3-d.

Collection: From many sources to one sink in 2- or 3-d.

Typically observe hierarchical, recursive self-similar structure

The PoCSverse Branching Networks I 8 of 56

Introduction

Stream Ordering

Horton's Laws

Tokunaga's Law

Nutshell

References

Examples:

River networks (our focus)

Cardiovascular networks

Plants

Evolutionary trees

Branching networks are useful things:

Fundamental to material supply and collection

Supply: From one source to many sinks in 2- or 3-d.

Collection: From many sources to one sink in 2- or 3-d.

Typically observe hierarchical, recursive self-similar structure

Examples:

River networks (our focus)

Cardiovascular networks

A Plants

Evolutionary trees

Organizations (only in theory ...)

The PoCSverse Branching Networks I 8 of 56

Introduction

Stream Ordering

Horton's Laws

Tokunaga's Law

Nutshell

Branching networks are everywhere ...

The PoCSverse Branching Networks I 9 of 56

Introduction

Definitions

Allo

Stream Ordering

Horton's Laws

Tokunaga's Law

Nutshell

Branching networks are everywhere ...

http://en.wikipedia.org/wiki/Image:Applebox.JPG

The PoCSverse Branching Networks I 10 of 56

Introduction

Definiti

Laws

Stream Ordering

Horton's Laws

Tokunaga's Law

Nutshell

An early thought piece: Extension and Integration

"The Development of Drainage Systems: A Synoptic View"

Waldo S. Glock, The Geographical Review, **21**, 475–482, 1931. ^[2]

Initiation, Elongation

Elaboration, Piracy.

Abstraction, Absorption.

The PoCSverse Branching Networks I 11 of 56

Introduction

Allomet

Stream Ordering

Horton's Laws

Tokunaga's Law

Nutshell

The sequential stages recognized in the evolution of a drainage system are "extension" and "integration"; the first, a stage of increasing complexity; the second, of simplification.

The PoCSverse Branching Networks I 12 of 56

Introduction

Definiti

Law

Stream Ordering

Horton's Laws

Tokunaga's Law

Nutshell

Shaw and Magnasco's beautiful erosion simulations

Though to be destroyed and lost.

The VHS.

The PoCSverse Branching Networks I 13 of 56

Introduction

Definitions

Allo

Stream Ordering

Horton's Laws

Tokunaga's Law

Nutshell

Outline

Introduction Definitions

Allometry

Stream Orderin

Horton's Law

Tokunaga's Law

Nutshel

Reference

The PoCSverse Branching Networks I 14 of 56

Introduction

Definitions Allometry

Lav

Stream Ordering

Horton's Laws

Tokunaga's Law

Nutshell

Definitions

 Drainage basin for a point p is the complete region of land from which overland flow drains through p.

The PoCSverse Branching Networks I 15 of 56

Definitions

Stream Ordering

Horton's Laws

Tokunaga's Law

Nutshell

Definitions

Definition most sensible for a point in a stream.

The PoCSverse Branching Networks I 15 of 56

Introduction

Definitions

Laws

Stream Ordering

Horton's Laws

Tokunaga's Law

Nutshell

Definitions

Definition most sensible for a point in a stream.

Recursive structure: Basins contain basins and so on.

The PoCSverse Branching Networks I 15 of 56

Introduction

Definitions

Laws

Stream Ordering

Horton's Laws

Tokunaga's Law

Nutshell

Definitions

Definition most sensible for a point in a stream.

Recursive structure: Basins contain basins and so on.

In principle, a drainage basin is defined at every point on a landscape. The PoCSverse Branching Networks I 15 of 56

Introduction

Definitions

Laws

Stream Ordering

Horton's Laws

Tokunaga's Law

Nutshell

Definitions

- Drainage basin for a point *p* is the complete region of land from which overland flow drains through *p*.
- Definition most sensible for a point in a stream.
- Recursive structure: Basins contain basins and so on.
- In principle, a drainage basin is defined at every point on a landscape.
- 💫 On flat hillslopes, drainage basins are effectively linear.

The PoCSverse Branching Networks I 15 of 56

Introduction

Definitions

Laws

Stream Ordering

Horton's Laws

Tokunaga's Law

Nutshell References

Definitions

- Drainage basin for a point p is the complete region of land from which overland flow drains through p.
- Definition most sensible for a point in a stream.
- Recursive structure: Basins contain basins and so on.
- In principle, a drainage basin is defined at every point on a landscape.
- 🙈 On flat hillslopes, drainage basins are effectively linear.
- We treat subsurface and surface flow as following the gradient of the surface.

The PoCSverse Branching Networks I 15 of 56

Introduction

Definitions

Laws

Stream Ordering

Horton's Laws

Tokunaga's Law

Nutshell References

Kererences

Definitions

- Drainage basin for a point p is the complete region of land from which overland flow drains through p.
- Definition most sensible for a point in a stream.
- Recursive structure: Basins contain basins and so on.
- In principle, a drainage basin is defined at every point on a landscape.
- 💫 On flat hillslopes, drainage basins are effectively linear.
- We treat subsurface and surface flow as following the gradient of the surface.
- Okay for large-scale networks ...

The PoCSverse Branching Networks I 15 of 56

Introduction

Definitions

Laws

Stream Ordering

Horton's Laws

Tokunaga's Law

Nutshell

The PoCSverse Branching Networks I 16 of 56

Introductio

Definitions

Laws

Stream Ordering

Horton's Laws

Tokunaga's Law

Nutshell

 a = drainage basin area

The PoCSverse Branching Networks I 16 of 56

Definitions

Stream Ordering

Horton's Laws

Tokunaga's Law

Nutshell

🚓 a = drainage basin area

(main) stream (which may be fractal)

The PoCSverse Branching Networks I 16 of 56

Definitions

Stream Ordering

Horton's Laws

Tokunaga's Law Nutshell

🚓 a = drainage basin area

(main) stream (which may be fractal)

 $A = L_{\parallel} =$ longitudinal length of basin

The PoCSverse Branching Networks I 16 of 56

Definitions

Stream Ordering

Horton's Laws Tokunaga's Law

Nutshell

🚓 a = drainage basin area

(main) stream (which may be fractal)

 $A = L_{\parallel} =$ longitudinal length of basin

& $L = L_{\perp}$ = width of basin

The PoCSverse Branching Networks I 16 of 56

Definitions

Stream Ordering

Horton's Laws

Tokunaga's Law Nutshell

Outline

Introduction

Definitions

Allometry

Law

Stream Orderia

Horton's Law

Tokunaga's Law

Nutshel

Reference

The PoCSverse Branching Networks I 17 of 56

Introduction

Definitions

Allometry

Stream Ordering

Horton's Laws

Tokunaga's Law

Nutshell

Allometry

dimensions scale linearly with each other.

The PoCSverse Branching Networks I 18 of 56

Introduction

Definition

Allometry Laws

Stream Ordering

Horton's Laws

Tokunaga's Law

Nutshell

Allometry

dimensions scale linearly with each other.

Allometry: dimensions scale nonlinearly.

The PoCSverse Branching Networks I 18 of 56

Introduction

Definitions

Allometry

Stream Ordering

Horton's Laws

Tokunaga's Law

Nutshell

Allometric relationships:

The PoCSverse Branching Networks I 19 of 56

Introduction

Allometry

Stream Ordering

Horton's Laws

Tokunaga's Law

Nutshell

Allometric relationships:

 $\ell \propto a^h$

The PoCSverse Branching Networks I 19 of 56

Introduction

Allometry

Stream Ordering

Horton's Laws

Tokunaga's Law

Nutshell

Allometric relationships:

 $\ell \propto a^h$

 $\ell \propto L^d$

The PoCSverse Branching Networks I 19 of 56

Introduction

Definitions

Allometry

Stream Ordering

Horton's Laws

Tokunaga's Law

Nutshell

Allometric relationships:

 $\ell \propto a^h$

 $\ell \propto L^d$

 $a \propto L^{d/h} \equiv L^D$

The PoCSverse Branching Networks I 19 of 56

Introduction

Allometry

Stream Ordering

Horton's Laws

Tokunaga's Law

Nutshell

'Laws'

A Hack's law (1957) [3]:

 $\ell \propto a^h$

reportedly 0.5 < h < 0.7

'Laws'

A Hack's law (1957) [3]:

$$\ell \propto a^h$$

reportedly 0.5 < h < 0.7

Scaling of main stream length with basin size:

$$\ell \propto L_{\parallel}^d$$

reportedly 1.0 < d < 1.1

'Laws'

A Hack's law (1957) [3]:

$$\ell \propto a^h$$

reportedly 0.5 < h < 0.7

🙈 Scaling of main stream length with basin size:

$$\ell \propto L_{\parallel}^d$$

reportedly 1.0 < d < 1.1

$$L_{\parallel} \propto a^{h/d} \equiv a^{1/D}$$

 $D < 2 \rightarrow$ basins elongate.

Outline

Introduction

Definitions Allometry

Laws

Stream Orderin

Horton's Law

Tokunaga's Law

Nutshel

Reference

The PoCSverse Branching Networks I 21 of 56

Introduction

Definitions Allometry

Laws

Stream Ordering

Horton's Laws

Tokunaga's Law

Nutshell

There are a few more 'laws': [1]

Relation: Name or description:

$T_k = T_1 (R_T)^{k-1}$	Tokunaga's law
$\ell \sim L^d$	self-affinity of single channels
$n_{\underline{\omega}}/n_{\omega\pm1}=R_n$	Horton's law of stream numbers
$\bar{\ell}_{\omega+1}/\bar{\ell}_{\omega} = R_{\ell}$	Horton's law of main stream lengths
$\bar{a}_{\omega+1}/\bar{a}_{\omega} = R_a$	Horton's law of basin areas
$\bar{s}_{\omega+1}/\bar{s}_{\omega} = R_s$	Horton's law of stream segment lengths
$L_{\perp} \sim L^H$	scaling of basin widths
$P(a) \sim a^{- au}$	probability of basin areas
$P(\ell) \sim \ell^{-\gamma}$	probability of stream lengths
$\ell \sim a^h$	Hack's law
$a \sim L^D$	scaling of basin areas
$\Lambda \sim a^{eta}$	Langbein's law
$\lambda \sim L^{\varphi}$	variation of Langbein's law

The PoCSverse Branching Networks I 22 of 56

Introduction

Definitions

Laws

Stream Ordering

Horton's Laws

Tokunaga's Law

Nutshell

Reported parameter values: [1]

Parameter:	Real networks:
R_n	3.0-5.0
R_a	3.0-6.0
$R_{\ell} = R_T$	1.5-3.0
T_1	1.0-1.5
d	1.1 ± 0.01
D	1.8 ± 0.1
h	0.50-0.70
au	1.43 ± 0.05
γ	1.8 ± 0.1
H	0.75-0.80
β	0.50-0.70
φ	1.05 ± 0.05

The PoCSverse Branching Networks I 23 of 56

Introduction

Definition

Laws

Stream Ordering

Horton's Laws

Tokunaga's Law

Nutshell

Order of business:

The PoCSverse Branching Networks I 24 of 56

Introduction

Definitions Allometry

Laws

Stream Ordering

Horton's Laws

Tokunaga's Law

Nutshell

Order of business:

1. Find out how these relationships are connected.

The PoCSverse Branching Networks I 24 of 56

Introduction

Definition

Laws

Stream Ordering

Horton's Laws

Tokunaga's Law

Nutshell

Order of business:

- 1. Find out how these relationships are connected.
- 2. Determine most fundamental description.

The PoCSverse Branching Networks I 24 of 56

Introduction

Allomet

Laws

Stream Ordering

Horton's Laws

Tokunaga's Law

Nutshell

Order of business:

- 1. Find out how these relationships are connected.
- 2. Determine most fundamental description.
- 3. Explain origins of these parameter values

The PoCSverse Branching Networks I 24 of 56

Introduction

Allomet

Laws

Stream Ordering

Horton's Laws

Tokunaga's Law

Nutshell

Order of business:

- 1. Find out how these relationships are connected.
- 2. Determine most fundamental description.
- 3. Explain origins of these parameter values

For (3): Many attempts: not yet sorted out ...

The PoCSverse Branching Networks I 24 of 56

Introduction

Definition

Laws

Stream Ordering

Horton's Laws

Tokunaga's Law

Nutshell

Method for describing network architecture:

The PoCSverse Branching Networks I 26 of 56

Introduction

finitions ometry

Laws

Stream Ordering

Horton's Laws

Tokunaga's Law

Nutshell

Method for describing network architecture:

Marton (1945) [4]

The PoCSverse Branching Networks I 26 of 56

Introduction

Allometry

Stream Ordering

Horton's Laws

Tokunaga's Law

Nutshell

Method for describing network architecture:

A Introduced by Horton (1945) [4]

Modified by Strahler (1957) [7]

The PoCSverse Branching Networks I 26 of 56

Introduction

llometry

Stream Ordering

Horton's Laws

Tokunaga's Law

Nutshell

Method for describing network architecture:

Marton (1945) [4]

Modified by Strahler (1957) [7]

Term: Horton-Strahler Stream Ordering [5]

The PoCSverse Branching Networks I 26 of 56

Introduction

Allometry

Stream Ordering

Horton's Laws

Tokunaga's Law

Nutshell

Method for describing network architecture:

Introduced by Horton (1945) [4]

Modified by Strahler (1957) [7]

Term: Horton-Strahler Stream Ordering [5]

A Can be seen as iterative trimming of a network.

The PoCSverse Branching Networks I 26 of 56

Introduction

llometry

Stream Ordering

Horton's Laws

Tokunaga's Law

Nutshell

Some definitions:

A channel head is a point in landscape where flow becomes focused enough to form a stream.

The PoCSverse Branching Networks I 27 of 56

Stream Ordering

Horton's Laws

Tokunaga's Law

Nutshell

Some definitions:

A channel head is a point in landscape where flow becomes focused enough to form a stream.

A source stream is defined as the stream that reaches from a channel head to a junction with another stream.

The PoCSverse Branching Networks I 27 of 56

Stream Ordering

Horton's Laws

Tokunaga's Law

Nutshell

Some definitions:

A source stream is defined as the stream that reaches from a channel head to a junction with another stream.

Roughly analogous to capillary vessels.

The PoCSverse Branching Networks I 27 of 56

Introduction

Allometr

Laws

Stream Ordering

Horton's Laws

Tokunaga's Law

Nutshell

Some definitions:

A source stream is defined as the stream that reaches from a channel head to a junction with another stream.

Roughly analogous to capillary vessels.

& Use symbol $\omega = 1, 2, 3, ...$ for stream order.

The PoCSverse Branching Networks I 27 of 56

Introduction

Definition

Laws

Stream Ordering

Horton's Laws

Tokunaga's Law

Nutshell

The PoCSverse Branching Networks I 28 of 56

Introduction

Definitions Allometry

Laws

Stream Ordering
Horton's Laws

Tokunaga's Law

Nutshell

1. Label all source streams as order $\omega = 1$ and remove.

The PoCSverse Branching Networks I 28 of 56

Introduction

Definitions Allometry

Stream Ordering

Horton's Laws

Tokunaga's Law

Nutshell

1. Label all source streams as order $\omega = 1$ and remove.

The PoCSverse Branching Networks I 28 of 56

Introduction

Definitions Allometry

Stream Ordering

Horton's Laws

Tokunaga's Law

Nutshell

- 1. Label all source streams as order $\omega = 1$ and remove.
- 2. Label all new source streams as order $\omega = 2$ and remove.

The PoCSverse Branching Networks I 28 of 56

Introduction

Definitions Allometry

Law

Stream Ordering

Horton's Laws

Tokunaga's Law

Nutshell

- 1. Label all source streams as order $\omega = 1$ and remove.
- 2. Label all new source streams as order $\omega = 2$ and remove.

The PoCSverse Branching Networks I 28 of 56

Introduction

Definitions Allometry

Law

Stream Ordering

Horton's Laws

Tokunaga's Law

Nutshell

- 1. Label all source streams as order $\omega = 1$ and remove.
- 2. Label all new source streams as order $\omega = 2$ and remove.
- 3. Repeat until one stream is left (order = Ω)

The PoCSverse Branching Networks I 28 of 56

Introduction

Allometry

Law

Stream Ordering

Horton's Laws

Tokunaga's Law

Nutshell

- 1. Label all source streams as order $\omega = 1$ and remove.
- 2. Label all new source streams as order $\omega = 2$ and remove.
- 3. Repeat until one stream is left (order = Ω)
- 4. Basin is said to be of the order of the last stream removed.

The PoCSverse Branching Networks I 28 of 56

Introduction

Definitio

La

Stream Ordering

Horton's Laws

Tokunaga's Law

Nutshell

- 1. Label all source streams as order $\omega = 1$ and remove.
- 2. Label all new source streams as order $\omega = 2$ and remove.
- 3. Repeat until one stream is left (order = Ω)
- 4. Basin is said to be of the order of the last stream removed.
- 5. Example above is a basin of order $\Omega = 3$.

The PoCSverse Branching Networks I 28 of 56

Introduction

Definition

La

Stream Ordering

Horton's Laws

Tokunaga's Law

Nutshell

Stream Ordering—A large example:

The PoCSverse Branching Networks I 29 of 56

Introduction

Definitions

Allo

Stream Ordering

Horton's Laws

Tokunaga's Law

Nutshell

Another way to define ordering:

The PoCSverse Branching Networks I 30 of 56

Introduction

Definition

Law

Stream Ordering

Horton's Laws

Tokunaga's Law

Nutshell

Another way to define ordering:

As before, label all source streams as order $\omega = 1$.

The PoCSverse Branching Networks I 30 of 56

Stream Ordering

Horton's Laws

Tokunaga's Law

Nutshell

Another way to define ordering:

As before, label all source streams as order $\omega = 1$.

Rollow all labelled streams downstream

Stream Ordering

Horton's Laws

Tokunaga's Law

Nutshell

Another way to define ordering:

As before, label all source streams as order $\omega = 1$.

Follow all labelled streams downstream

Whenever two streams of the same order (ω) meet, the resulting stream has order incremented by 1 ($\omega + 1$).

The PoCSverse Branching Networks I 30 of 56

Introduction

Definitio

Laws

Stream Ordering

Horton's Laws

Tokunaga's Law

Nutshell

Another way to define ordering:

- As before, label all source streams as order $\omega = 1$.
- Follow all labelled streams downstream
- Whenever two streams of the same order (ω) meet, the resulting stream has order incremented by 1 ($\omega + 1$).
- All If streams of different orders ω_1 and ω_2 meet, then the resultant stream has order equal to the largest of the two.

The PoCSverse Branching Networks I 30 of 56

Introduction

Allor

Laws

Stream Ordering

Horton's Laws

Tokunaga's Law

Nutshell

Another way to define ordering:

- As before, label all source streams as order $\omega = 1$.
- Follow all labelled streams downstream
- Whenever two streams of the same order (ω) meet, the resulting stream has order incremented by 1 ($\omega + 1$).
- If streams of different orders ω_1 and ω_2 meet, then the resultant stream has order equal to the largest of the two.
- 🙈 Simple rule:

$$\omega_3 = \max(\omega_1, \omega_2) + \delta_{\omega_1, \omega_2}$$

where δ is the Kronecker delta.

The PoCSverse Branching Networks I 30 of 56

Introduction

Definitio

Laws

Stream Ordering

Horton's Laws

Tokunaga's Law

Nutshell

One problem:

Resolution of data messes with ordering

The PoCSverse Branching Networks I 31 of 56

Laws

Stream Ordering

Horton's Laws

Tokunaga's Law

Nutshell

One problem:

Resolution of data messes with ordering

Micro-description changes (e.g., order of a basin may increase)

The PoCSverse Branching Networks I 31 of 56

Stream Ordering

Horton's Laws

Tokunaga's Law

Nutshell

One problem:

Resolution of data messes with ordering

Micro-description changes (e.g., order of a basin may increase)

🚵 ...but relationships based on ordering appear to be robust to resolution changes.

The PoCSverse Branching Networks I 31 of 56

Stream Ordering

Horton's Laws

Tokunaga's Law

Nutshell

One problem:

Resolution of data messes with ordering

Micro-description changes (e.g., order of a basin may increase)

🚵 ...but relationships based on ordering appear to be robust to resolution changes.

Utility:

The PoCSverse Branching Networks I 31 of 56

Stream Ordering

Horton's Laws

Tokunaga's Law

Nutshell

One problem:

Resolution of data messes with ordering

🚵 ...but relationships based on ordering appear to be robust to resolution changes.

Utility:

Stream ordering helpfully discretizes a network.

The PoCSverse Branching Networks I 31 of 56

Stream Ordering

Horton's Laws

Tokunaga's Law

Nutshell

The PoCSverse Branching Networks I 31 of 56

Stream Ordering

Horton's Laws

Nutshell

References

Tokunaga's Law

One problem:

Resolution of data messes with ordering

Micro-description changes (e.g., order of a basin may increase)

🚵 ...but relationships based on ordering appear to be robust to resolution changes.

Utility:

Stream ordering helpfully discretizes a network.

Goal: understand network architecture

Basic algorithm for extracting networks from Digital Elevation Models (DEMs):

Also:

/Users/dodds/work/rivers/1998dems/kevinlakewaster.c

The PoCSverse Branching Networks I 32 of 56

Introduction

Allom

Stream Ordering

Horton's Laws

Tokunaga's Law

Nutshell

The PoCSverse Branching Networks I 33 of 56

ntroduction

Definitions

Lav

Stream Ordering

Horton's Laws

Tokunaga's Law

Nutshell

stream ordering w:

main stream length L:

The PoCSverse Branching Networks I 34 of 56

Definitions

Laws

Stream Ordering

Horton's Laws

Tokunaga's Law

Nutshell

Resultant definitions:

A basin of order Ω has n_{ω} streams (or sub-basins) of order ω .

The PoCSverse Branching Networks I 35 of 56

Stream Ordering

Horton's Laws

Laws

Tokunaga's Law

Nutshell

Resultant definitions:

A basin of order Ω has n_{ω} streams (or sub-basins) of order ω .

The PoCSverse Branching Networks I 35 of 56

Laws

Stream Ordering

Horton's Laws

Tokunaga's Law

Nutshell

Resultant definitions:

$$n_{\omega} > n_{\omega+1}$$

The PoCSverse Branching Networks I 35 of 56

Introduction

Definitions Allometry Laws

Stream Ordering

Horton's Laws

Tokunaga's Law

Nutshell

Resultant definitions:

$$n_{\omega} > n_{\omega+1}$$

An order ω basin has area a_{ω} .

An order ω basin has a main stream length ℓ_{ω} .

The PoCSverse Branching Networks I 35 of 56

Introduction

Allomet

Laws

Stream Ordering

Horton's Laws Tokunaga's Law

Nutshell

Resultant definitions:

$$n_{\omega} > n_{\omega+1}$$

An order ω basin has area a_{ω} .

An order ω basin has a main stream length ℓ_{ω} .

An order ω basin has a stream segment length s_{ω}

The PoCSverse Branching Networks I 35 of 56

Introduction

Allometry

Stream Ordering

Horton's Laws

Tokunaga's Law

Nutshell

Resultant definitions:

An order ω basin has area a_{ω} .

 $\red An \ {
m order} \ \omega \ {
m basin has a } \ {
m main stream length} \ \ell_\omega.$

 $\red An \ {
m order} \ \omega$ basin has a stream segment length s_ω

1. an order ω stream segment is only that part of the stream which is actually of order ω

The PoCSverse Branching Networks I 35 of 56

Introduction

Allom

Laws

Stream Ordering

Horton's Laws

Tokunaga's Law

Nutshell

Resultant definitions:

An order ω basin has area a_{ω} .

 \red An order ω basin has a main stream length ℓ_{ω} .

 $\ref{eq:constraints}$ An order ω basin has a stream segment length s_ω

- 1. an order ω stream segment is only that part of the stream which is actually of order ω
- 2. an order ω stream segment runs from the basin outlet up to the junction of two order $\omega-1$ streams

The PoCSverse Branching Networks I 35 of 56

Introduction

Definition

Laws

Stream Ordering

Horton's Laws

Tokunaga's Law

Nutshell

Self-similarity of river networks

The PoCSverse Branching Networks I 37 of 56

Introduction

Definition

Laws

Stream Ordering

Horton's Laws

Tokunaga's Law

Nutshell

Self-similarity of river networks

First quantified by Horton (1945) [4], expanded by Schumm (1956) [6]

The PoCSverse Branching Networks I 37 of 56

Stream Ordering

Horton's Laws

Tokunaga's Law

Nutshell

Self-similarity of river networks

First quantified by Horton (1945) [4], expanded by Schumm (1956) [6]

Three laws:

The PoCSverse Branching Networks I 37 of 56

Laws

Stream Ordering

Horton's Laws

Tokunaga's Law

Nutshell

Self-similarity of river networks

Three laws:

A Horton's law of stream numbers:

$$n_{\omega}/n_{\omega+1} = R_n > 1$$

The PoCSverse Branching Networks I 37 of 56

Introduction

Definitions

Laws

Stream Ordering

Horton's Laws

Tokunaga's Law

Nutshell

Self-similarity of river networks

First quantified by Horton (1945) [4], expanded by Schumm (1956) [6]

Three laws:

$$n_{\omega}/n_{\omega+1} = R_n > 1$$

A Horton's law of stream lengths:

$$\bar{\ell}_{\omega+1}/\bar{\ell}_{\omega} = R_{\ell} > 1$$

The PoCSverse Branching Networks I 37 of 56

Introduction

Definitions

Laws

Stream Ordering

Horton's Laws

Tokunaga's Law

Nutshell

Self-similarity of river networks

First quantified by Horton (1945) [4], expanded by Schumm (1956) [6]

Three laws:

$$n_{\omega}/n_{\omega+1} = R_n > 1$$

A Horton's law of stream lengths:

$$\bar{\ell}_{\omega+1}/\bar{\ell}_{\omega} = R_{\ell} > 1$$

A Horton's law of basin areas:

$$\bar{a}_{\omega+1}/\bar{a}_{\omega} = R_a > 1$$

The PoCSverse Branching Networks I 37 of 56

Introduction

Definitions

Laws

Stream Ordering

Horton's Laws

Tokunaga's Law

Nutshell

Horton's Ratios:

So ...laws are defined by three ratios:

 R_n , R_ℓ , and R_a .

The PoCSverse Branching Networks I 38 of 56

Laws

Stream Ordering

Horton's Laws

Tokunaga's Law

Nutshell

Horton's Ratios:

So ...laws are defined by three ratios:

$$R_n,\ R_\ell,\ {\rm and}\ R_a.$$

$$\begin{split} n_{\omega} &= n_{\omega-1}/R_n \\ &= n_{\omega-2}/R_n^{\;2} \\ &\vdots \\ &= n_1/R_n^{\;\omega-1} \\ &= n_1 e^{-(\omega-1)\ln R_n} \end{split}$$

The PoCSverse Branching Networks I 38 of 56

Stream Ordering

Horton's Laws

Tokunaga's Law

Nutshell

Similar story for area and length:

The PoCSverse Branching Networks I 39 of 56

Introduction

Definitions Allometry

Laws

Stream Ordering

Horton's Laws

Tokunaga's Law

Nutshell

Similar story for area and length:

$$\bar{a}_{\omega} = \bar{a}_1 e^{(\omega - 1) \ln R_a}$$

$$\bar{\ell}_{\omega} = \bar{\ell}_1 e^{(\omega-1) \ln\!R_\ell}$$

The PoCSverse Branching Networks I 39 of 56

Introduction

Definitions Allometry

Law

Stream Ordering

Horton's Laws

Tokunaga's Law

Nutshell

Similar story for area and length:

$$\bar{a}_{\omega} = \bar{a}_1 e^{(\omega - 1)\ln R_a}$$

$$\bar{\ell}_{\omega} = \bar{\ell}_1 e^{(\omega - 1) \ln R_{\ell}}$$

The PoCSverse Branching Networks I 39 of 56

Introduction

Definition

Law

Stream Ordering

Horton's Laws

Tokunaga's Law

Nutshell

A few more things:

The PoCSverse Branching Networks I 40 of 56

Introduction

Definitions Allometry

Laws

Stream Ordering

Horton's Laws

Tokunaga's Law

Nutshell

A few more things:

Horton's laws are laws of averages.

The PoCSverse Branching Networks I 40 of 56

Laws

Stream Ordering

Horton's Laws

Tokunaga's Law

Nutshell

A few more things:

Horton's laws are laws of averages.

Averaging for number is across basins.

The PoCSverse Branching Networks I 40 of 56

Stream Ordering

Horton's Laws

Tokunaga's Law

Nutshell

A few more things:

Averaging for number is across basins.

Averaging for stream lengths and areas is within basins.

The PoCSverse Branching Networks I 40 of 56

Introduction

Allomet

Lav

Stream Ordering

Horton's Laws

Tokunaga's Law

Nutshell

A few more things:

- A Horton's laws are laws of averages.
- Averaging for number is across basins.
- Averaging for stream lengths and areas is within basins.
- Horton's ratios go a long way to defining a branching network ...

The PoCSverse Branching Networks I 40 of 56

Introduction

Definition

Lav

Stream Ordering

Horton's Laws

Tokunaga's Law

Nutshell

A few more things:

- A Horton's laws are laws of averages.
- Averaging for number is across basins.
- Averaging for stream lengths and areas is within basins.
- Horton's ratios go a long way to defining a branching network ...
- But we need one other piece of information ...

The PoCSverse Branching Networks I 40 of 56

Introduction

Allomor

Lav

Stream Ordering

Horton's Laws

Tokunaga's Law

Nutshell

A bonus law:

Horton's law of stream segment lengths:

$$\boxed{\bar{s}_{\omega+1}/\bar{s}_{\omega} = R_s > 1}$$

The PoCSverse Branching Networks I 41 of 56

Stream Ordering

Horton's Laws

Tokunaga's Law

Nutshell

A bonus law:

$$\bar{s}_{\omega+1}/\bar{s}_{\omega} = R_s > 1$$

 $\mbox{\ensuremath{\&}}\mbox{\ensuremath{\&}}\mbox{\ensuremath{Can}}$ Can show that $R_s=R_\ell.$

The PoCSverse Branching Networks I 41 of 56

Introduction

Allometre

Law

Stream Ordering

Horton's Laws

Tokunaga's Law

Nutshell

A bonus law:

$$\bar{s}_{\omega+1}/\bar{s}_{\omega} = R_s > 1$$

- $\mbox{\ensuremath{\&}}\mbox{\ensuremath{\&}}\mbox{\ensuremath{Can}}$ Can show that $R_s=R_\ell.$
- & Insert assignment question 🗹

The PoCSverse Branching Networks I 41 of 56

Introduction

Definition

Law

Stream Ordering

Horton's Laws

Tokunaga's Law

Nutshell

Horton's laws in the real world:

The PoCSverse Branching Networks I 42 of 56

Introduction

Definition

Law

Stream Ordering

Horton's Laws

Tokunaga's Law

Nutshell

Blood networks:

The PoCSverse Branching Networks I 43 of 56

Introduction

efinitions llometry

Laws

Stream Ordering

Horton's Laws

Tokunaga's Law

Nutshell

Blood networks:

Horton's laws hold for sections of cardiovascular networks

The PoCSverse Branching Networks I 43 of 56

Stream Ordering

Horton's Laws

Tokunaga's Law

Nutshell

Blood networks:

Horton's laws hold for sections of cardiovascular networks

Measuring such networks is tricky and messy ...

The PoCSverse Branching Networks I 43 of 56

Introduction

Allometry

Law

Stream Ordering

Horton's Laws

Tokunaga's Law

Nutshell

Blood networks:

🙈 Measuring such networks is tricky and messy ...

Nessel diameters obey an analogous Horton's law.

The PoCSverse Branching Networks I 43 of 56

Introduction

Definition

Law

Stream Ordering

Horton's Laws

Tokunaga's Law

Nutshell

Data from real blood networks

Network	R_n	R_r	R_{ℓ}	$-rac{\ln\!R_r}{\ln\!R_n}$	$-rac{\ln\!R_\ell}{\ln\!R_n}$	α
West et al.	_	-	-	1/2	1/3	3/4
rat (PAT)	2.76	1.58	1.60	0.45	0.46	0.73
cat (PAT) ^[11]	3.67	1.71	1.78	0.41	0.44	0.79
dog (PAT)	3.69	1.67	1.52	0.39	0.32	0.90
pig (LCX)	3.57	1.89	2.20	0.50	0.62	0.62
pig (RCA)	3.50	1.81	2.12	0.47	0.60	0.65
pig (LAD)	3.51	1.84	2.02	0.49	0.56	0.65
human (PAT)	3.03	1.60	1.49	0.42	0.36	0.83
human (PAT)	3.36	1.56	1.49	0.37	0.33	0.94

The PoCSverse Branching Networks I 44 of 56

Introduction

Definition

Laws

Stream Ordering

Horton's Laws

Tokunaga's Law

Nutshell

Observations:

A Horton's ratios vary:

$$R_n$$
 3.0-5.0 R_a 3.0-6.0 R_ℓ 1.5-3.0

The PoCSverse Branching Networks I 45 of 56

Laws

Stream Ordering

Horton's Laws

Tokunaga's Law

Nutshell

Observations:

 R_n 3.0-5.0 R_a 3.0-6.0 R_ℓ 1.5-3.0

No accepted explanation for these values.

The PoCSverse Branching Networks I 45 of 56

Introduction

Allome

La

Stream Ordering

Horton's Laws

Tokunaga's Law

Nutshell

The PoCSverse Branching Networks I 45 of 56

Introduction

Definition

Law

Stream Ordering

Horton's Laws

Tokunaga's Law

Nutshell

References

Observations:

A Horton's ratios vary:

 R_n 3.0-5.0 R_a 3.0-6.0 R_ℓ 1.5-3.0

No accepted explanation for these values.

A Horton's laws tell us how quantities vary from level to level ...

The PoCSverse Branching Networks I 45 of 56

Stream Ordering

Horton's Laws

Tokunaga's Law

Nutshell

References

Observations:

A Horton's ratios vary:

 R_n 3.0 - 5.0 R_a 3.0-6.0 1.5 - 3.0

No accepted explanation for these values.

A Horton's laws tell us how quantities vary from level to level ...

...but they don't explain how networks are structured.

Delving deeper into network architecture:

The PoCSverse Branching Networks I 46 of 56

Introduction

Definitio

Laws

Stream Ordering

Horton's Laws

Tokunaga's Law

Nutshell

Delving deeper into network architecture:

Nokunaga (1968) identified a clearer picture of network structure [8, 9, 10]

The PoCSverse Branching Networks I 46 of 56

Stream Ordering

Horton's Laws

Tokunaga's Law

Nutshell

Delving deeper into network architecture:

The PoCSverse Branching Networks I 46 of 56

Introduction

Allomot

Law

Stream Ordering

Horton's Laws

Tokunaga's Law

Nutshell

Delving deeper into network architecture:

As per Horton-Strahler, use stream ordering.

Focus: describe how streams of different orders connect to each other.

The PoCSverse Branching Networks I 46 of 56

Introduction

Definitio

Law

Stream Ordering

Horton's Laws

Tokunaga's Law

Nutshell

Delving deeper into network architecture:

- Nokunaga (1968) identified a clearer picture of network structure [8, 9, 10]
- As per Horton-Strahler, use stream ordering.
- Focus: describe how streams of different orders connect to each other.
- Nokunaga's law is also a law of averages.

The PoCSverse Branching Networks I 46 of 56

Introduction

Definition

Law

Stream Ordering

Horton's Laws

Tokunaga's Law

Nutshell

Definition:

 $R_{\mu,\nu}$ = the average number of side streams of order ν that enter as tributaries to streams of order μ

The PoCSverse Branching Networks I 47 of 56

Stream Ordering

Horton's Laws

Tokunaga's Law

Nutshell

Definition:

The PoCSverse Branching Networks I 47 of 56

Introduction

Allomet

Law

Stream Ordering

Horton's Laws

Tokunaga's Law

Nutshell

Definition:

& μ , ν = 1, 2, 3, ...

 $\Leftrightarrow \mu \geq \nu + 1$

The PoCSverse Branching Networks I 47 of 56

Introduction

Definition

Law

Stream Ordering

Horton's Laws

Tokunaga's Law

Nutshell

Definition:

- $T_{\mu,\nu}$ = the average number of side streams of order ν that enter as tributaries to streams of order μ
- & μ , ν = 1, 2, 3, ...
- Recall each stream segment of order μ is 'generated' by two streams of order $\mu-1$

The PoCSverse Branching Networks I 47 of 56

Introduction

Definitions

Law

Stream Ordering

Horton's Laws

Tokunaga's Law

Nutshell

Definition:

- $T_{\mu,\nu}$ = the average number of side streams of order ν that enter as tributaries to streams of order μ
- & $\mu, \nu = 1, 2, 3, ...$
- $\ \, \mbox{$\ \, $\ \, $}$ Recall each stream segment of order μ is 'generated' by two streams of order $\mu-1$
- These generating streams are not considered side streams.

The PoCSverse Branching Networks I 47 of 56

Introduction

Definitio

Law

Stream Ordering

Horton's Laws

Tokunaga's Law

Nutshell

Tokunaga's law [8, 9, 10]

The PoCSverse Branching Networks I 48 of 56

Introduction

Definitions

Laws

Stream Ordering

Horton's Laws

Tokunaga's Law

Nutshell

Tokunaga's law [8, 9, 10]

Property 1: Scale independence—depends only on difference between orders:

The PoCSverse Branching Networks I 48 of 56

Stream Ordering

Horton's Laws

Tokunaga's Law

Nutshell

Tokunaga's law [8, 9, 10]

Property 1: Scale independence—depends only on difference between orders:

$$T_{\mu,\nu}=T_{\mu-\nu}$$

The PoCSverse Branching Networks I 48 of 56

Stream Ordering

Horton's Laws

Tokunaga's Law

Nutshell

Tokunaga's law [8, 9, 10]

Property 1: Scale independence—depends only on difference between orders:

$$T_{\mu,\nu} = T_{\mu-\nu}$$

The PoCSverse Branching Networks I 48 of 56

Stream Ordering

Horton's Laws

Tokunaga's Law

Nutshell

Tokunaga's law [8, 9, 10]

$$T_{\mu,\nu} = T_{\mu-\nu}$$

Property 2: Number of side streams grows exponentially with difference in orders:

$$T_{\mu,\nu} = T_1(R_T)^{\mu-\nu-1}$$

The PoCSverse Branching Networks I 48 of 56

Introduction

Definitions

Lame

Stream Ordering

Horton's Laws

Tokunaga's Law

Nutshell

Tokunaga's law [8, 9, 10]

$$T_{\mu,\nu} = T_{\mu-\nu}$$

Property 2: Number of side streams grows exponentially with difference in orders:

$$T_{\mu,\nu} = T_1 (R_T)^{\mu-\nu-1}$$

🛞 We usually write Tokunaga's law as:

$$\boxed{T_k = T_1 (R_T)^{k-1}}$$
 where $R_T \simeq 2$

The PoCSverse Branching Networks I 48 of 56

Introduction

Definitions

Allon

Stream Ordering

Horton's Laws

Tokunaga's Law

Nutshell

Tokunaga's law—an example:

 $T_1 \simeq 2$ $R_T \simeq 4$

The PoCSverse Branching Networks I 49 of 56

Introduction

Definitions

Allo

Stream Ordering

Horton's Laws

Tokunaga's Law

Nutshell

The Mississippi

A Tokunaga graph:

The PoCSverse Branching Networks I 50 of 56

Introduction

Definition

Laws

Stream Ordering

Horton's Laws

Tokunaga's Law

Nutshell

Nutshell:

Branching networks show remarkable self-similarity over many scales.

The PoCSverse Branching Networks I 51 of 56

Laws

Stream Ordering

Horton's Laws

Tokunaga's Law

Nutshell

Branching networks show remarkable self-similarity over many scales.

There are many interrelated scaling laws.

The PoCSverse Branching Networks I 51 of 56

Laws

Stream Ordering

Horton's Laws

Tokunaga's Law

Nutshell

There are many interrelated scaling laws.

Horton-Strahler Stream ordering gives one useful way of getting at the architecture of branching networks.

The PoCSverse Branching Networks I 51 of 56

Introduction

Definition

Laws

Stream Ordering

Horton's Laws

Tokunaga's Law

Nutshell

There are many interrelated scaling laws.

Horton-Strahler Stream ordering gives one useful way of getting at the architecture of branching networks.

Horton's laws reveal self-similarity.

The PoCSverse Branching Networks I 51 of 56

Introduction

Definition

Laws

Stream Ordering

Horton's Laws

Tokunaga's Law

Nutshell

There are many interrelated scaling laws.

Horton-Strahler Stream ordering gives one useful way of getting at the architecture of branching networks.

Horton's laws reveal self-similarity.

A Horton's laws can be misinterpreted as suggesting a pure hierarchy.

The PoCSverse Branching Networks I 51 of 56

Introduction

Definitions

Laws

Stream Ordering

Horton's Laws

Tokunaga's Law

Nutshell

There are many interrelated scaling laws.

Horton-Strahler Stream ordering gives one useful way of getting at the architecture of branching networks.

Horton's laws reveal self-similarity.

A Horton's laws can be misinterpreted as suggesting a pure hierarchy.

Tokunaga's laws neatly describe network architecture.

The PoCSverse Branching Networks I 51 of 56

Introduction

Definitions

Laws

Stream Ordering

Horton's Laws

Tokunaga's Law

Nutshell

There are many interrelated scaling laws.

Horton-Strahler Stream ordering gives one useful way of getting at the architecture of branching networks.

Horton's laws reveal self-similarity.

A Horton's laws can be misinterpreted as suggesting a pure hierarchy.

Nokunaga's laws neatly describe network architecture.

Branching networks exhibit a mixed hierarchical structure.

The PoCSverse Branching Networks I 51 of 56

Introduction

Definitions

Laws

Stream Ordering

Horton's Laws

Tokunaga's Law

Nutshell

- Branching networks show remarkable self-similarity over many scales.
- There are many interrelated scaling laws.
- Horton-Strahler Stream ordering gives one useful way of getting at the architecture of branching networks.
- Horton's laws reveal self-similarity.
- A Horton's laws can be misinterpreted as suggesting a pure hierarchy.
- Nokunaga's laws neatly describe network architecture.
- Branching networks exhibit a mixed hierarchical structure.
- Horton and Tokunaga can be connected analytically.

The PoCSverse Branching Networks I 51 of 56

Introduction

Definitions

Laws

Stream Ordering

Horton's Laws

Tokunaga's Law

Nutshell

- Branching networks show remarkable self-similarity over many scales.
- There are many interrelated scaling laws.
- Horton-Strahler Stream ordering gives one useful way of getting at the architecture of branching networks.
- Horton's laws reveal self-similarity.
- A Horton's laws can be misinterpreted as suggesting a pure hierarchy.
- Tokunaga's laws neatly describe network architecture.
- & Branching networks exhibit a mixed hierarchical structure.
- A Horton and Tokunaga can be connected analytically.
- & Surprisingly:

$$R_n = \frac{(2+R_T+T_1)+\sqrt{(2+R_T+T_1)^2-8R_T}}{2}$$

The PoCSverse Branching Networks I 51 of 56

Introduction

Definitions

Laws

Stream Ordering

Horton's Laws

Tokunaga's Law

Nutshell

Crafting landscapes—Far Lands or Bust ☑:

The PoCSverse Branching Networks I 52 of 56

Introduction

Definitions

Allo

Stream Ordering

Horton's Laws

Tokunaga's Law

Nutshell References

recierence

References I

- [1] P. S. Dodds and D. H. Rothman. Unified view of scaling laws for river networks. Physical Review E, 59(5):4865–4877, 1999. pdf
- [2] W. S. Glock. The development of drainage systems: A synoptic view. The Geographical Review, 21:475–482, 1931. pdf
- [3] J. T. Hack.
 Studies of longitudinal stream profiles in Virginia and Maryland.
 United States Geological Survey Professional Paper,

United States Geological Survey Professional Paper 294-B:45-97, 1957. pdf

The PoCSverse Branching Networks I 53 of 56

Introduction

Definitions

Law

Stream Ordering

Horton's Laws

Tokunaga's Law

Nutshell

References II

[4] R. E. Horton.

Erosional development of streams and their drainage basins; hydrophysical approach to quatitative morphology.

Bulletin of the Geological Society of America, 56(3):275–370, 1945. pdf

- [5] I. Rodríguez-Iturbe and A. Rinaldo.
 Fractal River Basins: Chance and Self-Organization.
 Cambridge University Press, Cambrigde, UK, 1997.
- [6] S. A. Schumm.
 Evolution of drainage systems and slopes in badlands at Perth Amboy, New Jersey.
 Bulletin of the Geological Society of America, 67:597–646,

Bulletin of the Geological Society of America, 67:597–646, 1956. pdf

The PoCSverse Branching Networks I 54 of 56

Introduction

Definition

Allom

Stream Ordering

Horton's Laws

Tokunaga's Law

Nutshell

References III

[7] A. N. Strahler.
Hypsometric (area altitude) analysis of erosional topography.
Bulletin of the Geological Society of America, 63:1117–1142,
1952.

[8] E. Tokunaga. The composition of drainage network in Toyohira River Basin and the valuation of Horton's first law. Geophysical Bulletin of Hokkaido University, 15:1–19, 1966.
pdf

[9] E. Tokunaga. Consideration on the composition of drainage networks and their evolution. Geographical Reports of Tokyo Metropolitan University.

Geographical Reports of Tokyo Metropolitan University, 13:G1–27, 1978. pdf

The PoCSverse Branching Networks I 55 of 56

Introduction

Allomet

Laws

Stream Ordering

Horton's Laws

Tokunaga's Law

Nutshell

References IV

[10] E. Tokunaga.

Ordering of divide segments and law of divide segment numbers.

Transactions of the Japanese Geomorphological Union, 5(2):71–77, 1984.

[11] D. L. Turcotte, J. D. Pelletier, and W. I. Newman. Networks with side branching in biology. Journal of Theoretical Biology, 193:577–592, 1998. pdf The PoCSverse Branching Networks I 56 of 56

Introduction

Definitio

Law

Stream Ordering

Horton's Laws

Tokunaga's Law

Nutshell

