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""""""""""""""""" E le: v = 2 for electrical ks.
& Xample: 7y or electrical networks &% Parameters control impedance (0 < o < 1) and angles of

junctions (0 < [3)
&% For this example: o« = 0.6 and § = 0.5
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Optimal paths related to transport (Monge) problems (4
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e | o An immensely controversial issue ... o ‘
What’s the best way to distribute stuff? N o .
y References oo References & The form of natural branchmg networks: References

& Stuff = medical services, energy, people, ... o o Random, optimal, or some combination? (6.19,2,5,4]
& Some fundamental network problems: & River networks, blood networks, trees, ...

1. Distribute stuff from a single source to many sinks o3 os

2. Distribute stuff from many sources to many sinks 4 o Two observations:

3. Redistribute stuff between nodes that are both sources and b o .. . .

ik e T SN BENIC~ G S A WD S & Self-similar networks appear everywhere in nature for single
SINKsS

source supply/single sink collection.

\ Collecti ival bl
& Supply and Collection are equivalent problems &% Real networks differ in details of scaling but reasonably agree

Qinglan Xia, in scaling relations.
Communications in Contemporary Mathematics, 5,
251-279,2003. 20
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River network models

Optimal

Optimal branching
Optimality: References
< Optimal channel networks (13]
[14]

P Thermodynamic analogy

VErsus ...

Randomness:
< Scheidegger’s directed random networks
&% Undirected random networks
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Optimization—Murray’s law @

Optimal

& Murray’s law (1926) connects
branch radii at
forks: [11,10,12,7,17)

transportation

Optimal branching

References

3 3 3
T’paren( - Tol‘fspring] + roﬂkprixng

where 7y, e, = radius of

‘parent’ branch, and Toffspring1
and Toffipring2 1€ radii of the
two ‘offspring’ sub-branches.

s,

Holds up well for outer branchings of blood networks
12,8

&
&

Also found to hold for trees |
supporting structure .

! when xylem is not a

&

See D’Arcy Thompson’s “On Growth and Form” for

background and general inspiration [16,17],

The PoCSverse

Optimal Supply

&5 Use hydraulic equivalent of Ohm’s law:
Ap=dZ <V =IR ?I::\;rg;m

Optimal
transportation

where Ap = pressure difference, ® = flux.
Optimal branching

Murmay's e

& Fluid mechanics: Poiscuille

—

,,,,,,,,,,,,, References

flow (£ in a tube of radius r and

length ¢:

P 8nl

mrd

& 1= dynamic viscosity (£ (units: ML71T71).

& Power required to overcome impedance:
_ _$2
Py =@Ap = 2*Z.

&% Also have rate of energy expenditure in maintaining blood
given metabolic constant ¢:

P,

metabolic

=cr
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References

Aside on Py,,,

&> Workdone=F -d= energy transferred by force F'
& Power = P= rate work is done = F' - v
& Ap = Pressure differential = Force per unit area

&> ® = Volume flow per unit time (current)
= cross-sectional area - velocity

& So®Ap =TForce - velocity
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transportation

Optimal branching

Murray’s law:

&% Total power (cost):

References

P — Pdrag + P @2 877[

metabolic -

+cr?t

&5 Observe power increases linearly with £
&5 But s effect is nonlinear:
Sy increasing 7 makes flow easier but increases metabolic cost (as
r2)
&0 decreasing 7 decrease metabolic cost but impedance goes up
(asr™?)
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Murray’s law:

Murray's e

&% Minimize Pwith respect to 1':

References

BfP: 9 ((1)2877[
or  Or

— + cr2€>

r

&% Flow rates at each branching have to add up (else our
organism is in serious trouble ...):

by =, + 0,

where again 0 refers to the main branch and 1 and 2 refers to
the offspring branches

Optimization—Murray’s law

Murray’s law:

&% Find:
b = k3

& Insert assignment question &

& All of this means we have a groovy cube-law:

-3

— 3 3
7}3:1‘:nt - 7offspring1 + TL)ffSpringZ

Murray meets Tokunaga:

& ®,, = volume rate of flow into an order w vessel segment

< Tokunaga picture:

w—1
q)w = 2(I>w71 + Zqu)wfk

k=1
& Using ¢, = krd
w—1
(Tw)g =2 (Tc/.)—l)3 + ZTk (Tw—k)3
k=1

& Same form as:

Q
ng, = 2n,., + E TNy
et LW W

- /= N
generation W' =w+1 absorption

Optimization

Murray meets Tokunaga:

&% Find Horton ratio for vessel radius R, = 7, /r,,_;.

& Find R satisfies same equation as R,, and R,,
(v is for volume):

R

R

n

& Is there more we could do here to constrain the Horton ratios
and Tokunaga constants?
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Optimization

Murray meets Tokunaga:
&% Lsometry: V,, o £3
&% Gives

RI=R}=R,=R

v

&5 We need one more constraint ...

& West et al. (1997) 119 achieve similar results following
Horton’s laws (but this work is a disaster).

& So does Turcotte ez al. (1998) '*] using Tokunaga (sort of).
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