Optimal Supply Networks II: Blood, Water, and Truthicide Last updated: 2021/10/06, 23:35:55 EDT Principles of Complex Systems, Vols. 1 & 2 CSYS/MATH 300 and 303, 2021-2022 | @pocsvox #### Prof. Peter Sheridan Dodds | @peterdodds Computational Story Lab | Vermont Complex Systems Center Vermont Advanced Computing Core | University of Vermont Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 License #### Outline Metabolism and Truthicide Death by fractions Measuring exponents River networks Earlier theories Geometric argument Conclusion References #### Stories—The Fraction Assassin: #### @pocsvox Optimal Supply Networks II Metabolism and Truthicide Death by fractions Measuring exponents River networks Earlier theories argument Conclusion References #### Law and Order, Special Science Edition: Truthicide Department "In the scientific integrity system known as peer review, the people are represented by two highly overlapping yet equally important groups: the independent scientists who review papers and the scientists who punish those who publish garbage. This is one of their stories." 少 Q (№ 1 of 124 PoCS @pocsvox Optimal Supply Metabolism and Truthicide Death by Measuring exponents Geometric argument Conclusion References W | | PoCS @pocsvox Networks II Optimal Supply ◆) < (~ 2 of 124 River networks Earlier theories Animal power Fundamental biological and ecological constraint: $P = c M^{\alpha}$ P =basal metabolic rate M =organismal body mass ### UM OS ◆) < (~ 4 of 124 @pocsvox Death by Measuring River networks Earlier theories argument References Optimal Supply Metabolism and @pocsvox Optimal Supply Metabolism and Truthicide Death by Measuring River networks Earlier theories Geometric argument Conclusion ### What one might expect: $\alpha = 2/3$ because ... Quarterology: Dimensional analysis suggests an energy balance surface law: $$P \propto S \propto V^{2/3} \propto M^{2/3}$$ - Assumes isometric scaling (not quite the spherical cow). - Lognormal fluctuations: Gaussian fluctuations in $log_{10}P$ around $\log_{10} c M^{\alpha}$. Stefan-Boltzmann law for radiated energy: The prevailing belief of the Church of $$\frac{\mathrm{d}E}{\mathrm{d}t} = \sigma \varepsilon S T^4 \propto S$$ @pocsvox Death by Measuring River networks Earlier theories Geometric argument Conclusion References Optimal Supply Metabolism and 少 Q (~ 7 of 124 PoCS @pocsvox Optimal Supply Metabolism and Truthicide Death by Measuring River networks Earlier theories Geometric argument Conclusion References UM O PoCS @pocsvox Optimal Supply Metabolism and Truthicide Death by fractions Measuring exponents Geometric argument Conclusion References River networks Earlier theories 夕 Q ← 8 of 124 Huh? $P \propto M^{3/4}$ $\alpha = 3/4$ •9 q (→ 5 of 124 PoCS Optimal Supply Metabolism and Truthicide Death by Measuring exponents River networks Earlier theories Geometric argument Conclusion References The prevailing belief of the Church of Quarterology: Most obvious concern: 3/4 - 2/3 = 1/12 - An exponent higher than 2/3 points suggests a fundamental inefficiency in biology. - Organisms must somehow be running 'hotter' than they need to balance heat loss. UNN O References •9 a (№ 3 of 124 Prefactor c depends on body plan and body temperature: Birds $39-41^{\circ}C$ Eutherian Mammals $36-38^{\circ}C$ Marsupials $34-36^{\circ}C$ Monotremes $30-31^{\circ}C$ $P = c M^{\alpha}$ Metabolism and Truthicide Death by Measuring River networks Earlier theories Geometric argument Conclusion # Related putative scalings: #### Wait! There's more!: - $\red{solution}$ number of capillaries $\propto M^{3/4}$ - \clubsuit time to reproductive maturity $\propto M^{1/4}$ - $\red heart rate \propto M^{-1/4}$ - $\red sigma$ cross-sectional area of aorta $\propto M^{3/4}$ - $\red{solution}$ population density $\propto M^{-3/4}$ # The great 'law' of heartbeats: #### Assuming: - $\red{solution}$ Average lifespan $\propto M^{\beta}$ - $\red{\$}$ Average heart rate $\propto M^{-\beta}$ - $\mbox{\ensuremath{\&}}$ Irrelevant but perhaps $\beta = 1/4$. #### Then: - Average number of heart beats in a lifespan \simeq (Average lifespan) \times (Average heart rate) $\propto M^{\dot{\beta}-\dot{\beta}}$ $\propto M^0$ - Number of heartbeats per life time is independent of organism size! - \gg ≈ 1.5 billion ### From PoCS, the Prequel to CocoNuTs: "How fast do living organisms move: Maximum speeds from bacteria to elephants and whales" Meyer-Vernet and Rospars, American Journal of Physics, 83, 719-722, 2015. [35] process (1.7) mammans protted in magenta and 45 non-mammals surces of the data are given in Ref. 16. The solid line is the m otted in blue). The s ated in Sec. III. The human world records are plotted as asterisks @pocsvox Optimal Supply Networks II Metabolism and Truthicide Death by Measuring River networks Earlier theories argument Conclusion References |S PoCS "A general scaling law reveals why the largest animals are not the fastest" Hirt et al., Nature Ecology & Evolution, **1**, 1116, 2017. [23] "A general scaling law reveals why the largest Nature Ecology & Evolution, 1, 1116, 2017. [23] animals are not the fastest" Hirt et al., 少 Q ← 10 of 124 @pocsvox Optimal Supply Metabolism and Truthicide Death by Networks II Measuring River networks Earlier theories Geometric argument Conclusion References W | | •9 a (№ 11 of 124 PoCS @pocsvox Optimal Supply Networks II Metabolism and Truthicide Death by Measuring exponents River networks Earlier theories Geometric argument Conclusion References |S •9 a (№ 12 of 124 # Theoretical story: Maximum speed increases with size: $v_{\text{max}} = aM^b$ - Takes a while to get going: $v(t) = v_{\mathsf{max}}(1 - e^{-kt})$ - $k \sim F_{\text{max}}/M \sim cM^{d-1}$ Literature: $0.75 \lesssim d \lesssim 0.94$ - Acceleration time = depletion time for anaerobic energy: $\tau \sim f M^g$ Literature: $0.76 \lesssim g \lesssim 1.27$ - i = d 1 + g and h = cf @pocsvox Optimal Supply Networks II ### A theory is born: #### Metabolism and Truthicide Death by A theory grows: 1883: Rubner^[42] found $\alpha \simeq 2/3$. Measuring River networks Earlier theories Geometric argument |S @pocsvox Optimal Supply Metabolism and Death by Measuring Geometric argument References River networks Earlier theories •9 q (№ 13 of 124 References 1840's: Sarrus and Rameaux [44] first suggested $\alpha = 2/3$. # UM O @pocsvox Networks II Truthicide Death by fractions Measuring River networks Earlier theories Geometric argument Conclusion References Optimal Supply Metabolism and 少 Q № 17 of 124 @pocsvox Optimal Supply Truthicide Death by fractions River networks Earlier theories Geometric Conclusion References |S •9 q (→ 14 of 124 #### PoCS @pocsvox Optimal Supply # Metabolism and Death by Measuring exponents River networks Earlier theories Theory meets a different 'truth': Truthicide 1930's: Brody, Benedict study mammals. [6] Found $\alpha \simeq 0.73$ (standard). Metabolism and Measuring argument WW |8 夕 Q (→ 18 of 124 PoCS Optimal Supply Metabolism and Truthicide Death by fractions Measuring exponents River networks Earlier theories Geometric argument Conclusion References - & Literature search for for maximum speeds of running, flying and swimming animals. - Search terms: "maximum speed", "escape speed" and "sprint speed". III | UNN O •9 q (> 19 of 124 ### Our hero faces a shadowy cabal: - 1932: Kleiber analyzed 13 mammals. [25] - Solution Found $\alpha = 0.76$ and suggested $\alpha = 3/4$. - Scaling law of Metabolism became known as Kleiber's Law (2011 Wikipedia entry is embarrassing). - 🚵 1961 book: "The Fire of Life. An Introduction to Animal Energetics". [26] ### When a cult becomes a religion: 1950/1960: Hemmingsen [20, 21] Extension to unicellular organisms. $\alpha = 3/4$ assumed true. # Quarterology spreads throughout the land: The Cabal assassinates 2/3-scaling: - 1964: Troon, Scotland. - 3rd Symposium on Energy Metabolism. - $\alpha = 3/4$ made official29 to zip. - But the Cabal slipped up by publishing the conference proceedings ... - "Energy Metabolism; Proceedings of the 3rd symposium held at Troon, Scotland, May 1964," Ed. Sir Kenneth Blaxter [4] Metabolism and Death by fractions Measuring argument References River networks Earlier theories # An unsolved truthicide: #### So many questions ... - A Did the truth kill a theory? Or did a theory kill the - Or was the truth killed by just a lone, lowly hypothesis? - Does this go all the way to the top? To the National Academies of Science? - Is 2/3-scaling really dead? - Could 2/3-scaling have faked its own death? - What kind of people would vote on scientific facts? 3/4 is held by many to be the one true exponent. # UN S PoCS @pocsvox ◆) < (> 20 of 124 #### Modern Quarterology, Post Truthicide Optimal Supply Metabolism and Truthicide # Death by fractions Measuring River networks Earlier theories Geometric argument References In the Beat of a Heart: Life, Energy, and the Unity of Nature—by John Whitfield - But: much controversy ... - See 'Re-examination of the "3/4-law" of metabolism' by the Heretical Unbelievers Dodds, Rothman, and Weitz [14], and ensuing madness ... •) q (→ 21 of 124 # PoCS @pocsvox Optimal Supply # Metabolism and Death by fractions Measuring River networks Earlier theories Geometric argument Conclusion $\log_{10} M$ Some data on metabolic rates A Heusner's data (1991)[22] - **391** Mammals A blue line: 2/3 - red line: 3/4. ## @pocsvox Optimal Supply Metabolism and Truthicide Death by fractions Measuring River networks Earlier theories Geometric argument References # Some data on metabolic rates Passerine vs. non-passerine issue ... Bennett and Harvey's data (1987)^[3] 398 birds Ablue line: 2/3 & red line: 3/4. $A \cap B = P$ References @pocsvox Truthicide Death by fractions Measuring River networks Earlier theorie argument Conclusion UM O PoCS @pocsvox Truthicide Death by Measuring exponents Geometric argument Conclusion
References River networks Earlier theories Optimal Supply Metabolism and •9 q (→ 27 of 124 Optimal Supply Metabolism and •24 of 124 #### @pocsvox Optimal Supply #### Death by fractions UM | 8 PoCS @pocsvox Optimal Supply Metabolism and Measuring exponents River networks Earlier theories •9 q (→ 25 of 124 Measuring exponents River networks Earlier theories Geometric argument References # Linear regression #### Important: - A Ordinary Least Squares (OLS) Linear regression is only appropriate for analyzing a dataset $\{(x_i, y_i)\}$ when we know the x_i are measured without error. - \clubsuit Here we assume that measurements of mass Mhave less error than measurements of metabolic rate B. If (a) we don't know what the errors of either variable or (b) no variable can be considered independent, Standardized Major Axis Linear Regression. [43, 41] Linear regression assumes Gaussian errors. # W | | ◆) < (→ 28 of 124 # PoCS Optimal Supply Metabolism and Truthicide Death by fractions # Measuring exponents River networks Earlier theories Geometric argument Conclusion References are, (aka Reduced Major Axis = RMA.) Measuring exponents More on regression: then we need to use # W | 8 少 Q (~ 26 of 124 # 少 Q (→ 22 of 124 ### 夕 Q № 29 of 124 # Measuring exponents #### For Standardized Major Axis Linear Regression: $$slope_{sma} = \frac{standard\ deviation\ of\ y\ data}{standard\ deviation\ of\ x\ data}$$ - Wery simple! - Minimization of sum of areas of triangles induced by vertical and horizontal residuals with best fit line. - The only linear regression that is Scale invariant . - Attributed to Nobel Laureate economist Paul Samuelson , [43] but discovered independently by others. - #somuchwin # Measuring exponents #### Relationship to ordinary least squares regression is simple: $$\begin{aligned} \mathsf{slope}_{\mathsf{SMA}} &= & r^{-1} \times \mathsf{slope}_{\mathsf{OLS}\, y \, \mathsf{on} \, x} \\ &= & r \times \mathsf{slope}_{\mathsf{OLS}\, x \, \mathsf{on} \, y} \end{aligned}$$ where r = standard correlation coefficient: $$r = \frac{\sum_{i=1}^{n}(x_i - \bar{x})(y_i - \bar{y})}{\sqrt{\sum_{i=1}^{n}(x_i - \bar{x})^2}\sqrt{\sum_{i=1}^{n}(y_i - \bar{y})^2}}$$ & Groovy upshot: If (1) a paper uses OLS regression when RMA would be appropriate, and (2) r is reported, we can figure out the RMA slope. [41, 29] | LINEAR | RELATION: | S IN BIOM | ECHANICS | | |---|-----------------------------------|-------------------------|---|--| | Calculated slatistic
albatross Diomedi | of airspeed V, a
n melanophris | and windenced \$ | in the Black-browed
ht. after Permycuick | | | number of data n
means S , \tilde{y}
variances S_{xx} , S_{yy}
covariance S_{xy}
correlation ρ | -4-653
-0-435 | 218 (ms ⁻¹) | | | | mor | lel of speed cor | rection: $V_s = \alpha$ | + βV _~ | | | model | intercept 2 | gradient # | range (95%) | | | y(x) regression | 12:30 | -0.334 | -0:384 to -0:284 | | | r.m.a. | 10-93 | -0.769 | -0894 to -0661
-2076 to -1:536 | | | x(y) regression | | -1:766 | | | | s.r. $b_{q} = 0.5$ | 10-66 | -0.855 | -0-997 to -0-737 | | | $b_c = 1$ or m.a. | 11-59 | -0-560 | -0-648 to -0-479 | | | $b_e = 2$ | 12:00 | -0431 | -0496 to -0-367 | | - Disparity between slopes for y on x and x on yregressions is a factor of r^2 (r^{-2}) - & (Rayner uses ρ for r.) - Arr Here: $r^2 = .435^2 = 0.189$, and $r^{-2} = .435^{-2} = 2.29^2 = 5.285.$ - See also: LaBarbera [29] (who resigned ...) #### @pocsvox Optimal Supply Networks II Metabolism and Death by Measuring River networks Earlier theories Conclusion | $\leq 0.1~\mathrm{kg}$ | 167 | 0.678 ± 0.038 | |------------------------|-----|-------------------| | | | | | $\leq 1 \text{ kg}$ | 276 | 0.662 ± 0.032 | | | | | | $\leq 10 \text{ kg}$ | 357 | 0.668 ± 0.019 | | | | | | $\leq 25~\mathrm{kg}$ | 366 | 0.669 ± 0.018 | | | | | | $\leq 35~\mathrm{kg}$ | 371 | 0.675 ± 0.018 | | | | | | $\leq 350~\mathrm{kg}$ | 389 | 0.706 ± 0.016 | | | | | | < 3670 kg | 391 | 0.710 ± 0.021 | Heusner's data, 1991 (391 Mammals) range of M # |S PoCS #### •೧ q (~ 30 of 124 #### @pocsvox Optimal Supply Metabolism and Death by Measuring exponents River networks Earlier theories Geometric argument Conclusion References # ◆) < (→ 31 of 124 #### PoCS @pocsvox Optimal Supply Networks II Metabolism and Death by Measuring exponents River networks Earlier theories Geometric argument Conclusion III | •9 q (→ 32 of 124 # Bennett and Harvey, 1987 (398 birds) | $M_{\sf max}$ | N | \hat{lpha} | |---------------|-----|-------------------| | ≤ 0.032 | 162 | 0.636 ± 0.103 | | ≤ 0.1 | 236 | 0.602 ± 0.060 | | ≤ 0.32 | 290 | 0.607 ± 0.039 | | ≤ 1 | 334 | 0.652 ± 0.030 | | ≤ 3.2 | 371 | 0.655 ± 0.023 | | ≤ 10 | 391 | 0.664 ± 0.020 | | ≤ 32 | 396 | 0.665 ± 0.019 | | ≤ 100 | 398 | 0.664 ± 0.019 | # Fluctuations—Things look normal ... $P(B|M) = 1/M^{2/3} f(B/M^{2/3})$ Use a Kolmogorov-Smirnov test. # Hypothesis testing #### Test to see if α' is consistent with our data $\{(M_i, B_i)\}$: $H_0: \alpha = \alpha'$ and $H_1: \alpha \neq \alpha'$. Death by - \mathbb{A} Assume each \mathbf{B}_i (now a random variable) is normally distributed about $\alpha' \log_{10} M_i + \log_{10} c$. - \clubsuit Follows that the measured α for one realization obeys a t distribution with N-2 degrees of freedom. - Calculate a p-value: probability that the measured α is as least as different to our hypothesized α' as we observe. - See, for example, DeGroot and Scherish, "Probability and Statistics." [11] @pocsvox Optimal Supply Metabolism and Measuring exponents argument References River networks Earlier theories #### ◆2 Q ← 33 of 124 #### @pocsvox Optimal Supply # Metabolism and Death by # Measuring exponents River networks Earlier theories Geometric argument Conclusion Reference # Revisiting the past—mammals # Full mass range: | | N | $\hat{\alpha}$ | $p_{2/3}$ | $p_{3/4}$ | | |------------|-----|----------------|-------------|--------------|--| | | | | -/- | 9, 5 | | | Kleiber | 13 | 0.738 | $< 10^{-6}$ | 0.11 | | | | | | | | | | Brody | 35 | 0.718 | $< 10^{-4}$ | $< 10^{-2}$ | | | | | | | | | | Heusner | 391 | 0.710 | $< 10^{-6}$ | $< 10^{-5}$ | | | | | | | | | | Bennett | 398 | 0.664 | 0.69 | $< 10^{-15}$ | | | and Harvey | | | | | | | | | | | | | $p_{3/4}$ 0.088 $< 10^{-3}$ # Revisiting the past—mammals $\hat{\alpha}$ 0.667 0.709 357 0.668 0.99 $< 10^{-3}$ 0.91 ### @pocsvox Optimal Supply ◆) q (→ 34 of 124 |S PoCS Metabolism and Death by Measuring exponents River networks Earlier theories Geometric argument Conclusion References 少 Q (→ 35 of 124 $M \geq 10$ kg: $M \leq 10 \text{ kg}$: Kleiber Brody Heusner N 5 26 | | N | \hat{lpha} | $p_{2/3}$ | $p_{3/4}$ | |---------|----|--------------|--------------|-------------| | Kleiber | 8 | 0.754 | $< 10^{-4}$ | 0.66 | | Brody | 9 | 0.760 | $< 10^{-3}$ | 0.56 | | Heusner | 34 | 0.877 | $< 10^{-12}$ | $< 10^{-7}$ | Networks II Metabolism and Truthicide Death by Optimal Supply @pocsvox Measuring River networks Earlier theories Geometric argument Conclusion References UM O •9 q (→ 36 of 124 @pocsvox Optimal Supply Metabolism and Truthicide Death by Measuring exponents River networks Earlier theories Geometric argument Conclusion References W | | ◆) < (~ 37 of 124 PoCS Optimal Supply Metabolism and Truthicide Death by fractions Measuring exponents River networks Earlier theories Geometric argument Conclusion References UNN O 2 9 0 € 38 of 124 ## Analysis of residuals - 1. Presume an exponent of your choice: 2/3 or 3/4. - 2. Fit the prefactor ($log_{10}c$) and then examine the residuals: $$r_i = \mathsf{log}_{10} B_i - (\alpha' \mathsf{log}_{10} M_i - \mathsf{log}_{10} c).$$ - 3. H_0 : residuals are uncorrelated H_1 : residuals are correlated. - 4. Measure the correlations in the residuals and compute a p-value. # Analysis of residuals We use the spiffing Spearman Rank-Order Correlation Coefficient 2 #### Basic idea: - \mathfrak{S} Given $\{(x_i, y_i)\}$, rank the $\{x_i\}$ and $\{y_i\}$ separately from smallest to largest. Call these ranks R_i and - \aleph Now calculate correlation coefficient for ranks, r_s : $$r_s = \frac{\sum_{i=1}^n (R_i - \bar{R})(S_i - \bar{S})}{\sqrt{\sum_{i=1}^n (R_i - \bar{R})^2} \sqrt{\sum_{i=1}^n (S_i - \bar{S})^2}}$$ A Perfect correlation: x_i 's and y_i 's both increase monotonically. # Analysis of residuals #### We assume all rank orderings are equally likely: - r_{o} is distributed according to a Student's t-distribution \square with N-2 degrees of freedom. - & Excellent feature: Non-parametric—real distribution of x's and y's doesn't matter. - Bonus: works for non-linear monotonic relationships as well. - 🙈 See Numerical Recipes in C/Fortran 🗹 which contains many good things. [39] #### @pocsvox Optimal Supply Networks II Metabolism and Death by Measuring exponents argument Conclusion References |S ◆) < (> 39 of 124 PoCS @pocsvox Networks II Death by Measuring exponents Geometric argument References UM O PoCS @pocsvox Networks II Metabolism and Truthicide Death by Measuring exponents Geometric argument Conclusion |S ◆) < ← 41 of 124 River networks Earlier theories Optimal Supply ◆) q (→ 40 of 124 River networks Earlier theories 0.6 2/3 0.7 2/3 0.7 3/4 Optimal Supply Metabolism and River networks Earlier theories # Analysis of residuals—mammals Analysis of residuals—birds 3/4 0.8 (c) 0.8 0.6 α' Other approaches to measuring exponents: See Clauset's page on measuring power law & Clauset, Shalizi, Newman: "Power-law distributions in empirical data" [10] exponents (code, other goodies). See this collection of tweets for related SIAM Review, 2009. amusement. 0.6 2/3 0.7 3/4 0.8 2/3 0.7 3/4 0.8 - (a) M < 3.2
kg - (b) M < 10 kgEarlier theories (c) M < 32 kg, argument @pocsvox Truthicide Death by Measuring Conclusion References UM OS @pocsvox Death by Measuring exponents Geometric argument Conclusion River networks Earlier theories Optimal Supply ◆) Q (42 of 124 River networks Optimal Supply Metabolism and - (d) all - mammals. (a) M < 0.1 kg, (b) M < 1 kg, (c) M < 10 kg, (d) all birds. # Impure scaling?: The widening gyre: $\alpha \simeq 0.686 + 0.014$. So: The exponent $\alpha = 2/3$ works for all birds and mammals up to 10-30 kg ♣ For mammals > 10-30 kg, maybe we have a new scaling regime Possible connection?: Economos (1983)—limb length break in scaling around 20 kg [15] But see later: non-isometric growth leads to lower metabolic scaling. Oops. Now we're really confused (empirically): White and Seymour, 2005: unhappy with large herbivore measurements [56]. Pro 2/3: Find Is Not Universal: Evolution of Isometric, & Glazier, Biol. Rev. (2005) [17]: "Beyond the 3/4-power law': variation in the intra- and A Glazier, BioScience (2006) [18]: "The 3/4-Power Law Ontogenetic Metabolic Scaling in Pelagic Animals." #### Earlier theories Geometric argument River networks PoCS @pocsvox Optimal Supply Metabolism and Networks II Truthicide Death by Measuring Conclusion References ◆) q (~ 45 of 124 @pocsvox Optimal Supply Death by Measuring exponents Earlier theories Geometric argument Conclusion References UM O PoCS @pocsvox Optimal Supply ◆) q (→ 46 of 124 interspecific scaling of metabolic rate in animals." allometric scaling theory" Pro 3/4: problems claimed to be finite-size scaling. PoCS Metabolism and Truthicide River networks Savage et al., PLoS Biology (2008) [45] "Sizing up # um |S ◆) q (→ 43 of 124 PoCS Optimal Supply Metabolism and Truthicide Death by Measuring exponents River networks Earlier theories Geometric argument Conclusion References ### Somehow, optimal river networks are connected: a = drainagebasin area ♣ ℓ = length of longest (main) stream $A = L_{\parallel} =$ longitudinal length of basin Metabolism and Truthicide Death by fractions Measuring exponents River networks Earlier theories Geometric argument Conclusion References 少 Q (№ 44 of 124 # III | # $L_{\parallel} = L$ UNN O 20 Q € 47 of 124 ### Mysterious allometric scaling in river networks 1957: J. T. Hack [19] "Studies of Longitudinal Stream Profiles in Virginia and Maryland" $$\ell \sim a^h$$ $$h \sim 0.6$$ - Anomalous scaling: we would expect h = 1/2 ... - Subsequent studies: $0.5 \lesssim h \lesssim 0.6$ - Another quest to find universality/god ... - A catch: studies done on small scales. # Large-scale networks: (1992) Montgomery and Dietrich [36]: - Composite data set: includes everything from unchanneled valleys up to world's largest rivers. - Estimated fit: $$L\simeq 1.78a^{\,0.49}$$ Mixture of basin and main stream lengths. ### World's largest rivers only: - Data from Leopold (1994) [31, 13] - Self-stimate of Hack exponent: $h = 0.50 \pm 0.06$ # @pocsvox #### Optimal Supply Networks II # Metabolism and Death by fractions Measuring River networks Earlier theories argument References |S PoCS @pocsvox Truthicide Death by Measuring River networks Earlier theories Geometric argument References UM | 8 PoCS @pocsvox Networks II Metabolism and Truthicide Death by Measuring exponents Geometric argument Conclusion III | ◆) < ← 50 of 124 River networks Earlier theories Optimal Supply ◆) q (→ 49 of 124 Optimal Supply Metabolism and ◆) < (> 48 of 124 # Earlier theories (1973-): #### Building on the surface area idea: - McMahon (70's, 80's): Elastic Similarity [32, 34] - & Idea is that organismal shapes scale allometrically with 1/4 powers (like trees ...) - A Disastrously, cites Hemmingsen [21] for surface area data. - Appears to be true for ungulate legs ... [33] - A Metabolism and shape never properly connected. "Size and shape in biology" ✓ Fig. 3. (a) Chest circumference, d., plotted against body weight, W, for five species of primates. The broken line and error in this least-squares fit [adapted from (21)]. The model proposed here, whereby each length, I, incre of diameter, d., is illustrated for two weights differing by a factor of 16. (b) Body surface area plotted to A Hemmingsen's "fit" is for a 2/3 power, notes p 46: "The energy metabolism thus definitely varies interspecifically over similar wide weight ranges with a higher power of the body weight possible 10 kg transition. [?] than the body surface." Science, **179**, 1201–1204, 1973. [32] Stretched cv T. McMahon, d_c (cm)=17.1 V #### Earlier theories (1977): Optimal Supply #### Metabolism and Truthicide Death by @pocsvox Measuring River networks Earlier theories argument Conclusion References ### Building on the surface area idea ... Blum (1977)^[5] speculates on four-dimensional biology: $$P \propto M^{\,(d-1)/d}$$ - d = 3 gives $\alpha = 2/3$ - \ll d=4 gives $\alpha=3/4$ - So we need another dimension ... - & Obviously, a bit silly... [46] @pocsvox Networks II Truthicide Death by Measuring River networks Earlier theories argument Conclusion References Optimal Supply Metabolism and #### •9 q (→ 51 of 124 #### @pocsvox Optimal Supply WW | 8 Metabolism and Truthicide Death by Measuring River networks Earlier theories Geometric argument Conclusion #### im | | •9 q (→ 52 of 124 #### PoCS @pocsvox Optimal Supply Death by fractions exponents Earlier theories argument References # Nutrient delivering networks: - 🚵 1960's: Rashevsky considers blood networks and finds a 2/3 scaling. - 3 1997: West et al. [53] use a network story to find 3/4 scaling. Metabolism and Truthicide Measuring River networks Conclusion # West et al.'s assumptions: Nutrient delivering networks: - 1. hierarchical network - 2. capillaries (delivery units) invariant - 3. network impedance is minimized via evolution #### Claims: - $P \propto M^{3/4}$ - networks are fractal - quarter powers everywhere 少 Q ← 54 of 124 @pocsvox Optimal Supply Metabolism and Truthicide Death by Measuring River networks Earlier theories Geometri argument Conclusion References •9 q (→ 55 of 124 PoCS Optimal Supply Metabolism and Truthicide Death by fractions Measuring exponents River networks Earlier theories Geometri argument Conclusion References UNN O 2 9 0 € 56 of 124 ### Impedance measures: Poiseuille flow (outer branches): $$Z = \frac{8\mu}{\pi} \sum_{k=0}^N \frac{\ell_k}{r_k^4 N_k}$$ Pulsatile flow (main branches): $$Z \propto \sum_{k=0}^N \frac{h_k^{1/2}}{r_k^{5/2} N_k}$$ - Wheel out Lagrange multipliers ... - A Poiseuille gives $P \propto M^1$ with a logarithmic correction. - Pulsatile calculation explodes into flames. #### Not so fast ... #### Actually, model shows: - $Rrac{1}{8} P \propto M^{3/4}$ does not follow for pulsatile flow - networks are not necessarily fractal. #### Do find: Murray's cube law (1927) for outer branches: [37] $$r_0^3 = r_1^3 + r_2^3 \\$$ - Impedance is distributed evenly. - Can still assume networks are fractal. # Connecting network structure to α 1. Ratios of network parameters: $$R_n = \frac{n_{k+1}}{n_k}, \; R_\ell = \frac{\ell_{k+1}}{\ell_k}, \; R_r = \frac{r_{k+1}}{r_k}$$ 2. Number of capillaries $\propto P \propto M^{\alpha}$. $$\Rightarrow \boxed{\alpha = -\frac{\ln R_n}{\ln R_r^2 R_\ell}}$$ (also problematic due to prefactor issues) #### Obliviously soldiering on, we could assert: area-preservingness: $R_r = R_n^{-1/2}$ Metabolism and Death by Measuring River networks Earlier theories Conclusion References # Data from real networks: | Network | R_n | R_r | R_{ℓ} | $-\frac{\ln R_r}{\ln R_n}$ | $-\frac{\ln R_{\ell}}{\ln R_n}$ | α | |----------------------------------|-------|-------|------------|----------------------------|---------------------------------|----------| | Mast at al | | | | 1/2 | 1/2 | 2/4 | | West et al. | - | - | - | 1/2 | 1/3 | 3/4 | | rat (PAT) | 2.76 | 1.58 | 1.60 | 0.45 | 0.46 | 0.73 | | + (DAT) | 2.67 | 1 71 | 1 70 | 0.44 | 0.44 | 0.70 | | cat (PAT) (Turcotte et al. [50]) | 3.67 | 1.71 | 1.78 | 0.41 | 0.44 | 0.79 | | (Turcotte et ul. 1-13) | | | | | | | | dog (PAT) | 3.69 | 1.67 | 1.52 | 0.39 | 0.32 | 0.90 | | nig (LCV) | 3.57 | 1.89 | 2.20 | 0.50 | 0.62 | 0.62 | | pig (LCX)
pig (RCA) | 3.50 | 1.81 | 2.20 | 0.30 | 0.62 | 0.65 | | pig (LAD) | 3.51 | 1.84 | 2.02 | 0.49 | 0.56 | 0.65 | | | | | | | | | | human (PAT) | 3.03 | 1.60 | 1.49 | 0.42 | 0.36 | 0.83 | | human (PAT) | 3.36 | 1.56 | 1.49 | 0.37 | 0.33 | 0.94 | # W | | ◆) < ○ 57 of 124 PoCS @pocsvox Optimal Supply Metabolism and Death by Measuring River networks Earlier theories Geometri argument Conclusion References |S PoCS @pocsvox Optimal Supply Metabolism and Truthicide Death by fractions Measuring River networks Earlier theories Conclusion References III | $\Rightarrow \alpha = 3/4$ ◆) q (→ 58 of 124 ### Attempts to look at actual networks: "Testing foundations of biological scaling theory using automated measurements of vascular networks" Newberry, Newberry, and Newberry, PLoS Comput Biol, **11**, e1004455, 2015. [38] PLoS Comput Biol. **11**. e1004455. . [?] Newberry et al., #### Let's never talk about this again: @pocsvox Optimal Supply Metabolism and Death by Measuring argument Conclusion References UM OS PoCS @pocsvox Death by Measuring Geometric argument References PoCS @pocsvox Optimal Supply Metabolism and Death by Measuring exponents argument Conclusion References III | 少 Q № 62 of 124 River networks Earlier theories •9 q (→ 61 of 124 River networks Earlier theories Optimal Supply Metabolism and 少 Q № 60 of 124 River networks Earlier theories "The fourth dimension of life: Fractal geometry and allometric scaling of organisms" West, Brown, and Enquist, Science, 284, 1677-1679, 1999, [54] - No networks: Scaling argument for energy exchange area a. - Distinguish between biological and physical length scales (distance between mitochondria versus cell radius). - & Buckingham π action. [9] - New disaster: after going on about fractality of a, then state $v \propto a\ell$ in
general. #### "It was the epoch of belief, it was the epoch of incredulity" "A General Model for the Origin of West, Brown, and Enquist, Science, **276**, 122–126, 1997. [53] "Nature" 🗹 West, Brown, and Enquist, Nature, **400**, 664–667, 1999. [55] 'The fourth dimension of life: Fractal geometry and allometric scaling of organisms" 🗹 West, Brown, and Enquist, Science, **284**, 1677–1679, 1999. [54] @pocsvox Optimal Supply Networks II Metabolism and Truthicide Death by Measuring River networks Earlier theories Conclusion References •> < ○ 63 of 124 PoCS @pocsvox Optimal Supply Metabolism and Truthicide Death by Measuring River networks Earlier theories Geometri argument Conclusion References •9 q (→ 64 of 124 PoCS @pocsvox Optimal Supply Metabolism and Death by fractions Measuring exponents River networks Earlier theories Geometri argument Conclusion References UN S 2 9 0 € 65 of 124 # Really, guite confused: #### Whole 2004 issue of Functional Ecology addresses the problem: - 🚵 J. Kozlowski, M. Konrzewski. "Is West, Brown and Enquist's model of allometric scaling mathematically correct and biologically relevant?" Functional Ecology 18: 283–9, 2004. [28] - 🚵 J. H. Brown, G. B. West, and B. J. Enguist. "Yes, West, Brown and Enquist's model of allometric scaling is both mathematically correct and biologically relevant." Functional Ecology 19: 735–738, 2005. [7] - 🚵 J. Kozlowski, M. Konarzewski, "West, Brown and Enquist's model of allometric scaling again: the same questions remain." Functional Ecology 19: 739-743, 2005. ## Some people understand it's truly a disaster: "Power, Sex, Suicide: Mitochondria and the Meaning of Life" **3**, **☑** by Nick Lane (2005). [30] "As so often happens in science, the apparently solid foundations of a field turned to rubble on closer inspection." ◆) Q (> 59 of 124 "Curvature in metabolic scaling" Kolokotrones, Savage, Deeds, and Fontana. Nature. **464**. 753, 2010. [27] #### Let's try a quadratic: $\log_{10} P \sim \log_{10} c + \alpha_1 \log_{10} M + \alpha_2 \log_{10} M^2$ #### Yah: ### "This raises the guestion of whether the theory can be adapted to agree with the data"1 ¹Already raised and fully established 9 years earlier. [14] #### Metabolism and Evolution has generally made things bigger¹ PoCS @pocsvox Networks II Death by fractions Measuring River networks Earlier theories argument References |S PoCS @pocsvox Networks II Death by Measuring Geometric argument References W | | PoCS @pocsvox Truthicide Death by Measuring River networks Earlier theories Geometric argument Conclusion References III | ◆) < (~ 68 of 124 Optimal Supply Metabolism and ◆) < (→ 67 of 124 River networks Earlier theories Optimal Supply Metabolism and ◆) q (> 66 of 124 Optimal Supply "The Phantom Tollbooth" **3**, 🗹 by Norton Juster (1961). [24] - \mathbb{R} Regression starting at low M makes sense - \mathbb{R} Regression starting at high M makes ...no sense ¹Yes, yes, yes: insular dwarfism 🗹 with the shrinkage 🗹 ### Still going: "A general model for metabolic scaling in self-similar asymmetric networks" Brummer, Brummer, and Enquist, PLoS Comput Biol, **13**, e1005394, 2017. [8] #### Wut?: "Most importantly, we show that the 3/4 metabolic scaling exponent from Kleiber's Law can still be attained within many asymmetric networks." #### Oh no: "Scale: The Universal Laws of Growth, Innovation, Sustainability, and the Pace of Life in Organisms, Cities, Economies, and Companies" 3, 2 by Geoffrey B. West (2017). [52] #### Amazon reviews excerpts (so, so not fair but ...): - 4 "Full of intriguing, big ideas but amazingly sloppy both in details and exposition, especially considering the author is a theoretical physicist." - A "The beginning is terrible. He shows four graphs to illustrate scaling relationships, none of which have intelligible scales" - (he actually repeats several times that businesses can die but are not really an animal - O RLY?)" Simple supply networks: @pocsvox Optimal Supply Metabolism and Truthicide Death by Networks II Measuring River networks Earlier theories argument Conclusion References UM OS @pocsvox Optimal Supply Metabolism and Death by Measuring Geometric argument Conclusion References River networks Earlier theories ◆9 of 124 Simple supply networks ...but also find d = 3: Banavar et al. Nature. $(1999)^{[1]}$. Flow rate argument. Ignore impedance. Very general attempt to find most efficient transportation networks. Metabolism and Truthicide Measuring @pocsvox Optimal Supply Networks II River networks Earlier theories argument Conclusion References 少 Q (> 72 of 124 PoCS @pocsvox Optimal Supply Metabolism and Truthicide Death by Measuring River networks Earlier theories Geometric argument Conclusion References WW |8 PoCS @pocsvox Optimal Supply Metabolism and Truthicide Death by fractions Measuring exponents Geometric argument Conclusion References River networks Earlier theories •9 q (→ 73 of 124 & Consider a 3 g shrew with $V_{blood} = 0.1 V_{body}$ Banavar et al. find 'most efficient' networks with $P \propto M^{\,d/(d+1)}$ $V_{\rm network} \propto M^{\,(d+1)/d}$ $V_{\rm blood} \propto M^{4/3}$ \Rightarrow 3000 kg elephant with $V_{\text{blood}} = 10V_{\text{body}}$ # um |S #### •9 q (→ 70 of 124 #### PoCS @pocsvox Optimal Supply Networks II Death by Measuring exponents River networks Earlier theories Geometric argument Conclusion |S 少 Q (→ 71 of 124 # Geometric argument "Optimal Form of Branching Supply and Collection Networks" Peter Sheridan Dodds, Phys. Rev. Lett., **104**, 048702, 2010. [12] - Consider one source supplying many sinks in a d-dim. volume in a D-dim. ambient space. - Assume sinks are invariant. - Assume sink density $\rho = \rho(V)$. - Assume some cap on flow speed of material. - See network as a bundle of virtual vessels: UNN O 少 q (~ 75 of 124 ### Geometric argument - O: how does the number of sustainable sinks $N_{\rm sinks}$ scale with volume V for the most efficient network design? - \mathfrak{S} Or: what is the highest α for $N_{\mathsf{sinks}} \propto V^{\alpha}$? #### Spherical cows and pancake cows: & Question: How does the surface area S_{cow} of our two types of cows scale with cow volume V_{cow} ? Insert question from assignment 4 27 Question: For general families of regions, how does surface area S scale with volume V? Insert question from assignment 4 🗹 PoCS @pocsvox Optimal Supply Networks II Metabolism and Death by fractions Measuring argument Conclusion References River networks Earlier theories 'Rules for Biologically Inspired Adaptive Network Design" Tero et al.. Science, **327**, 439-442, 2010, [49] @pocsvox Optimal Supply Networks II Metabolism and Truthicide Death by Measuring River networks Earlier theories Geometric argument Conclusion References # Geometric argument Allometrically growing regions: Have d length scales which scale as $L_i \propto V^{\gamma_i}$ where $\gamma_1 + \gamma_2 + ... + \gamma_d = 1$. \Re For isometric growth, $\gamma_i = 1/d$. Spherical cows and pancake cows: For allometric growth, we must have at least two of the $\{\gamma_i\}$ being different Assume an isometrically Scaling family of cows: Extremes of allometry: The pancake cows- Death by Measuring River networks Earlier theories Geometric argument Conclusion References Geometric argument Rather obviously: $\min V_{\rm net} \propto \sum$ distances from source to sinks. @pocsvox Death by Measuring Geometric argument Conclusion III | | | PoCS @pocsvox Networks II Death by fractions Measuring exponents Geometric argument Conclusion References River networks Earlier theories Optimal Supply Metabolism and ∙) q (→ 82 of 124 River networks Earlier theories Optimal Supply Metabolism and 少 Q (№ 81 of 124 https://www.youtube.com/watch?v=GwKuFREOgmo Minimal network volume: We add one more element: from the source. Minimal network volume: $r = r_{\text{max}}$ where $\epsilon \geq 0$. \Re Gives $v \propto \ell^{1-2\epsilon}$ if $\epsilon < 1/2$ decreases. Effecting scaling: •> < ○ 84 of 124 @pocsvox Optimal Supply Metabolism and Truthicide Death by Measuring $2r_{\rm sink}$ River networks Earlier theories Geometric argument Conclusion References & e.g., a collection network may have vessels tapering as they approach the central sink. Representation of the second section of the second Find that vessel volume v must scale with vessel length ℓ to affect overall system scalings. & Consider vessel radius $r \propto (\ell+1)^{-\epsilon}$, tapering from \Leftrightarrow Gives $v \propto 1 - \ell^{-(2\epsilon - 1)} \to 1$ for large ℓ if $\epsilon > 1/2$ $\red{solution}$ Previously, we looked at $\epsilon = 0$ only. Vessel cross-sectional area may vary with distance ◆) q (→ 85 of 124 PoCS Optimal Supply Metabolism and Truthicide Death by fractions Measuring exponents $2r_{\rm sink}$ River networks Earlier theories Geometric argument Conclusion References # W | 8 @pocsvox Networks II Death by fractions Measuring River networks Earlier theories Geometric argument Conclusion References Optimal Supply Metabolism and ◆9 Q ← 76 of 124 PoCS @pocsvox Optimal Supply Networks II Metabolism and Truthicide Best and worst configurations (Banavar et al.) ◆) q (→ 77 of 124 PoCS @pocsvox Optimal Supply Networks II Minimal network volume: Metabolism and Truthicide Death by fractions Measuring exponents River networks Earlier theories Geometric argument Conclusion References III | | | | ◆) q (→ 78 of 124 Real supply networks are close to optimal: Figure 1. (a) Commuter rail network in the Boston area. The arrow marks the assumed root of the network. (b) Star graph. (c) Minimum spanning tree. (d) The model of equation (3) applied to the same set of stations. Gastner and Newman (2006): "Shape and efficiency in spatial distribution networks" [16] # III | # •2 Q ← 83 of 124 # UNN O #### 2 9 € 86 of 124 #### Minimal network volume: For $0 \le \epsilon < 1/2$, approximate network volume by integral over region: $$\mathrm{min} V_{\mathrm{net}}
\propto \int_{\Omega_{d,D}(V)} \rho \, ||\vec{x}||^{1-2\epsilon} \, \mathrm{d}\vec{x}$$ Insert question from assignment 4 2 $$\propto ho V^{1+\gamma_{\max}(1-2\epsilon)}$$ where $\gamma_{\max} = \max_i \gamma_i.$ For $\epsilon > 1/2$, find simply that $$\min V_{\rm net} \propto \rho V$$ So if supply lines can taper fast enough and without limit, minimum network volume can be made negligible. #### For $0 \le \epsilon < 1/2$: - \bigotimes $\overline{\min V_{\mathrm{net}}} \propto \rho V^{1+\gamma_{\mathrm{max}}(1-2\epsilon)}$ - If scaling is isometric, we have $\gamma_{\text{max}} = 1/d$: $$\mathrm{min}V_{\mathrm{net/iso}} \propto \rho V^{1+(1-2\epsilon)/d}$$ \Re If scaling is allometric, we have $\gamma_{\text{max}} = \gamma_{\text{allo}} > 1/d$: and $$\mathrm{min}V_{\mathrm{net/allo}} \propto \rho V^{1+(1-2\epsilon)\gamma_{\mathrm{allo}}}$$ Isometrically growing volumes require less network volume than allometrically growing volumes: $$\frac{\mathrm{min}V_{\mathrm{net/iso}}}{\mathrm{min}V_{\mathrm{net/allo}}} \rightarrow 0 \text{ as } V \rightarrow \infty$$ #### For $\epsilon > 1/2$: - \implies min $V_{\rm net} \propto \rho V$ - Network volume scaling is now independent of overall shape scaling. #### Limits to scaling - & Can argue that ϵ must effectively be 0 for real networks over large enough scales. - & Limit to how fast material can move, and how small material packages can be. - & e.g., blood velocity and blood cell size. @pocsvox Optimal Supply Networks II Metabolism and Death by Measuring River networks References UM O PoCS @pocsvox Networks II Truthicide Death by Measuring River networks Earlier theories Geometric argument References UM O PoCS @pocsvox Networks II Truthicide Death by fractions Measuring River networks Earlier theories Geometric argument Conclusion References III | ◆) q (~ 89 of 124 Optimal Supply Metabolism and ◆) q (→ 88 of 124 Optimal Supply Metabolism and ◆9 q (> 87 of 124 Earlier theories Geometric argument Conclusion Blood networks $V_{\mathsf{net}} \propto V$. organism size. **Blood networks** This is a really clean slide Velocity at capillaries and aorta approximately Material costly ⇒ expect lower optimal bound of Blood volume scales linearly with body volume [47], Sink density must : decrease as volume increases: \mathbb{R} Then P, the rate of overall energy use in Ω , can at For d=3 dimensional organisms, we have Including other constraints may raise scaling exponent to a higher, less efficient value. $P \propto \rho V \propto \rho \, M \propto M^{\,(d-1)/d}$ $P \propto M^{2/3}$ most scale with volume as $\rho \propto V^{-1/d}$. constant across body size [51]: $\epsilon = 0$. \clubsuit For cardiovascular networks, d = D = 3. $V_{\rm net} \propto \rho V^{(d+1)/d}$ to be followed closely. Density of suppliable sinks decreases with PoCS @pocsvox Optimal Supply Metabolism and Death by Measuring River networks Earlier theories argument Conclusion References |S @pocsvox Optimal Supply 少 Q № 90 of 124 & Exciting bonus: Scaling obtained by the supply network story and the surface-area law only match for isometrically growing shapes. Insert question from assignment 4 🗹 The surface area—supply network mismatch for allometrically growing shapes: Measuring Truthicide Death by PoCS @pocsvox Networks II Optimal Supply Metabolism and River networks Earlier theories Geometric argument Conclusion References #### •9 q (→ 93 of 124 PoCS @pocsvox Optimal Supply Metabolism and Truthicide Death by Measuring River networks Earlier theories Geometric argument Conclusion References UM O •9 95 of 124 PoCS Optimal Supply Metabolism and Truthicide Death by fractions Measuring exponents River networks Earlier theories Geometric argument Conclusion References $B \simeq 10^5 M^{2/3}$ erg/sec. $\frac{dE}{dt} = \sigma S T^4$ where S is surface and T is temperature. Very rough estimate of prefactor based on scaling of normal mammalian body temperature and $B = 2.57 \times 10^5 M^{2/3}$ erg/sec. # Recall: Metabolism and Death by Measuring River networks Earlier theories Geometric argument The exponent $\alpha = 2/3$ works for all birds and mammals up to 10-30 kg Solution For mammals > 10-30 kg, maybe we have a new scaling regime Economos: limb length break in scaling around 20 A White and Seymour, 2005: unhappy with large herbivore measurements. Find $\alpha \simeq 0.686 + 0.014$ # |S #### ◆) q (> 91 of 124 #### PoCS #### @pocsvox Optimal Supply Metabolism and Death by Measuring exponents River networks Earlier theories Geometric References argument III | UNN O 2 96 of 124 ◆2 Q № 92 of 124 **Prefactor:** Stefan-Boltzmann law: surface area S: \clubsuit Measured for M < 10 kg: #### River networks - View river networks as collection networks. - Many sources and one sink. - & ϵ ? - Assume ρ is constant over time and $\epsilon = 0$: $$V_{ m net} \propto ho V^{(d+1)/d} = { m constant} imes V^{\,3/2}$$ - Network volume grows faster than basin 'volume' (really area). - & It's all okay: Landscapes are d=2 surfaces living in D=3dimensions. - Streams can grow not just in width but in depth ... - If $\epsilon > 0$, V_{net} will grow more slowly but 3/2 appears to be confirmed from real data. #### Hack's law - Nolume of water in river network can be calculated by adding up basin areas - Flows sum in such a way that $$V_{\mathsf{net}} = \sum_{\mathsf{all \ pixels}} a_{\mathsf{pixel} \ i}$$ Hack's law again: $$\ell \sim a^h$$ Can argue $$V_{\mathrm{net}} \propto V_{\mathrm{basin}}^{1+h} = a_{\mathrm{basin}}^{1+h}$$ where h is Hack's exponent. ♠ ∴ minimal volume calculations gives $$h = 1/2$$ #### Real data: - Banavar et al.'s approach [1] is okay because ρ really is constant. - The irony: shows optimal basins are isometric - Optimal Hack's law: $\ell \sim a^h$ with h = 1/2 - 🙈 (Zzzzz) #### @pocsvox Optimal Supply Networks II Metabolism and Death by fractions Measuring River networks Earlier theories Geometric argument Conclusion References ◆) < (> 97 of 124 #### PoCS @pocsvox Optimal Supply Metabolism and Death by Measuring River networks Earlier theories Geometric argument Conclusion References #### The Cabal strikes back: & Banavar et al., 2010, PNAS: "A general basis for quarter-power scaling in Even better—prefactors match up: Amazon Congo * Nile volume $V[m^3]$ water $\log_{10} v$ Mississippi 🚓 "It has been known for decades that the metabolic rate of animals scales with body mass with an exponent that is almost always < 1, > 2/3, and often very close to 3/4." 10 11 12 \log_{10} area $a \, [\text{m}^2]$ Cough, cough, cough, hack, wheeze, cough. # |S ◆) < (→ 98 of 124 # PoCS @pocsvox Optimal Supply Networks II Metabolism and Measuring River networks Earlier theories Geometric argument # Stories—Darth Quarter: #### @pocsvox Optimal Supply Death by Measuring River networks Earlier theories argument Conclusion References WW | 8 @pocsvox Death by Measuring Geometric argument References |S PoCS @pocsvox Optimal Supply Metabolism and Death by Measuring exponents River networks Earlier theories Geometric argument References III | ◆) Q (→ 102 of 124 ∙9 q (> 101 of 124 River networks Earlier theories Optimal Supply Metabolism and 少 Q № 100 of 124 Metabolism and Some people understand it's truly a disaster: Peter Sheridan Dodds, Theoretical Biology's Buzzkill graduate mathematics student at the . Iniversity of Virginia studying the propertie: of certain mathematical objects. In his fifth year some killjoy bastard elsewhere published a paper proving that there are no such mathematical objects. He dropped out The unnecessary bafflement continues: "Testing the metabolic theory of ecology" [40] Coomes, P. S. Dodds, R. Etienne, A. Kerkhoff, K. McCulloh, K. Niklas, H. Olff, and N. Swenson Ecology Letters, 15, 1465–1474, 2012. Artisanal, handcrafted silliness: "Critical truths about power laws" [48] Stumpf and Porter, Science, 2012 Allometric scaling - C. Price, J. S. Weitz, V. Savage, J. Stegen, A. Clarke, D. of the program, and I never did hear where new paper in Physical Review Letters further fleshing out a theory concerning why a 2/3 power law may apply for metabolic rate. The of body mass. It was in a 2001 Journal of Theoretical Biology paper that he first argued that perhaps a 2/3 law applies, and that paper along with others such as the one that just appeared -- is what has put him in the Killiov Hall of Fame. The University of Virginia's Mark Changizi MORE ARTICLES Mark Changizi is Director of the author of The Vision Revolution (Benbella 2009) How good is your power law? The chart reflects the level of statistical support—as measured in (16, tication underlying hypothetical generative models for various reported power laws. Some relation- ships are identified by name: the others reflect the general characteristics of a wide range of reported power laws. Allometric scaling stands out from the other power laws reported for complex systems. 21)—and our opinion about the mechanistic sonhis- UIN O @pocsvox Networks II Truthicide Death by Measuring River networks Earlier theories Geometric argument Conclusion References Optimal Supply Metabolism and •9 q (> 103 of 124 PoCS @pocsvox Optimal Supply Metabolism and Truthicide Death by Measuring River networks Earlier theories Geometric argument Conclusion References UIN O 夕 Q ← 104 of 124 PoCS Optimal Supply Metabolism and Truthicide Death by fractions Measuring exponents River networks Earlier theorie Geometric argument References Call generalization of Central Limit Theorem, Summary: Wow. Mechanistic sophistication Zipf's Law stable distributions. Also: PLIPLO action. ◆) Q (~ 105 of 124 #### Conclusion - Supply network story consistent with dimensional analysis. - Isometrically growing regions can be more efficiently supplied than allometrically growing ones. - Ambient and region dimensions matter (D = d versus D > d). - Deviations from optimal scaling suggest inefficiency (e.g., gravity for
organisms, geological boundaries). - Actual details of branching networks not that important. - Exact nature of self-similarity varies. - 2/3-scaling lives on, largely in hiding. - 3/4-scaling? Jury ruled a mistrial. - The truth will out. Maybe. #### References I - [1] I. R. Banavar, A. Maritan, and A. Rinaldo. Size and form in efficient transportation networks. Nature, 399:130–132, 1999. pdf - [2] J. R. Banavar, M. E. Moses, J. H. Brown, J. Damuth, A. Rinaldo, R. M. Sibly, and A. Maritan. A general basis for quarter-power scaling in animals. Proc. Natl. Acad. Sci., 107:15816-15820, 2010. pdf 🖸 - [3] P. Bennett and P. Harvey. Active and resting metabolism in birds—allometry, phylogeny and ecology. J. Zool., 213:327–363, 1987. pdf #### References II - K. L. Blaxter, editor. Energy Metabolism; Proceedings of the 3rd symposium held at Troon, Scotland, May 1964. Academic Press, New York, 1965. - [5] J. J. Blum. On the geometry of four-dimensions and the relationship between metabolism and body mass. |. Theor. Biol., 64:599–601, 1977. pdf 🗹 - [6] S. Brody. Bioenergetics and Growth. Reinhold, New York, 1945. reprint, . pdf 🗹 #### @pocsvox Optimal Supply Networks II - Metabolism and Death by - Measuring River networks Earlier theories References III References IV [11] M. H. DeGroot. [12] P. S. Dodds. pdf 🖸 References V pdf 🖸 pdf 🖸 [15] A. E. Economos. networks. - argument Conclusion References - A general model for metabolic scaling in self-similar asymmetric networks. PLoS Comput Biol, 13, 2017. pdf [9] E. Buckingham. [7] I. H. Brown, G. B. West, and B. J. Enguist. biologically relevant? Yes, West, Brown and Enquist's model of allometric scaling mathematically correct and Functional Ecology, 19:735—738, 2005. pdf ☑ A. B. Brummer, S. V. M., and B. J. Enquist. On physically similar systems: Illustrations of the use of dimensional equations. Phys. Rev., 4:345-376, 1914. pdf [10] A. Clauset, C. R. Shalizi, and M. E. J. Newman. SIAM Review, 51:661-703, 2009. pdf Probability and Statistics. [13] P. S. Dodds and D. H. Rothman. Power-law distributions in empirical data. Addison-Wesley, Reading, Massachusetts, 1975. Optimal form of branching supply and collection Phys. Rev. Lett., 104(4):048702, 2010. pdf Scaling, universality, and geomorphology. [14] P. S. Dodds, D. H. Rothman, and I. S. Weitz. Annu. Rev. Earth Planet. Sci., 28:571-610, 2000. Re-examination of the "3/4-law" of metabolism. Journal of Theoretical Biology, 209:9-27, 2001. Elastic and/or geometric similarity in mammalian Journal of Theoretical Biology, 103:167–172, 1983. # |S #### ◆) Q (> 106 of 124 #### PoCS @pocsvox Optimal Supply Metabolism and Truthicide Death by Measuring River networks Earlier theories Geometric argument Conclusion References #### ◆) a (→ 107 of 124 PoCS @pocsvox Optimal Supply Networks II Metabolism and Truthicide Death by Measuring exponents River networks Earlier theories Geometric argument Conclusion References UIN S ◆) Q (> 108 of 124 [16] M. T. Gastner and M. E. J. Newman. Shape and efficiency in spatial distribution J. Stat. Mech.: Theor. & Exp., 1:P01015, 2006. pdf 🖸 ## Truthicide Death by @pocsvox Optimal Supply Metabolism and Measuring River networks Earlier theories Geometric argument References # [19] I. T. Hack. Studies of longitudinal stream profiles in Virginia and Maryland. Beyond the '3/4-power law': variation in the intra- The 3/4-power law is not universal: Evolution of isometric, ontogenetic metabolic scaling in and interspecific scaling of metabolic rate in Biol. Rev., 80:611-662, 2005. pdf BioScience, 56:325-332, 2006. pdf United States Geological Survey Professional Paper, 294-B:45-97, 1957. pdf #### ◆) q (~ 109 of 124 #### @pocsvox Optimal Supply Death by Measuring River networks Earlier theories Geometric argument References # UM | | | | #### 夕 Q № 110 of 124 Optimal Supply Metabolism and Truthicide Death by Measuring exponents River networks Earlier theories Geometric argument Conclusion References •9 q (> 111 of 124 UM |S ### References VII References VI [17] D. S. Glazier. [18] D. S. Glazier. pelagic animals. [20] A. Hemmingsen. The relation of standard (basal) energy metabolism to total fresh weight of living organisms. Rep. Steno Mem. Hosp., 4:1-58, 1950. pdf [21] A. Hemmingsen. Energy metabolism as related to body size and respiratory surfaces, and its evolution. Rep. Steno Mem. Hosp., 9:1-110, 1960. pdf [22] A. A. Heusner. Size and power in mammals. Journal of Experimental Biology, 160:25-54, 1991. # References VIII pdf 🖸 [23] M. R. Hirt, W. Jetz, B. C. Rall, and U. Brose. A general scaling law reveals why the largest animals are not the fastest. Nature Ecology & Evolution, 1:1116, 2017. pdf ✓ [24] N. Juster. The Phantom Tollbooth. Random House, 1961. [25] M. Kleiber. Body size and metabolism. Hilgardia, 6:315-353, 1932. pdf [26] M. Kleiber. The Fire of Life. An Introduction to Animal Energetics. Wiley, New York, 1961. •2 9 € 114 of 124 @pocsvox Optimal Supply PoCS Metabolism and Truthicide Death by Measuring River networks Earlier theories Geometric Conclusion References UVM #### 夕 Q № 112 of 124 PoCS @pocsvox Optimal Supply Metabolism and Truthicide Measuring Death by River networks Earlier theories Geometric argument Conclusion References UIN O 夕 Q № 113 of 124 PoCS Optimal Supply Metabolism and Truthicide Death by fractions Measuring exponents River networks Earlier theories Geometric argument Conclusion References #### References IX [27] T. Kolokotrones, V. Savage, E. J. Deeds, and W. Fontana. Curvature in metabolic scaling. Nature, 464:753, 2010. pdf - [28] J. Kozłowski and M. Konarzewski. Is West, Brown and Enquist's model of allometric scaling mathematically correct and biologically relevant? Functional Ecology, 18:283—289, 2004. pdf - [29] P. La Barbera and R. Rosso. On the fractal dimension of stream networks. Water Resources Research, 25(4):735-741, 1989. pdf 🗷 #### References X [30] N. Lane. Power, Sex, Suicide: Mitochondria and the Meaning of Life. Oxford University Press, Oxford, UK, 2005. [31] L. B. Leopold. A View of the River. Harvard University Press, Cambridge, MA, 1994. [32] T. McMahon. Size and shape in biology. Science, 179:1201-1204, 1973. pdf [33] T. A. McMahon. Allometry and biomechanics: Limb bones in adult ungulates. The American Naturalist, 109:547–563, 1975. pdf 🗹 #### References XI [34] T. A. McMahon and J. T. Bonner. On Size and Life. Scientific American Library, New York, 1983. [35] N. Meyer-Vernet and J.-P. Rospars. How fast do living organisms move: Maximum speeds from bacteria to elephants and whales. American Journal of Physics, pages 719–722, 2015. pdf ☑ [36] D. R. Montgomery and W. E. Dietrich. Channel initiation and the problem of landscape Science, 255:826–30, 1992. pdf #### @pocsvox Optimal Supply Networks II Metabolism and References XII Death by Measuring River networks Earlier theories argument Conclusion References [37] C. D. Murray. A relationship between circumference and weight in trees and its bearing on branching angles. J. Gen. Physiol., 10:725-729, 1927. pdf 🗗 [38] M. G. Newberry, E. D. B., and S. V. M. Testing foundations of biological scaling theory using automated measurements of vascular networks. PLoS Comput Biol, 11:e1004455, 2015. pdf [39] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery. Numerical Recipes in C. Cambridge University Press, second edition, 1992. # W | | ◆) Q (> 115 of 124 @pocsvox Optimal Supply Death by Measuring Metabolism and Truthicide River networks Earlier theories Geometric argument Conclusion References # References XIII [40] C. Price, J. S. Weitz, V. Savage, S. Stegen, A. Clarke, D. Coomes, P. S. Dodds, R. Etienne, A. Kerkhoff, K. McCulloh, K. Niklas, H. Olff, and N. Swenson. Testing the metabolic theory of ecology. Ecology Letters, 15:1465–1474, 2012. pdf [41] J. M. V. Rayner. Linear relations in biomechanics: the statistics of scaling functions. J. Zool. Lond. (A), 206:415-439, 1985. pdf [42] M. Rubner. Ueber den einfluss der körpergrösse auf stoffund kraftwechsel. Z. Biol., 19:535-562, 1883. pdf ◆) a (→ 116 of 124 #### PoCS @pocsvox Optimal Supply Networks II Metabolism and Truthicide Death by Measuring exponents River networks Earlier theories Geometric Conclusion References # References XIV [43] P. A. Samuelson. A note on alternative regressions. Econometrica, 10:80-83, 1942. pdf [44] Sarrus and Rameaux. Rapport sur une mémoire adressé à l'Académie de Médecine. Bull. Acad. R. Méd. (Paris), 3:1094-1100, 1838-39. [45] V. M. Savage, E. J. Deeds, and W. Fontana. Sizing up allometric scaling theory. PLoS Computational Biology, 4:e1000171, 2008. pdf 🛂 # @pocsvox Optimal Supply Metabolism and Death by Measuring River networks Earlier theories argument References W | | References XV [46] J. Speakman. On Blum's four-dimensional geometric explanation for the 0.75 exponent in metabolic allometry. J. Theor. Biol., 144(1):139–141, 1990. pdf [47] W. R. Stahl. Scaling of respiratory variables in mammals. Journal of Applied Physiology, 22:453–460, 1967. [48] M. P. H. Stumpf and M. A. Porter. Critical truths about power laws. Science, 335:665-666, 2012. pdf •9 q (> 121 of 124 @pocsvox Death by Measuring River networks Earlier theories Geometric argument Conclusion References Optimal Supply Metabolism and PoCS @pocsvox Optimal Supply Metabolism and Truthicide Death by Measuring River networks Earlier theorie Geometric argument Conclusion References 少 q (> 118 of 124 #### @pocsvox Optimal Supply Death by Measuring River networks Earlier theories Geometric argument References # W |S ◆) q (> 119 of 124 #### PoCS @pocsvox Optimal Supply Metabolism and Death by Measuring > exponents River networks Earlier theories Geometric argument Conclusion References ### References XVI References XVII [52] G. B. West. [49] A. Tero, S. Takagi, T. Saigusa, K. Ito, D. P. Bebber, M. D. Fricker, K. Yumiki, R. Kobayashi, and T. Nakagaki. Rules for biologically inspired adaptive network design. Science, 327(5964):439-442, 2010. pdf
[50] D. L. Turcotte, J. D. Pelletier, and W. I. Newman. Networks with side branching in biology. Journal of Theoretical Biology, 193:577-592, 1998. pdf 🖸 [51] P. D. Weinberg and C. R. Ethier. Twenty-fold difference in hemodynamic wall shear stress between murine and human aortas. Journal of Biomechanics, 40(7):1594-1598, 2007. pdf 🖸 Scale: The Universal Laws of Growth, Innovation, Sustainability, and the Pace of Life in Organisms. Cities, Economies, and Companies. [53] G. B. West, J. H. Brown, and B. J. Enquist. Science, 276:122-126, 1997. pdf and allometric scaling of organisms. Science, 284:1677-1679, 1999. pdf [54] G. B. West, J. H. Brown, and J. Enquist. A general model for the origin of allometric The fourth dimension of life: Fractal geometry Penguin Press, New York, 2017. scaling laws in biology. •9 q (→ 122 of 124 #### PoCS Optimal Supply Metabolism and Truthicide > Death by fractions Measuring exponents River networks Earlier theorie Geometric argument Conclusion References UNN O •2 9 € 123 of 124 |S 少 Q (→ 117 of 124 •9 q (→ 120 of 124 # References XVIII [55] G. B. West, J. H. Brown, and J. Enquist. Nature. Nature, 400:664–667, 1999. pdf 4 [56] C. R. White and R. S. Seymour. Allometric scaling of mammalian metabolism. J. Exp. Biol., 208:1611–1619, 2005. pdf ☑ PoCS @pocsvox Optimal Supply Networks II Metabolism and Truthicide Death by fractions Measuring exponents River networks Earlier theories Geometric argument Conclusion References 少 Q (№ 124 of 124