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Optimal supply networks

What's the best way to distribute stuff?
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Optimal supply networks

What's the best way to distribute stuff?

< Stuff = medical services, energy, people, ...
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Optimal supply networks

Stuff = medical services, energy, people, ...

Some fundamental network problems:
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Optimal supply networks

Stuff = medical services, energy, people, ...
Some fundamental network problems:

1

Distribute stuff from a single source to many sinks
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Some fundamental network problems:

1. Distribute stuff from a single source to many sinks
2. Distribute stuff from many sources to many sinks



Optimal supply networks Optiral Supply
Soran
Optimal

Optimal
branching

Murray's law

Murray meets Tokunaga

References

Stuff = medical services, energy, people, ...

Some fundamental network problems:

1. Distribute stuff from a single source to many sinks

2. Distribute stuff from many sources to many sinks

3. Redistribute stuff between nodes that are both
sources and sinks
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Stuff = medical services, energy, people, ...

Some fundamental network problems:
1. Distribute stuff from a single source to many sinks
2. Distribute stuff from many sources to many sinks
3. Redistribute stuff between nodes that are both
sources and sinks

Supply and Collection are equivalent problems N






Single source optimal supply

Basic question for distribution/supply networks:

<> How does flow behave given cost:

G = ZIjﬁZj
J
where
I, = current on link j
and

Z; = link j's impedance?
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Single source optimal supply

How does flow behave given cost:

G = ZIJ'WZJ'
J
where
I, = current on link j
and

Z; = link j's impedance?
Example: v = 2 for electrical networks.
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Single source optimal supply

(b) (©)

T L

(@) v > 1: Braided (bulk) flow
(b) v < 1: Local minimum: Branching flow
(c) v < 1: Global minimum: Branching flow
Note: This is a single source supplying a region.

From Bohn and Magnasco °!

See also Banavar et al.': “Topology of the Fittest
Transportation Network”; focus is on presence or absence
of loops—same story
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Single source optimal supply

alpha=05 totalvalue=2.0178

aIpha=0.95 totalvalue=1.1351

Qinglan Xia,
Communications in Contemporary
Mathematics, 5, 251-279, 2003.!"”!
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Growing networks—two parameter model:

FIGURE 1. a =0.6,3=0.5
0=0.6, B=0.5,e=2 =06, p=0.5,¢e=3

0

0=06, B=05,e=4 0=0.6, B=0.5,e=5

<= Parameters control impedance (0 < a < 1) and
angles of junctions (0 < )

< For this example: a = 0.6 and 3 = 0.5
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Growing networks:

FIGURE 3. A maple leaf

068, P07, totalost=525.0653

& Top: a = 0.66, 3 = 0.38; Bottom: a = 0.66, 8 = 0.70
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Single source optimal supply

The form of natural branching networks:
Random, optimal, or some
combination?[® 82,5, 4]
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Single source optimal supply

The form of natural branching networks:
Random, optimal, or some
combination?[® 82,5, 4]

River networks, blood networks, trees, ...

Self-similar networks appear everywhere in nature
for single source supply/single sink collection.

Real networks differ in details of scaling but
reasonably agree in scaling relations.
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River network models

Optimal channel networks '~
Thermodynamic analogy '
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Thermodynamic analogy '
Versus ...

Scheidegger's directed random networks
Undirected random networks
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Outline

Optimal branching
Murray’s law
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Optimization—Murray's law (£
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Murray's law (1926)

connects branch radii at
fOFkS' [11,110;12,57;%16]

38048 3
ro =17t 713

where r, = radius of main
branch, and r; and r, are
radii of sub-branches.
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Murray's law (1926)

connects branch radii at

forks: [0, {10£1.2,67116]

3E48 3
ro =17t 713

where r, = radius of main
branch, and r; and r, are
radii of sub-branches.

Holds up well for outer branchings of blood

networks.

Also found to hold for trees'? &/ when xylem is

not a supporting structure °),

See D’Arcy Thompson’s “On Growth and Form” for

background and general inspiration "> %],
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Use hydraulic equivalent of Ohm's law:
Ap=0Z <V =IR

where Ap = pressure difference, ® = flux.

_—
a ]\* 11% G§
- M=
Sin i e
L V(i) P
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Use hydraulic equivalent of Ohm's law:
Ap=0Z <V =IR
where Ap = pressure difference, ® = flux.

Fluid mechanics: Poiseuille

ey : M omaiaien ;
— Poiseuille flow(®' in a tube of
N I q% radius r and length £:
\/ 2
P V() B i 8nl

mrd

n = dynamic viscosity (2 (units: ML-1T71).
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Use hydraulic equivalent of Ohm's law:
Ap=0Z <V =IR
where Ap = pressure difference, ® = flux.

Fluid mechanics: Poiseuille

b it S Poiseuiile flow ' in a tube of
AEY I 11% G—» radius r and length ¢:
\. : _
i V(i) P. Z = 4_877£
rd

n = dynamic viscosity (2 (units: ML-1T71).

Power required to overcome impedance:
Pi = 0p=027
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Use hydraulic equivalent of Ohm's law:
Ap=0Z <V =IR
where Ap = pressure difference, ® = flux.

Fluid mechanics: Poiseuille

b Poiseuille flow ' in a tube of
AEY It 1% G—» radius r and length ¢:

RO € el

Pl \\,\x) Pz, Z & 8776

mrd

n = dynamic viscosity (2 (units: ML-1T71).

Power required to overcome impedance:
Pi = 0p=027

Also have rate of energy expenditure in
maintaining blood given metabolic constant c:

B 2
Pmetabolic = cr<t
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Aside on Py,
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Optimization—Murray's law

Work done = F - d = energy transferred by force F’
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Optimization—Murray's law

Work done = F - d = energy transferred by force F’
Power = P =rate work isdone=F - v
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Optimization—Murray's law

Work done = F - d = energy transferred by force F’
Power = P =rate work isdone = F - v
Ap = Force per unit area
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Optimization—Murray's law

Work done = F - d = energy transferred by force F’
Power = P =rate work isdone = F - v
Ap = Force per unit area

® = Volume per unit time
= cross-sectional area - velocity
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Optimization—Murray's law

Work done = F - d = energy transferred by force F’
Power = P =rate work isdone = F - v
Ap = Force per unit area

® = Volume per unit time
= cross-sectional area - velocity

So ®Ap = Force - velocity
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Optimization—Murray’s law

Murray’s law:
< Total power (cost):

i Pdrag + Pretabolic = P2

8n/
=4

r4

+cr?¢
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Optimization—Murray's law

Total power (cost):

877€

i Pdrag + Pretabolic = (I)2 ik ko) g

Observe power increases linearly with ¢
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Optimization—Murray's law

Total power (cost):

8776

i Pdrag + Pretabolic = (I)Z ik ko) g

Observe power increases linearly with ¢
But r’s effect is nonlinear:

increasing » makes flow easier but increases
metabolic cost (as r2)
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References
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i Pdrag + Pretabolic = (I)Z ik ko) g

Observe power increases linearly with ¢

But r’s effect is nonlinear:
increasing » makes flow easier but increases
metabolic cost (as r2)

decreasing r decrease metabolic cost but &y
impedance goes up (as %) v
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Optimization—Murray's law

F“vl‘i u : ,‘; S

Minimize P with respect to r:

OP 0 8l

=il el et = D2 )

or 87“( 7rr4+ crét
4@28 E-l— c2rf
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Optimization—Murray's law

Minimize P with respect to r:

o
or  Or

4<I>28£+ e2ré—ib

Rearrange/cancel/slap:

6
o  CTT

161
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Optimization—Murray's law

Minimize P with respect to r:

o
or  Or

4<I>28£+ e2ré—ib

Rearrange/cancel/slap:

6
o - CINE 1276

16m =

where k = constant.
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Optimization—Murray’s law

Murray's law:

&> So we now have:

& = krd
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Optimization—Murray's law

So we now have:
& = krd

Flow rates at each branching have to add up (else
our organism is in serious trouble ...):

where again 0 refers to the main branch and 1
and 2 refers to the offspring branches
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D = kr Murray meets Tokunaga
References

Flow rates at each branching have to add up (else
our organism is in serious trouble ...):

where again 0 refers to the main branch and 1
and 2 refers to the offspring branches

All of this means we have a groovy cube-law:

G :
rog =11 +t15
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Optimization

® , = volume rate of flow into an order w vessel
segment

Tokunaga picture:

w—1
q)w = 2q)w—1 -t Z Tk(I)w—k
k=1
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® , = volume rate of flow into an order w vessel branching
segment

Murray meets Tokunaga

TOkU naga picture: References

w—1
®, =20, ,+ Z T O

k=1

Using ¢, = kr3

gw

w—1
el 3 3 ¥
— 2Tw_1 + Z Tkrw—k: s
k=1
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w—1
q)w = 2q)w—1 ot Z qu)w—k
k=1
Using ¢, = kr3
w—1 o
o 3 3 =
e S MR Z RS s -
k=1

Find Horton ratio for vessel radius R,. = r /7,1 ...
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Find R?2 satisfies same equation as R,, and R,,
(v is for volume):

Is there more we could do here to constrain the
Horton ratios and Tokunaga constants?
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5 3 Murray meets Tokunaga,
o> Isometry: V,, oc £3 i
&> Gives

RS=R3=R, =R

v

&= We need one more constraint ...
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We need one more constraint ...

West et al. (1997) 8] achieve similar results
following Horton's laws (but this work is disaster).
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R3=R3=R_=R
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We need one more constraint ...
West et al. (1997) 8] achieve similar results
following Horton's laws (but this work is disaster).

So does Turcotte et al. (1998) "7 using Tokunaga :
(sort of). b
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