The PoCSverse

: : Random Bipartite
Random Bipartite Networks Vot
Introduction
Last updated: 2021/10/02, 00:15:03 EDT
Basic story
Principles of Complex Systems, Vols. 1 & 2 References

CSYS/MATH 300 and 303, 2021-2022 | @poCsVox

Prof. Peter Sheridan Dodds | @peterdodds

Computational Story Lab | Vermont Complex Systems Center
Vermont Advanced Computing Core | University of Vermont

Y 4, Compitatioal

”, Story Lab

N+

Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 License.


https://pdodds.w3.uvm.edu//teaching/courses/2021-2022principles-of-complex-systems/
http://www.twitter.com/@pocsvox
https://pdodds.w3.uvm.edu/
https://twitter.com/@peterdodds
http://compstorylab.org/
http://www.uvm.edu/~cems/complexsystems/
http://www.uvm.edu/~vacc/
https://pdodds.w3.uvm.edu
https://pdodds.w3.uvm.edu/
https://pdodds.w3.uvm.edu/

These slides are brought to you by: EZEEé’fnkséf;;fme
etworks

2 of 45

Introduction

Sealie & Lambie Basic story
o 3 eferences
Productions - A




These slides are also brought to you by: EZEJ(Z’%S;?;S&E
etworks
3 0of45

Special Guest Executive Producer ey

Basic story

References



https://www.instagram.com/pratchett_the_cat/

Outline

Introduction

Basic story

References

The PoCSverse
Random Bipartite
Networks

4 of 45

Introduction

Basic story

References




E

RK of THE}
oM NETioR

RAND




— D | |
THE ‘TWo-3IDED
WoRLDS



The PoCSverse

W | “Flavor network and the principles of food Randoi e

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, Networks

airing” &' 7
p, oot ,g, Introduction

e .
Nature Scientific Reports, 1, 196, 2011. "

References

A ingredients Flavor compounds B Flavor network
o
_ e ;
£ o Prevalence
3 parmesan
H
: . Q -
3 oy
: @
8 oo 0%
£ @
) e
e
(o ‘Shared compounds
® .= |t
2 . — 30
) e f
O = ey otet
Cc e p 10
North American | Era,
Westorn European S0t
+ Southe European = Ll
+ LatinAmerican | £ 107 £ North American 3
+ EastAsian 8 13 | - Westem European
g - Southen European
1 £ 10 | - Latin American 11
[ - Easthsian i
105 Lo
10 30 1 10 100 1000
Number of ingredients per recipe (s) Rank, r

Figure 1| Flg ke (4) i
i the ingredicnts (right column). Each flavor compound is linked to the ingredients that contain it forming 3 bipartite network. Some compounds
® b

inour study. (D) 1



https://pdodds.w3.uvm.edu//research/papers/others/everything/ahn2011a.pdf
https://pdodds.w3.uvm.edu//research/papers/others/everything/ahn2011a.pdf
https://pdodds.w3.uvm.edu//research/papers/others/everything/ahn2011a.pdf

e 7

REPORTS

Ahn et al.,

Categories
nits
dairy
@ soces
@ slconolcbeverages
@ ruts and seeds
@ seatooss
meats
@ rows
@ v cuvatves
@ vosetaties
@ rovos
@ animal products
@ v

cereal

Prevalence
A
[ / 50 %
©
@

@ %

® 1%
Shared
compounds

—150

— =
—

Figure 2 | The backbone of the flavor network. Each node denotes an ingredient, the node color indicates food category, and node size reflects the
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Fig. 2. Modeling the emergence of collaboration networks in creative enterprises. (A) Creation of a
team with m = 3 agents, Consider, at time zero, a collaboration network comprising five agents, al
incumbents (blue circles). Along with the incumbents, there is a large pool of newcomers (green
circles) avalable to participate in new teams. Each agent in a team has a probability p of being

e pool of incumbents and a probability 1 — p of being drawn from the ool of new-
comers. For the second and subsequent agents selected from the incumbents' pool: i) with probabilty
g, the new agent is randomly selected from among the set of collaborators of a randomly selected
incumbent already in the teamy (i) otherwise, he or she is selected at random among all incumbents in
the network. For concreteness, let us assume that incumbent 4 is selected as the first agent in the new

this example, the second agent is a past collaborator of agent 4, specifcally agent 3 (center-right box).
Lastly, the third agent is selected from the pool of newcomers; this agent becomes incumbent 6
(rightmost box). In these boxes and in the following panels and figures, blue lines indicate newcomer-
newcomer collaborations, green lines indicate newcomer-incumbent collaborations, yellow lines indi-
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Stories contain tropes, tropes are in stories.

Consider a story-trope system with Ng = # stories
and Ny = # tropes.

mgg ¢ = Number of edges between [ and 9.

Let's have some underlying distributions for
numbers of affiliations: P &) (5 story has k tropes)
and P (a trope is in k stories).
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Consider a story-trope system with Ng = # stories
and Ny = # tropes.

mgg ¢ = Number of edges between [ and 9.

Let's have some underlying distributions for
numbers of affiliations: P,QH) (a story has k tropes)
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An example of two inter-affiliated types:

ff = stories,
Q = tropes (4.

Stories contain tropes, tropes are in stories.

Consider a story-trope system with Ng = # stories
and Ny = # tropes.

mgg ¢ = Number of edges between [ and 9.

Let's have some underlying distributions for

numbers of affiliations: P,QH) (a story has k tropes)

and P,Ff) (a trope is in k stories).

Average number of affiliations: (k)g and (k).
(k)gg = average number of tropes per story.
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Stories contain tropes, tropes are in stories.

Consider a story-trope system with Ng = # stories
and Ny = # tropes.

mgg ¢ = Number of edges between [ and 9.

Let's have some underlying distributions for
numbers of affiliations: P &) (5 story has k tropes)
and P (a trope is in k stories).

Average number of affiliations: (k)g and (k).

(k)gg = average number of tropes per story. B
(k)q = average number of stories containing a
given trope.
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An example of two inter-affiliated types:

ff = stories,
Q = tropes (4.

Stories contain tropes, tropes are in stories.

Consider a story-trope system with Ng = # stories
and Ny = # tropes.

mgg ¢ = Number of edges between [ and 9.

Let's have some underlying distributions for
numbers of affiliations: P,QH) (a story has k tropes)
and P,Ff) (a trope is in k stories).

Average number of affiliations: (k)g and (k).

(k)gg = average number of tropes per story.
(k)¢ = average number of stories containing a
given trope.

Must have balance: Ngg - (k)gg = mgg o = No - (k)g.
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Randomly select an edge connecting afHto a Q.

Probability the [ contains k other tropes:
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Networks of i and 9 within bipartite structure:

2] Pﬁ)k = probability a random [ is connected to &
stories by sharing at least one Q.
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Pifci . = probability a random Q is connected to & References
tropes by co-occurring in at least one .

Rif;;&) = probability a random edge leads to a

which is connected to k other stories by sharing at
least one 9.

Ri(r%_,f) = probability a random edge leads to a 9
which is connected to k other tropes by

co-occurring in at least one .
Goal: find these distributions L.

Another goal: find the induced distribution of
component sizes and a test for the presence or
absence of a giant component.

Unrelated goal: be 10% happier/weep less.
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We strap these in as well:
&prnd(> 8 ol ndkxk
& FP.@)(”U) Zk 0 nd kxk
& Fpoa(®) =T, Rgn a"
& Fooa(@) =T, Rig . a®
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So how do all these things connect?
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We're again performing sums of a randomly
chosen number of randomly chosen numbers.

The PoCSverse
Random Bipartite
Networks

27 of 45

Introduction
Basic story

References




=
Fpiﬁn (x) = Zzo:o Pi%d,)kxk

co Q
Fﬂfg (33> = Zkzo P|E’1d),kxk

—H
Fro-a (1) = 27 Ring i 2*

oo H—9
Fre-— @) = 2k0 Ri(nd,k o

We're again performing sums of a randomly

chosen number of randomly chosen numbers.

We use one of our favorite sneaky tricks:

W =

A

U
V) = Fy (@) = Fy(Fy (@)
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FIG. 7. The frequency distribution of numbers of co-stars of an
actor in a bipartite graph with x=15 and »=15. The points arc
simulation results for M= 10000 and N=100000. The line is the
exact solution, Egs. (89) and (90). The error bars on the numerical
results are smaller than the points.

View this as Pnd .. (the probability a story shares tropes
with k other stories). [’

Result of purely random wiring with Poisson
distributions for affiliation numbers.

Parameters: Ng = 104, Ng = 105,
<k>H — 5[5 and <k’>Q 5z
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Randomly choose a [Hj, find its tropes (U), and
then find how many other stories each of those
tropes are part of (V):

Fom(r) =Foe(r) = Fpe (Fre())

ind ind
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then find how many other stories each of those References

tropes are part of (V):

F}Dﬁ?) (z) = Fpﬁ) (55) = Fp@® (FR(9)<x))
Find the H at the end of a randomly chosen
affiliation edge leaving a trope, find its number of
other tropes (U), and then find how many other
stories each of those tropes are part of (V):

F RSB (z) = Fre (Fro (7)) i(“_’,

ind




Randomly choose a @, find the stories its part of
(U), and then find how many other tropes are part
of those stories (V):

Fpo(2) = Fpo () = Fpo (Fra (¢))
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Randomly choose a @, find the stories its part of
(U), and then find how many other tropes are part
of those stories (V):

Fpow(2) = Fpo() = Fpo (Fre (2))

Find the Q@ at the end of a randomly chosen
affiliation edge leaving a story, find the number of
other stories that use it (U), and then find how
many other tropes are in those stories (V):

Frao(z) = Fre (Fre (7))

ind
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Average number of stories connected to a story
through trope-space:

<k>H,ind = FI/D@(U

ind

d
S0 (K)g,ind = g

- Fpa (Freo(x))

iz —il:
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Average number of stories connected to a story
through trope-space:

<k>H,ind = FI/D@(U

ind

d
S0 (K)g,ind = g

- Fpa (Freo(x))

r=1
= FI/{(%(l)FI/D(H (FR(V)(l))
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through trope-space:
Basic story
<k>H,ind = F;D(H)(l) References

ind

d
So: (k)gg.ind = 5

~Fre (Fro(z))

r=1
= F;w)(l)FI/:@ (FR(VJ(l)) = Fllzm(l)F]/:(H)(l)




Average number of stories connected to a story
through trope-space:

(F)gg,ind = F e (1)

ind

d
So: (k)gg.ind = an@ (Fre(x))

iz —il:

= Fllyw(l)F]/:(Ha (FRW)(l)) = Fl/{m(l)F]/:(Hu(l)

Similarly, the average number of tropes connected to a
random trope through stories:

<k>9,ind T F&(E)(l)FI/DW)(l)
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Average number of stories connected to a story fiofd“-"t
thrOUgh trope-space: ntroduction
Basic story
<k>H,ind — F;;(Hd(l) References
ind
: d
So: (k)gg,ind = @FP(H’ (Fre(x))
r=1

= Fllyw(l)F]/:(Ha (FRW)(l)) = Fj/{@)(l)FI/D(H)(l)

Similarly, the average number of tropes connected to a
random trope through stories:

<k>9,ind T F&nﬁ)(l)FI/D(v)(l)

In terms of the underlying distributions, we have:

k(k— k(k—1
()ging = G2 ()gg and (o ing = S4B (kg



A-g=g
V==

View as bouncing back and forth between the two
connected populations. %/

Actual spread may be within only one population
(ideas between between people) or through both
(failures in physical and communication networks).

The gain ratio for simple contagion on a bipartite
random network = product of two gain ratios.
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Always about the edges: when following a random
edge toward a [, what's the expected number of new
edges leading to other stories via tropes?



Always about the edges: when following a random
edge toward a [, what's the expected number of new
edges leading to other stories via tropes?
We want to determine (k) r gg.ind = F;(Q_H)(l) (and

ind
FI’%(E_Q) (1) for the trope side of things).

ind



Always about the edges: when following a random
edge toward a [, what's the expected number of new
edges leading to other stories via tropes?
We want to determine (k) r gg.ind = F;(Q_H)(l) (and

ind
FI’%(E_Q) (1) for the trope side of things).

ind
We compute with joy:
d

(k) raind = g Froe (@) D



Always about the edges: when following a random

edge toward a [, what's the expected number of new

edges leading to other stories via tropes?

We want to determine (k) r g.ind = FI’%(Q_H)
ind

FI’%(E_Q) (1) for the trope side of things).

ind

(1) (and

We compute with joy:

d d
<k>R,H,ind = aFRf;?d—iBQ (93) i %FR(H) (FRW) (513))



Always about the edges: when following a random
edge toward a [, what's the expected number of new
edges leading to other stories via tropes?

We want to determine (k) r gg.ind = FI’%%_H)(l) (and

FI’%(E_Q) (1) for the trope side of things).

ind
We compute with joy:
d d
(k) R @.ind = %FR%—? (x) = %FR@ (Fro(x))

T Fl/:i(v)(l)F}/:;(Hs (Fro(1))



Always about the edges: when following a random
edge toward a [, what's the expected number of new
edges leading to other stories via tropes?

We want to determine (k) r gg.ind = F;(Q_H)(l) (and
ind
FI’%(E_Q) (1) for the trope side of things).

ind
We compute with joy:
d d

(k) rgind = g Fre-® (@) = g-Fra (Fre(z))
¢ =1 =1

T F;:U@)(l)F;:;(Hs (Fro(1)) = F/R(9)<]')F/R(H)<1)



Always about the edges: when following a random
edge toward a [, what's the expected number of new
edges leading to other stories via tropes?

We want to determine (k) r gg.ind = FI’%%_H)(l) (and

FI’%(E_Q) (1) for the trope side of things).

ind

We compute with joy:

d d

(k) rgind = g Fre-® (@) = g-Fra (Fre(z))
) =1 x=1
FroQ) Fig(1)
= Fro()Frg (Fro(1)) = Fre(1)Frg(l) = FZ?@;(D FZH)(l)



Always about the edges: when following a random

edge toward a [, what's the expected number of new

edges leading to other stories via tropes?

We want to determine (k) r g.ind = FI’%(Q_H)
ind

FI’%(E_Q) (1) for the trope side of things).

ind

(1) (and

We compute with joy:

d d
(k) rgind = g Fre-® (@) = g-Fra (Fre(z))
) =1 x=1
Fio(1) Fia (1)
= Fro()Frg (Fro(1)) = Fre(1)Frg(l) = FZ?@;(D F}’izﬂj(l)

Note symmetry.



Always about the edges: when following a random
edge toward a [, what's the expected number of new
edges leading to other stories via tropes?

We want to determine (k) r g.ind = F;QFQJH>

(1) (and
FI’%(E_Q) (1) for the trope side of things).

ind

We compute with joy:

d d

(k) rgind = g Fre-® (@) = g-Fra (Fre(z))
) =1 x=1
FroQ) Fig(1)
= Fro()Frg (Fro(1)) = Fre(1)Frg(l) = FZ?@;(D FZH)(l)

Note symmetry.

$happiness++;



In terms of the underlying distributions:

<k>R,H,ind =

(k(k—1)g (k(k—1))g

(k)

(kg
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In terms of the underlying distributions:

iy oo = g (k= Do
e (k) (k)g

We have a giant component in both induced networks
when

(k) r,m,ind = (F)R,¢,ind > 1
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In terms of the underlying distributions:

iy oo = g (k= Do
e (k) (k)g

We have a giant component in both induced networks
when

(k) r,m,ind = (F)R,¢,ind > 1

See this as the product of two gain ratios.
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when
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See this as the product of two gain ratios.
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In terms of the underlying distributions:

iy oo = g (k= Do
e (k) (k)g

We have a giant component in both induced networks
when

(k) r,m,ind = (F)R,¢,ind > 1

See this as the product of two gain ratios.
#excellent #physics
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The PoCSverse
Random Bipartite

In terms of the underlying distributions: Networs
ngana= S I EE L o
e -5

We have a giant component in both induced networks
when

(k) r,m,ind = (F)R,¢,ind > 1

See this as the product of two gain ratios.
#excellent #physics

We can mess with this condition to make it
mathematically pleasant and pleasantly inscrutable:

> ) ke (ke k- E)PEPY — 0.
k=0 k’=0
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Simple example for finding the degree
distributions for the two induced networks in a
random bipartite affiliation structure:

& Set P =5, . and leave P\¥ arbitrary.
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& Set P =5, . and leave P\¥ arbitrary.
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Simple example for finding the degree
distributions for the two induced networks in a
random bipartite affiliation structure:

& Set P =5, . and leave P\¥ arbitrary.

<% Each story contains exactly three tropes.

<& We have Fpg (z) = 23 and Frg(z) = 22.
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et PE = 5, and leave P¥ arbitrary. e
Each story contains exactly three tropes.

We have Fpem (z) = 23 and Fr@ (z) = 22.

Using FPE?) (z) = Fpm (Fre(z)) and

FPifd) (z) = Fpo (Fre(z)) we have

Fo@(z) = [Fre(z)]’ and Fpo (@) = Fpo (22).

ind
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Set P, =" = 0.5 and leave P arbitrary.

Each story contains exactly three tropes.
We have Fpem (z) = 23 and Fr@ (z) = 22.
Using Froa (z) = Fpa (Fre(z)) and
FPu(nQd) <17) = Fp(@) (FR<H) (I)) we have
Fom(2) = [Fro ()] and Fyo(2) = Fpo (27).
Even more specific: If each trope is found in
exactly two stories then Fpo = 22 and Fre =z
giving F o (¢) = z3 and F e (z) = «*.

ind ind
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Set P, =" = 0.5 and leave P arbitrary.

Each story contains exactly three tropes.

We have Fpem (z) = 23 and Fr@ (z) = 22.

Using FP@ (z) = Fpm (Fre(z)) and

FPu(nQd) <17) = Fp(@) (FR<H) (I)) we have

FPI(E)(.%) = [FR(Q) (l’)]B and Fpl(nvd] (x) = FP(Q) <$2> 5

Even more specific: If each trope is found in

exactly two stories then Fpo = 22 and Fre =z Vo'

giving F o (¢) = z3 and F e (z) = «*. T
ind ind S

Yes for giant components C:
(F)rmind = (F)rgina=2-1=2>1
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FIG. 8. Frequency distributions for the boards of directors of the
Fortune 1000. Left panel: the numbers of boards on which each
director sits. Right panel: the numbers of directors on each board.

Exponentialish distribution for number of boards each
director sits on.
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FIG. 8. Frequency distributions for the boards of directors of the
Fortune 1000. Left panel: the numbers of boards on which each
director sits. Right panel: the numbers of directors on each board.

Exponentialish distribution for number of boards each
director sits on.

Boards typically have 5 to 15 directors.
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FIG. 8. Frequency distributions for the boards of directors of the
Fortune 1000. Left panel: the numbers of boards on which each
director sits. Right panel: the numbers of directors on each board.

Exponentialish distribution for number of boards each

director sits on

100

s

Boards typically have 5 to 15 directors.

Plan: Take these distributions, presume random
bipartite structure and generate co-director network

and board interlock network.

frequency

The PoCSverse
Random Bipartite
Networks

38 of 45

Introduction
Basic story

References




The PoCSverse
Random Bipartite

Networks
30arads and Directors an ore: 39 0f 45
Introduction
TABLE I. Summary of results of the analysis of four collabora- Basic story
tion networks. References

Clustering C Average degree z

Network Theory Actual Theory Actual
Company directors 0.590 0.588 14.53 14.44
Movie actors 0084  0.199 125.6 1134
Physics (arxiv.org) 0.192 0452 16.74 9.27

Biomedicine (MEDLINE) 0.042  0.088 18.02 16.93

Random bipartite affiliation network assumption
produces decent matches for some basic quantities.
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FIG. 9. The probability distribution of numbers of co-directors
in the Fortune 1000 graph. The points are the real-world data, the
solid line is the bipartite graph model, and the dashed line is the
Poisson distribution with the same mean. Insets: the equivalent dis-
tributions for the numbers of collaborators of movie actors and
physicists.

Jolly good: Works very well for co-directors.
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number of codirectors z

FIG. 9. The probability distribution of numbers of co-directors
in the Fortune 1000 graph. The points are the real-world data, the
solid line is the bipartite graph model, and the dashed line is the
Poisson distribution with the same mean. Insets: the equivalent dis-
tributions for the numbers of collaborators of movie actors and
physicists.

Jolly good: Works very well for co-directors.

For comparison, the dashed line is a Poisson with the
empirical average degree.
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FIG. 10. The distribution of the number of other boards with
which each board of directors is “interlocked™ in the Fortune 1000
data. An interlock between two boards means that they share one or
more common members. The points are the empirical data, the solid
line is the theoretical prediction. Inset: the number of boards on
which one’s codirectors sit, as a function of the number of boards
one sits on oneself.

Wins less bananas for the board interlock network.
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FIG. 10. The distribution of the number of other boards with
which each board of directors is “interlocked” in the Fortune 1000
data. An interlock between two boards means that they share one or
more common members. The points are the empirical data, the solid
line is the theoretical prediction. Inset: the number of boards on
which one’s codirectors sit, as a function of the number of boards
one sits on oneself.

Wins less bananas for the board interlock network.

Assortativity is the reason: Directors who sit on many
boards tend to sit on the same boards.
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FIG. 10. The distribution of the number of other boards with
which each board of directors is “interlocked” in the Fortune 1000
data. An interlock between two boards means that they share one or
more common members. The points are the empirical data, the solid
line is the theoretical prediction. Inset: the number of boards on
which one’s codirectors sit, as a function of the number of boards
one sits on oneself.

Wins less bananas for the board interlock network.

Assortativity is the reason: Directors who sit on many
boards tend to sit on the same boards.

Note: The term assortativity was not used in this 2001
paper.



Distributions of component size.

Simpler computation for the giant component
condition.

Contagion.

Testing real bipartite structures for departure
from randomness.

Random bipartite networks model many real
systems well.

Crucial improvement over simple random
networks.

We can find the induced distributions and
determine connectivity/contagion condition.
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