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Mechanisms:

A powerful story in the rise of complexity:
& structure arises out of randomness.

& Exhibit A: Random walks. &'

The essential random walk:

&> One spatial dimension.

&% Time and space are discrete

<& Random walker (e.g., a zombie texter (%) starts at
origin z = 0.

& Step attimetise,:

_ [ +1 with probability 1/2
€=\ —1 with probability 1/2

A few random random walks:
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Random walks:
Displacement after ¢ steps:

t
Ty = E €;
1

Expected displacement:
(2y) =

&> At any time step, we ‘expect’ our zombie texter to
be back at their starting place.

<% Obviously fails for odd number of steps...
<% But as time goes on, the chance of our texting

undead friend lurching back to z=0 must diminish,

right?

Variances sum:&*

* Sum rule = a good reason for using the variance to
measure spread; only works for independent distributions.

So typical displacement from the origin scales as:

& A non-trivial scaling law arises out of
additive aggregation or accumulation.

Random walk basics:

Counting random walks:

& Each specific random walk of length t appears
with a chance 1/2¢.

We'll be more interested in how many random
walks end up at the same place.

Define N (i, j,t) as # distinct walks that start at
xz =i and end at z = j after ¢ time steps.
Random walk must displace by +(j — i) after ¢
steps.

Insert question from assignment 5 ('

& & ® B

t+jt—i)/2)
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How does P(z,) behave for large ¢?

Take time ¢ = 2n to help ourselves.

Ty, € {0,42, 44, ..., +2n}

To, IS even so set z,,, = 2k.

Using our expression N(i, j,t) with i = 0, j = 2k,
and t = 2n, we have

Pr(z,,, = 2k) x (nQ—:—lk)

For large n, the binomial deliciously approaches
the Normal Distribution of Snoredom:

LR R R

&

2

Pr(z, = ) ~ e 5.

&> The whole is different from the parts.
&% See also: Stable Distributions('

spreading (more later).
&5 View as Random Additive Growth Mechanism.

So many things are connected:

Pascal's Triangle &'

&> Binomials tend towards the Normal.

&% Counting encoded in algebraic forms (and much
more).

& (h+t)"
& (h+1)?

Zk o (w)hFtn=F where () = k!(':ik)!

'Stigler's Law of Eponymy (' showing excellent form again.

#nutritious

IR A & Could have been the
P A Cogicbistn Pyramid of Pingala @' or
A § the Triangle of Khayyam,
gé I Jia Xian, Tartaglia, ..

= hhh+ hht + hth +thh + hitt 4+ tht 4 tth + ttt
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Random walks are even weirder than you might
think...

& &, , = the probability that by time step ¢, a random
walk has crossed the origin r times.

&% Think of a coin flip game with ten thousand tosses.

If you are behind early on, what are the chances
you will make a comeback?

&
&> The most likely number of lead changes is... 0.
& Infact: & > & > & >

&% Even crazier:
The expected time between tied scores = oo

See Feller, Intro to Probability Theory, Volume 1°]
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Applied knot theory:

“Designing tie knots by random walks" (&'

g

oaty Fink and Mao, o
= Nature, 398, 31-32, 1999.
a c ¢ c c
Lo : I %® v

Passive end

T 11

Figure 1 Al diagrams are drawn in the frame of reference of the mirror image of the actual tie.
a, The two ways of beginning a knot, L, and L. For knots beginning with L, the tie must begin
inside-out. b, The fourin-hand, denoted by the sequence L, R, Ly CoT. ¢, A knot may be represented
bya ;{er?\stem random walk on a triangulr lattce. The example shown is the fourin-hand, indicated by the
walk 1#1&.

Active end

Applied knot theory:

Table 1 tie knots

h y y/h K(h, v) s b Name Sequence

3 1 0.33 1 0 0 LoReCoT

4 1 025 1 —1 1 Four-in-hand LoRoLoCoT

5 2 0.40 2 =i 0 Pratt knot L.CoRoLoCoT

6 2 033 4 0 0 Half-Windsor  LuRoCaloReCoT

7 2 0.29 6 -1 1 (Lol lLC I {C T

7 3 0.43 4 0 1 LoCoRoColoRaCoT

) 2 0.25 8 0 2 LuRoLeCoRoloReCoT

) 3 038 i) =il 0 Windsor LoCoRoLoCaRalaCoT

9 3 0.33 24 0 0 LoRoColoRoCaloRaCoT
9 4 0.44 8 =il 2 LoCoRoColoCoRoleCoT

Knots are characterized by half-winding number h, centre number , centre fraction y/h, knots per class K(h, 7).
symmetry s, balance b, name and sequence.

& h =number of

h
s=> .  x,wherez=-1
moves & 2 %

for L and +1 for R.
P2} b—2zZ 2 |w +w;_q]

where w =41
represents winding
direction.

& ~ =number of
center moves

& K(h,y) =

2"

Random walks #crazytownbananapants

The problem of first return:

<> What is the probability that a random walker in
one dimension returns to the origin for the first
time after ¢ steps?

&% Will our zombie texter always return to the origin?
<> What about higher dimensions?

Reasons for caring:
1. We will find a power-law size distribution with an
interesting exponent.
2. Some physical structures may result from random
walks.
3. We'll start to see how different scalings relate to
each other.
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For

_4 . . .

random walks in 1-d:
4 r T T

2 4

0 5 10 15 20
t
A return to origin can only happen when ¢ = 2n.

In example above, returns occur at¢ =8, 10, and
14.

Call Py(a,,) the probability of first return at ¢ = 2n.

Probability calculation = Counting problem
(combinatorics/statistical mechanics).

Idea: Transform first return problem into an
easier return problem.

Can assume zombie texter first lurches to = = 1.

Observe walk first returning at ¢ = 16 stays at or above
x =1for1 <t <15 (dashed red line).

Now want walks that can return many times to =z = 1.

Pq(2n) =
2-IPr(z, >1,1<t<2n-—1,andz, = x5, ; =1)

The 1 accounts for z,,, = 2 instead of 0.

The 2 accounts for texters that first lurch to z = —1.

Counting first returns:

Approach:

Move to counting numbers of walks.

Return to probability at end.

Again, N (i, j, t) is the # of possible walks between
z =14 and z = j taking ¢ steps.

Consider all paths starting at z = 1 and ending at
x =1 after t = 2n — 2 steps.

Idea: If we can compute the number of walks that
hit 2 = 0 at least once, then we can subtract this
from the total number to find the ones that
maintain z > 1.

Call walks that drop below z = 1 excluded walks.

We'll use a method of images to identify these
excluded walks.
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Examples of excluded walks:

Key observation for excluded walks:

For any path starting at =1 that hits O, there is a
unique matching path starting at z=—1.

Matching path first mirrors and then tracks after
first reaching 2=0.

# of t-step paths starting and ending at =1 and
hitting =0 at least once

= # of t-step paths starting at z=-1 and ending at
z=1=N(-1,1,t)

SO Niirst return(2n) = N(1,1,2n—2) — N(—1,1,2n—2)

Probability of first return:
Insert question from assignment 5 (£":

22n73/2
V2mn3/2’

Normalized number of paths gives probability.
Total number of possible paths = 227,

Ng(2n) ~

1
Pqe(2n) = ﬁNfr(Qn)

1 22n73/2
T 220 32
1

= ——(2n)"3/2  t73/2,
V2T

We have P(t) oc t=3/2, v = 3/2.

Same scaling holds for continuous space/time walks.
P(t) is normalizable.

Recurrence: Random walker always returns to origin

But mean, variance, and all higher moments are
infinite. #totalmadness

Even though walker must return, expect a long wait...

One moral: Repeated gambling against an infinitely
wealthy opponent must lead to ruin.

Higher dimensions (%"

Walker in d = 2 dimensions must also return
Walker may not return in d > 3 dimensions
Associated human genius: George Polya(d
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Random walks

On finite spaces:

In any finite homogeneous space, a random
walker will visit every site with equal probability
Call this probability the Invariant Density of a
dynamical system

Non-trivial Invariant Densities arise in chaotic
systems.

On networks:

On networks, a random walker visits each node

with frequency « node degree #groovy

Equal probability still present:

walkers traverse edges with equal frequency.
#totallygroovy

Scheidegger Networks "7

e

-

§>/ CONSUN <\§ AN

Random directed network on triangular lattice.
Toy model of real networks.

‘Flow’ is southeast or southwest with equal
probability.

Scheidegger networks

Creates basins with random walk boundaries.

Observe that subtracting one random walk from
another gives random walk with increments:

+1 with probability 1/4

€ = 0 with probability 1/2
—1 with probability 1/4

Random walk with probabilistic pauses.

Basin termination = first return random walk
problem.

Basin length ¢ distribution: P(¢) o £~3/2
For real river networks, generalize to P({) o< £77.

PoCs
@pocsvox

Power-Law
Mechanisms, Pt. 1

Random Walks

The First Return

Random River
Networks

Scaling Relations

Fractional
Brownian Motion

References

L 10)
ox:
i 10N

wa v 280of 46

PoCs
@pocsvox

Power-Law
Mechanisms, Pt. 1

Random Walks

The First Return
Problem

Random River
ks

Scaling Relations
Death and Sports
Fractional

Brownian Motion

References

Qv 29of 46

PoCS
@pocsvox

Power-Law
Mechanisms, Pt. 1

Random Walks

The First Return
Problem

Random River
N

Death and Sports

Fractional
Brownian Motion

References

[Se)

v 300f46



Connections between exponents:

&
&
&
&
&

For a basin of length ¢, width o ¢/2
Basin area a oc £ - (1/2 = ¢3/2

Invert: £ o« a?/3

d?¢ o d(a?/3) =2/3a""3da

Pr(basin area = a)da

= Pr(basin length = ¢)d¢
o £73/2d¢

x (a2/3)—3/2a—1/3da
=a*3da

=a "da

Connections between exponents:

&

&
&

Generalize relationship between area and length:

&

&
&

&
&

Both basin area and length obey power law
distributions

Observed for real river networks
Reportedly: 1.3 <7< 1.5and1.5 <y <2

Hack’s law [19;

0o ah.

For real, large networks '3l h ~ 0.5 (isometric
scaling)

Smaller basins possibly 4 > 1/2 (allometric
scaling).

Models exist with interesting values of h.
Plan: Redo calc with v, 7, and h.

Connections between exponents:

&

&
&
&

Given
{xa” P(a) x a7, and P(£) o« ¢~

d¢ « d(a") = ha"1da
Find 7 in terms of v and h.
Pr(basin area = a)da

= Pr(basin length = ¢)d¢
x £~7de

o (a")™aP1da

= q~(I+h (=1))dq

T=1+h(y—-1)

Excellent example of the Scaling Relations found
between exponents describing power laws for
many systems.
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Connections between exponents:

With more detailed description of network
structure, 7 = 1 + h(y — 1) simplifies to: *!

and

&
&
&

&

Only one exponent is independent (take h).
Simplifies system description.

Expect Scaling Relations where power laws are
found.

Need only characterize Universality (4" class with

independent exponents.

Death ...

Failure:

&
&
&
&

A very simple model of failure/death
z, = entity's ‘health’ at time ¢

Start with z, > 0.

Entity fails when z hits 0.

“Explaining mortality rate plateaus”Z'

1 Weitz and Fraser,
Proc. Natl. Acad. Sci., 98, 15383-15386,

S 2001.18!

... and the NBA:

Basketball and other sports

&

&
&

Three arcsine laws (7 (Lévy ['?) for

continuous-time random walk last time T
1 1

T JUT — 1)

The arcsine distribution (" applies for:
(1) fraction of time positive, (2) the last time the
walk changes sign,

and (3) the time the maximum is achieved.
Well approximated by basketball score lines & 2!,
Australian Rules Football has some differences !,
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More than randomness

&

&
&

g HH B

Can generalize to Fractional Random
WalkS[TS,%,MJ

Fractional Brownian Motion (', Lévy flights (%"

See Montroll and Shlesinger for example: [
“On 1/f noise and other distributions with long
tails.”

Proc. Natl. Acad. Sci., 1982.

In 1-d, standard deviation o scales as

o~

a = 1/2 — diffusive
a > 1/2 — superdiffusive
a < 1/2 — subdiffusive

Extensive memory of path now matters...

First big studies of movement and interactions of
people.

Brockmann et al. ') “Where's George” study.
Beyond Lévy: Superdiffusive in space but with
long waiting times.

Tracking movement via cell phones ® and
Twitter 7,

My

Financigl
Collapge
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