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Generatingfunctionology [1]

 Idea: Given a sequence 𝑎0, 𝑎1, 𝑎2, … , associate
each element with a distinct function or other
mathematical object.

 Well-chosen functions allow us to manipulate
sequences and retrieve sequence elements.

Definition:
 The generating function (g.f.) for a sequence {𝑎𝑛}

is 𝐹(𝑥) = ∞∑𝑛=0 𝑎𝑛𝑥𝑛.
 Roughly: transforms a vector in 𝑅∞ into a

function defined on 𝑅1.
 Related to Fourier, Laplace, Mellin, …
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Simple examples:
Rolling dice and flipping coins:

 𝑝( )𝑘 = Pr(throwing a 𝑘) = 1/6 where 𝑘 = 1, 2, … , 6.𝐹 ( )(𝑥) = 6∑𝑘=1 𝑝( )𝑘 𝑥𝑘 = 16(𝑥+𝑥2 +𝑥3 +𝑥4 +𝑥5 +𝑥6).
 𝑝(coin)0 = Pr(head) = 1/2, 𝑝(coin)1 = Pr(tail) = 1/2.𝐹 (coin)(𝑥) = 𝑝(coin)0 𝑥0 + 𝑝(coin)1 𝑥1 = 12(1 + 𝑥).
 A generating function for a probability distribution

is called a Probability Generating Function (p.g.f.).
 We’ll come back to these simple examples as we

derive various delicious properties of generating
functions.
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Example
 Take a degree distribution with exponential decay:𝑃𝑘 = 𝑐𝑒−𝜆𝑘

where geometricsumfully, we have 𝑐 = 1 − 𝑒−𝜆
 The generating function for this distribution is𝐹(𝑥) = ∞∑𝑘=0 𝑃𝑘𝑥𝑘 = ∞∑𝑘=0 𝑐𝑒−𝜆𝑘𝑥𝑘 = 𝑐1 − 𝑥𝑒−𝜆 .
 Notice that 𝐹(1) = 𝑐/(1 − 𝑒−𝜆) = 1.
 For probability distributions, we must always have𝐹(1) = 1 since𝐹(1) = ∞∑𝑘=0 𝑃𝑘1𝑘 = ∞∑𝑘=0 𝑃𝑘 = 1.
 Check die and coin p.g.f.’s.
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Properties:
 Average degree:⟨𝑘⟩ = ∞∑𝑘=0 𝑘𝑃𝑘 = ∞∑𝑘=0 𝑘𝑃𝑘𝑥𝑘−1∣𝑥=1= d

d𝑥𝐹(𝑥)∣𝑥=1 = 𝐹 ′(1)
 In general, many calculations become simple, if a little

abstract.

 For our exponential example:𝐹 ′(𝑥) = (1 − 𝑒−𝜆)𝑒−𝜆(1 − 𝑥𝑒−𝜆)2 .


So: ⟨𝑘⟩ = 𝐹 ′(1) = 𝑒−𝜆(1 − 𝑒−𝜆) .
 Check for die and coin p.g.f.’s.
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Useful pieces for probability distributions:

 Normalization: 𝐹(1) = 1
 First moment: ⟨𝑘⟩ = 𝐹 ′(1)
 Higher moments:⟨𝑘𝑛⟩ = (𝑥 d

d𝑥)𝑛 𝐹(𝑥)∣𝑥=1
 𝑘th element of sequence (general):𝑃𝑘 = 1𝑘! d𝑘

d𝑥𝑘 𝐹(𝑥)∣𝑥=0
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A beautiful, fundamental thing:
 The generating function for the sum of two

random variables 𝑊 = 𝑈 + 𝑉
is 𝐹𝑊(𝑥) = 𝐹𝑈(𝑥)𝐹𝑉 (𝑥).

 Convolve yourself with Convolutions:
Insert question from assignment 5 .

 Try with die and coin p.g.f.’s.
1. Add two coins (tail=0, head=1).
2. Add two dice.
3. Add a coin flip to one die roll.
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Edge-degree distribution

 Recall our condition for a giant component:⟨𝑘⟩𝑅 = ⟨𝑘2⟩ − ⟨𝑘⟩⟨𝑘⟩ > 1.
 Let’s re-express our condition in terms of

generating functions.
 We first need the g.f. for 𝑅𝑘.
 We’ll now use this notation:𝐹𝑃 (𝑥) is the g.f. for 𝑃𝑘.𝐹𝑅(𝑥) is the g.f. for 𝑅𝑘.
 Giant component condition in terms of g.f. is:⟨𝑘⟩𝑅 = 𝐹 ′𝑅(1) > 1.
 Now find how 𝐹𝑅 is related to 𝐹𝑃 …
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Edge-degree distribution
 We have𝐹𝑅(𝑥) = ∞∑𝑘=0 𝑅𝑘𝑥𝑘 = ∞∑𝑘=0 (𝑘 + 1)𝑃𝑘+1⟨𝑘⟩ 𝑥𝑘.

Shift index to 𝑗 = 𝑘 + 1 and pull out 1⟨𝑘⟩ :𝐹𝑅(𝑥) = 1⟨𝑘⟩ ∞∑𝑗=1 𝑗𝑃𝑗𝑥𝑗−1 = 1⟨𝑘⟩ ∞∑𝑗=1 𝑃𝑗 d
d𝑥𝑥𝑗

= 1⟨𝑘⟩ d
d𝑥 ∞∑𝑗=1 𝑃𝑗𝑥𝑗 = 1⟨𝑘⟩ d

d𝑥 (𝐹𝑃 (𝑥) − 𝑃0) = 1⟨𝑘⟩𝐹 ′𝑃 (𝑥).
Finally, since ⟨𝑘⟩ = 𝐹 ′𝑃 (1),𝐹𝑅(𝑥) = 𝐹 ′𝑃 (𝑥)𝐹 ′𝑃 (1)
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Edge-degree distribution

 Recall giant component condition is⟨𝑘⟩𝑅 = 𝐹 ′𝑅(1) > 1.
 Since we have 𝐹𝑅(𝑥) = 𝐹 ′𝑃 (𝑥)/𝐹 ′𝑃 (1),𝐹 ′𝑅(𝑥) = 𝐹 ″𝑃 (𝑥)𝐹 ′𝑃 (1).
 Setting 𝑥 = 1, our condition becomes𝐹 ″𝑃 (1)𝐹 ′𝑃 (1) > 1
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Size distributions

To figure out the size of the largest component (𝑆1),
we need more resolution on component sizes.

Definitions:
 𝜋𝑛 = probability that a random node belongs to a

finite component of size 𝑛 < ∞.
 𝜌𝑛 = probability that a random end of a random

link leads to a finite subcomponent of size 𝑛 < ∞.

Local-global connection:𝑃𝑘, 𝑅𝑘 ⇔ 𝜋𝑛, 𝜌𝑛
neighbors ⇔ components
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Connecting probabilities:

 Markov property of random networks connects𝜋𝑛, 𝜌𝑛, and 𝑃𝑘.
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Connecting probabilities:

 Markov property of random networks connects 𝜌𝑛
and 𝑅𝑘.
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G.f.’s for component size distributions:
 𝐹𝜋(𝑥) = ∞∑𝑛=0 𝜋𝑛𝑥𝑛 and 𝐹𝜌(𝑥) = ∞∑𝑛=0 𝜌𝑛𝑥𝑛
The largest component:
 Subtle key: 𝐹𝜋(1) is the probability that a node

belongs to a finite component.
 Therefore: 𝑆1 = 1 − 𝐹𝜋(1).
Our mission, which we accept:
 Determine and connect the four generating

functions 𝐹𝑃 , 𝐹𝑅, 𝐹𝜋, and 𝐹𝜌.
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Useful results we’ll need for g.f.’s

Sneaky Result 1:
 Consider two random variables 𝑈 and 𝑉 whose

values may be 0, 1, 2, …
 Write probability distributions as 𝑈𝑘 and 𝑉𝑘 and

g.f.’s as 𝐹𝑈 and 𝐹𝑉 .
 SR1: If a third random variable is defined as𝑊 = 𝑈∑𝑖=1 𝑉 (𝑖) with each 𝑉 (𝑖) 𝑑= 𝑉

then 𝐹𝑊(𝑥) = 𝐹𝑈 (𝐹𝑉 (𝑥))
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Proof of SR1:
Write probability that variable 𝑊 has value 𝑘 as 𝑊𝑘.𝑊𝑘 = ∞∑𝑗=0 𝑈𝑗 × Pr(sum of 𝑗 draws of variable 𝑉 = 𝑘)

= ∞∑𝑗=0 𝑈𝑗 ∑{𝑖1,𝑖2,…,𝑖𝑗}|𝑖1+𝑖2+…+𝑖𝑗=𝑘 𝑉𝑖1𝑉𝑖2 ⋯ 𝑉𝑖𝑗

∴𝐹𝑊(𝑥) = ∞∑𝑘=0 𝑊𝑘𝑥𝑘 = ∞∑𝑘=0 ∞∑𝑗=0 𝑈𝑗 ∑{𝑖1,𝑖2,…,𝑖𝑗}|𝑖1+𝑖2+…+𝑖𝑗=𝑘 𝑉𝑖1𝑉𝑖2 ⋯ 𝑉𝑖𝑗𝑥𝑘
= ∞∑𝑗=0 𝑈𝑗 ∞∑𝑘=0 ∑{𝑖1,𝑖2,…,𝑖𝑗}|𝑖1+𝑖2+…+𝑖𝑗=𝑘 𝑉𝑖1𝑥𝑖1𝑉𝑖2𝑥𝑖2 ⋯ 𝑉𝑖𝑗𝑥𝑖𝑗
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Proof of SR1:
With some concentration, observe:

𝐹𝑊(𝑥) = ∞∑𝑗=0 𝑈𝑗 ∞∑𝑘=0 ∑{𝑖1,𝑖2,…,𝑖𝑗}|𝑖1+𝑖2+…+𝑖𝑗=𝑘 𝑉𝑖1𝑥𝑖1𝑉𝑖2𝑥𝑖2 ⋯ 𝑉𝑖𝑗𝑥𝑖𝑗⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟𝑥𝑘 piece of (∑∞𝑖′=0 𝑉𝑖′𝑥𝑖′)𝑗⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟(∑∞𝑖′=0 𝑉𝑖′𝑥𝑖′)𝑗 = (𝐹𝑉 (𝑥))𝑗= ∞∑𝑗=0 𝑈𝑗 (𝐹𝑉 (𝑥))𝑗
= 𝐹𝑈 (𝐹𝑉 (𝑥)) ฀

 Alternate, groovier proof in the accompanying
assignment.
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Useful results we’ll need for g.f.’s
Sneaky Result 2:
 Start with a random variable 𝑈 with distribution𝑈𝑘 (𝑘 = 0, 1, 2, … )
 SR2: If a second random variable is defined as𝑉 = 𝑈 + 1 then 𝐹𝑉 (𝑥) = 𝑥𝐹𝑈(𝑥)
 Reason: 𝑉𝑘 = 𝑈𝑘−1 for 𝑘 ≥ 1 and 𝑉0 = 0.
 ∴𝐹𝑉 (𝑥) = ∞∑𝑘=0 𝑉𝑘𝑥𝑘 = ∞∑𝑘=1 𝑈𝑘−1𝑥𝑘

= 𝑥 ∞∑𝑗=0 𝑈𝑗𝑥𝑗 = 𝑥𝐹𝑈(𝑥).฀
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Useful results we’ll need for g.f.’s

Generalization of SR2:
 (1) If 𝑉 = 𝑈 + 𝑖 then𝐹𝑉 (𝑥) = 𝑥𝑖𝐹𝑈(𝑥).
 (2) If 𝑉 = 𝑈 − 𝑖 then𝐹𝑉 (𝑥) = 𝑥−𝑖𝐹𝑈(𝑥)

= 𝑥−𝑖 ∞∑𝑘=0 𝑈𝑘𝑥𝑘
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Connecting generating functions:
 Goal: figure out forms of the component

generating functions, 𝐹𝜋 and 𝐹𝜌.

 Relate 𝜋𝑛 to 𝑃𝑘 and 𝜌𝑛 through one step of
recursion.
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Connecting generating functions:

 𝜋𝑛 = probability that a random node belongs to a
finite component of size 𝑛= ∞∑𝑘=0 𝑃𝑘 ×Pr( sum of sizes of subcomponents

at end of 𝑘 random links = 𝑛 − 1 )


Therefore: 𝐹𝜋(𝑥) = 𝑥⏟
SR2

𝐹𝑃 (𝐹𝜌(𝑥))⏟⏟⏟⏟⏟
SR1

 Extra factor of 𝑥 accounts for random node itself.
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Connecting generating functions:

 Relate 𝜌𝑛 to 𝑅𝑘 and 𝜌𝑛 through one step of
recursion.
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Connecting generating functions:
 𝜌𝑛 = probability that a random link leads to a finite

subcomponent of size 𝑛.
 Invoke one step of recursion:𝜌𝑛 = probability that in following a random edge,

the outgoing edges of the node reached lead to
finite subcomponents of combined size 𝑛 − 1,= ∞∑𝑘=0 𝑅𝑘×Pr( sum of sizes of subcomponents

at end of 𝑘 random links = 𝑛 − 1 )


Therefore: 𝐹𝜌(𝑥) = 𝑥⏟
SR2

𝐹𝑅 (𝐹𝜌(𝑥))⏟⏟⏟⏟⏟
SR1

 Again, extra factor of 𝑥 accounts for random node
itself.
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Connecting generating functions:

 We now have two functional equations connecting
our generating functions:𝐹𝜋(𝑥) = 𝑥𝐹𝑃 (𝐹𝜌(𝑥)) and 𝐹𝜌(𝑥) = 𝑥𝐹𝑅 (𝐹𝜌(𝑥))

 Taking stock: We know 𝐹𝑃 (𝑥) and𝐹𝑅(𝑥) = 𝐹 ′𝑃 (𝑥)/𝐹 ′𝑃 (1).
 We first untangle the second equation to find 𝐹𝜌
 We can do this because it only involves 𝐹𝜌 and 𝐹𝑅.
 The first equation then immediately gives us 𝐹𝜋 in

terms of 𝐹𝜌 and 𝐹𝑅.
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Component sizes

 Remembering vaguely what we are doing:

Finding 𝐹𝜋 to obtain the fractional size of the
largest component 𝑆1 = 1 − 𝐹𝜋(1).

 Set 𝑥 = 1 in our two equations:𝐹𝜋(1) = 𝐹𝑃 (𝐹𝜌(1)) and 𝐹𝜌(1) = 𝐹𝑅 (𝐹𝜌(1))
 Solve second equation numerically for 𝐹𝜌(1).
 Plug 𝐹𝜌(1) into first equation to obtain 𝐹𝜋(1).
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Component sizes
Example: Standard random graphs.
 We can show 𝐹𝑃 (𝑥) = 𝑒−⟨𝑘⟩(1−𝑥)⇒ 𝐹𝑅(𝑥) = 𝐹 ′𝑃 (𝑥)/𝐹 ′𝑃 (1)

= ⟨𝑘⟩𝑒−⟨𝑘⟩(1−𝑥)/⟨𝑘⟩𝑒−⟨𝑘⟩(1−𝑥′)|𝑥′=1= 𝑒−⟨𝑘⟩(1−𝑥) = 𝐹𝑃 (𝑥) …aha!

 RHS’s of our two equations are the same.
 So 𝐹𝜋(𝑥) = 𝐹𝜌(𝑥) = 𝑥𝐹𝑅(𝐹𝜌(𝑥)) = 𝑥𝐹𝑅(𝐹𝜋(𝑥))
 Consistent with how our dirty (but wrong) trick

worked earlier …
 𝜋𝑛 = 𝜌𝑛 just as 𝑃𝑘 = 𝑅𝑘.
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Component sizes
 We are down to𝐹𝜋(𝑥) = 𝑥𝐹𝑅(𝐹𝜋(𝑥)) and 𝐹𝑅(𝑥) = 𝑒−⟨𝑘⟩(1−𝑥).
 ∴𝐹𝜋(𝑥) = 𝑥𝑒−⟨𝑘⟩(1−𝐹𝜋(𝑥))
 We’re first after 𝑆1 = 1 − 𝐹𝜋(1) so set 𝑥 = 1 and

replace 𝐹𝜋(1) by 1 − 𝑆1:
1 − 𝑆1 = 𝑒−⟨𝑘⟩𝑆1

Or: ⟨𝑘⟩ = 1𝑆1 ln 11 − 𝑆1
0 1 2 3 4

0

0.2

0.4

0.6

0.8

1

〈 k 〉

S
1

 Just as we found with our dirty trick …
 Again, we (usually) have to resort to numerics …
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A few simple random networks to contemplate
and play around with:
 Notation: The Kronecker delta function 𝛿𝑖𝑗 = 1

if 𝑖 = 𝑗 and 0 otherwise.
 𝑃𝑘 = 𝛿𝑘1.
 𝑃𝑘 = 𝛿𝑘2.
 𝑃𝑘 = 𝛿𝑘3.
 𝑃𝑘 = 𝛿𝑘𝑘′ for some fixed 𝑘′ ≥ 0.
 𝑃𝑘 = 12𝛿𝑘1 + 12𝛿𝑘3.
 𝑃𝑘 = 𝑎𝛿𝑘1 + (1 − 𝑎)𝛿𝑘3, with 0 ≤ 𝑎 ≤ 1.
 𝑃𝑘 = 12𝛿𝑘1 + 12𝛿𝑘𝑘′ for some fixed 𝑘′ ≥ 2.
 𝑃𝑘 = 𝑎𝛿𝑘1 + (1 − 𝑎)𝛿𝑘𝑘′ for some fixed 𝑘′ ≥ 2 with0 ≤ 𝑎 ≤ 1.
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A joyful example :𝑃𝑘 = 12𝛿𝑘1 + 12𝛿𝑘3.
 We find (two ways): 𝑅𝑘 = 14𝛿𝑘0 + 34𝛿𝑘2.
 A giant component exists because:⟨𝑘⟩𝑅 = 0 × 1/4 + 2 × 3/4 = 3/2 > 1.
 Generating functions for 𝑃𝑘 and 𝑅𝑘:𝐹𝑃 (𝑥) = 12𝑥 + 12𝑥3 and 𝐹𝑅(𝑥) = 14𝑥0 + 34𝑥2
 Check for goodness:

 𝐹𝑅(𝑥) = 𝐹 ′𝑃 (𝑥)/𝐹 ′𝑃 (1) and 𝐹𝑃 (1) = 𝐹𝑅(1) = 1.
 𝐹 ′𝑃 (1) = ⟨𝑘⟩𝑃 = 2 and 𝐹 ′𝑅(1) = ⟨𝑘⟩𝑅 = 32 .

 Things to figure out: Component size generating
functions for 𝜋𝑛 and 𝜌𝑛, and the size of the giant
component.
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Find 𝐹𝜌(𝑥) first:
 We know: 𝐹𝜌(𝑥) = 𝑥𝐹𝑅 (𝐹𝜌(𝑥)) .
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 Sticking things in things, we have:𝐹𝜌(𝑥) = 𝑥 (14 + 34 [𝐹𝜌(𝑥)]2) .
 Rearranging:3𝑥 [𝐹𝜌(𝑥)]2 − 4𝐹𝜌(𝑥) + 𝑥 = 0.
 Please and thank you:𝐹𝜌(𝑥) = 23𝑥 (1 ± √1 − 34𝑥2)
 Time for a Taylor series expansion.
 The promise: non-negative powers of 𝑥 with

non-negative coefficients.
 First: which sign do we take?

PoCS
@pocsvox

Generating
Functions and
Networks

Generating
Functions
Definitions

Basic Properties

Giant Component
Condition

Component sizes

Useful results

Size of the Giant
Component

A few examples

Average Component Size

References

.
.
.
.
.

.
43 of 58

 Because 𝜌𝑛 is a probability distribution, we know𝐹𝜌(1) ≤ 1 and 𝐹𝜌(𝑥) ≤ 1 for 0 ≤ 𝑥 ≤ 1.
 Thinking about the limit 𝑥 → 0 in𝐹𝜌(𝑥) = 23𝑥 (1 ± √1 − 34𝑥2) ,

we see that the positive sign solution blows to
smithereens, and the negative one is okay.

 So we must have:𝐹𝜌(𝑥) = 23𝑥 (1 − √1 − 34𝑥2) ,
 We can now deploy the Taylor expansion:(1 + 𝑧)𝜃 = (𝜃0)𝑧0 + (𝜃1)𝑧1 + (𝜃2)𝑧2 + (𝜃3)𝑧3 + …
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 Let’s define a binomial for arbitrary 𝜃 and 𝑘 = 0, 1, 2, …:(𝜃𝑘) = Γ(𝜃 + 1)Γ(𝑘 + 1)Γ(𝜃 − 𝑘 + 1)
 For 𝜃 = 12 , we have:(1 + 𝑧) 12 = ( 120)𝑧0 + ( 121)𝑧1 + ( 122)𝑧2 + …

= Γ( 32 )Γ(1)Γ( 32 )𝑧0 + Γ( 32 )Γ(2)Γ( 12 )𝑧1 + Γ( 32 )Γ(3)Γ(− 12 )𝑧2 + …= 1 + 12𝑧 − 18𝑧2 + 116𝑧3 − …
where we’ve used Γ(𝑥 + 1) = 𝑥Γ(𝑥) and noted thatΓ( 12 ) = √𝜋2 .

 Note: (1 + 𝑧)𝜃 ∼ 1 + 𝜃𝑧 always.

 Totally psyched, we go back to here:𝐹𝜌(𝑥) = 23𝑥 (1 − √1 − 34𝑥2) .
 Setting 𝑧 = − 34 𝑥2 and expanding, we have:𝐹𝜌(𝑥) =23𝑥 (1 − [1 + 12 (−34𝑥2)1 − 18 (−34𝑥2)2 + 116 (−34𝑥2)3] + …)
 Giving: 𝐹𝜌(𝑥) = ∞∑𝑛=0 𝜌𝑛𝑥𝑛 =14𝑥+ 364𝑥3+ 9512𝑥5+…+23 (34)𝑘 (−1)𝑘+1Γ( 32 )Γ(𝑘 + 1)Γ( 32 − 𝑘)𝑥2𝑘−1+…
 Do odd powers make sense?
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 We can now find 𝐹𝜋(𝑥) with:𝐹𝜋(𝑥) = 𝑥𝐹𝑃 (𝐹𝜌(𝑥))
= 𝑥12 ((𝐹𝜌(𝑥))1 + (𝐹𝜌(𝑥))3)

= 𝑥12 ⎡⎢⎣ 23𝑥 (1 − √1 − 34𝑥2) + 23(3𝑥)3 (1 − √1 − 34𝑥2)3⎤⎥⎦ .
 Delicious.

 In principle, we can now extract all the 𝜋𝑛.
 But let’s just find the size of the giant component.
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 First, we need 𝐹𝜌(1):𝐹𝜌(𝑥)∣𝑥=1 = 23 ⋅ 1 (1 − √1 − 3412) = 13.
 This is the probability that a random edge leads to a

sub-component of finite size.

 Next:𝐹𝜋(1) = 1⋅𝐹𝑃 (𝐹𝜌(1)) = 𝐹𝑃 (13) = 12⋅13+12 (13)3 = 527.
 This is the probability that a random chosen node

belongs to a finite component.

 Finally, we have𝑆1 = 1 − 𝐹𝜋(1) = 1 − 527 = 2227.
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Average component size
 Next: find average size of finite components ⟨𝑛⟩.
 Using standard G.F. result: ⟨𝑛⟩ = 𝐹 ′𝜋(1).
 Try to avoid finding 𝐹𝜋(𝑥) …
 Starting from 𝐹𝜋(𝑥) = 𝑥𝐹𝑃 (𝐹𝜌(𝑥)), we

differentiate:𝐹 ′𝜋(𝑥) = 𝐹𝑃 (𝐹𝜌(𝑥)) + 𝑥𝐹 ′𝜌(𝑥)𝐹 ′𝑃 (𝐹𝜌(𝑥))
 While 𝐹𝜌(𝑥) = 𝑥𝐹𝑅 (𝐹𝜌(𝑥)) gives𝐹 ′𝜌(𝑥) = 𝐹𝑅 (𝐹𝜌(𝑥)) + 𝑥𝐹 ′𝜌(𝑥)𝐹 ′𝑅 (𝐹𝜌(𝑥))
 Now set 𝑥 = 1 in both equations.
 We solve the second equation for 𝐹 ′𝜌(1) (we must

already have 𝐹𝜌(1)).
 Plug 𝐹 ′𝜌(1) and 𝐹𝜌(1) into first equation to find𝐹 ′𝜋(1).
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Average component size
Example: Standard random graphs.
 Use fact that 𝐹𝑃 = 𝐹𝑅 and 𝐹𝜋 = 𝐹𝜌.
 Two differentiated equations reduce to only one:𝐹 ′𝜋(𝑥) = 𝐹𝑃 (𝐹𝜋(𝑥)) + 𝑥𝐹 ′𝜋(𝑥)𝐹 ′𝑃 (𝐹𝜋(𝑥))

Rearrange: 𝐹 ′𝜋(𝑥) = 𝐹𝑃 (𝐹𝜋(𝑥))1 − 𝑥𝐹 ′𝑃 (𝐹𝜋(𝑥))
 Simplify denominator using 𝐹 ′𝑃 (𝑥) = ⟨𝑘⟩𝐹𝑃 (𝑥)
 Replace 𝐹𝑃 (𝐹𝜋(𝑥)) using 𝐹𝜋(𝑥) = 𝑥𝐹𝑃 (𝐹𝜋(𝑥)).
 Set 𝑥 = 1 and replace 𝐹𝜋(1) with 1 − 𝑆1.

End result: ⟨𝑛⟩ = 𝐹 ′𝜋(1) = (1 − 𝑆1)1 − ⟨𝑘⟩(1 − 𝑆1)
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Average component size
 Our result for standard random networks:⟨𝑛⟩ = 𝐹 ′𝜋(1) = (1 − 𝑆1)1 − ⟨𝑘⟩(1 − 𝑆1)
 Recall that ⟨𝑘⟩ = 1 is the critical value of average

degree for standard random networks.
 Look at what happens when we increase ⟨𝑘⟩ to 1

from below.
 We have 𝑆1 = 0 for all ⟨𝑘⟩ < 1 so⟨𝑛⟩ = 11 − ⟨𝑘⟩
 This blows up as ⟨𝑘⟩ → 1.
 Reason: we have a power law distribution of

component sizes at ⟨𝑘⟩ = 1.
 Typical critical point behavior …
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Average component size

 Limits of ⟨𝑘⟩ = 0 and ∞ make sense for⟨𝑛⟩ = 𝐹 ′𝜋(1) = (1 − 𝑆1)1 − ⟨𝑘⟩(1 − 𝑆1)
 As ⟨𝑘⟩ → 0, 𝑆1 = 0, and ⟨𝑛⟩ → 1.
 All nodes are isolated.
 As ⟨𝑘⟩ → ∞, 𝑆1 → 1 and ⟨𝑛⟩ → 0.
 No nodes are outside of the giant component.

Extra on largest component size:
 For ⟨𝑘⟩ = 1, 𝑆1 ∼ 𝑁2/3/𝑁 .
 For ⟨𝑘⟩ < 1, 𝑆1 ∼ (log𝑁)/𝑁 .
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 Let’s return to our example: 𝑃𝑘 = 12 𝛿𝑘1 + 12 𝛿𝑘3.
 We’re after:⟨𝑛⟩ = 𝐹 ′𝜋(1) = 𝐹𝑃 (𝐹𝜌(1)) + 𝐹 ′𝜌(1)𝐹 ′𝑃 (𝐹𝜌(1))

where we first need to compute𝐹 ′𝜌(1) = 𝐹𝑅 (𝐹𝜌(1)) + 𝐹 ′𝜌(1)𝐹 ′𝑅 (𝐹𝜌(1)) .
 Place stick between teeth, and recall that we have:𝐹𝑃 (𝑥) = 12𝑥 + 12𝑥3 and 𝐹𝑅(𝑥) = 14𝑥0 + 34𝑥2.
 Differentiation gives us:𝐹 ′𝑃 (𝑥) = 12 + 32𝑥2 and 𝐹 ′𝑅(𝑥) = 32𝑥.
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 We bite harder and use 𝐹𝜌(1) = 13 to find:𝐹 ′𝜌(1) = 𝐹𝑅 (𝐹𝜌(1)) + 𝐹 ′𝜌(1)𝐹 ′𝑅 (𝐹𝜌(1))
= 𝐹𝑅 (13) + 𝐹 ′𝜌(1)𝐹 ′𝑅 (13)

= 14 + ✁34 13✁2 + 𝐹 ′𝜌(1) ✁32 1
✁3.

 After some reallocation of objects, we have 𝐹 ′𝜌(1) = 132 .


Finally: ⟨𝑛⟩ = 𝐹 ′𝜋(1) = 𝐹𝑃 (13) + 132 𝐹 ′𝑃 (13)= 12 13 + 12 133 + 132 (12 + ✁32 13✁2 ) = 527 + 133 = 12227 .
 So, kinda small.
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Nutshell

 Generating functions allow us to strangely
calculate features of random networks.

 They’re a bit scary and magical.
 We’ll find generating functions useful for

contagion.
 But we’ll also see that more direct, physics-bearing

calculations are possible.
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