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Generatingfunctionology

Idea: Given a sequence a.ay,a,, ..., associate
each element with a distinct function or other
mathematical object.

Well-chosen functions allow us to manipulate
sequences and retrieve sequence elements.

Definition:

The generating function (g.f.) for a sequence {a,, }

IS

Roughly: transforms a vector in R into a
function defined on R™.

Related to Fourier, Laplace, Mellin, ...
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Simple examples:

Rolling dice and flipping coins:

p;;@’ = Pr(throwinga k) = 1/6 where k = 1,2, ...,6.

6
1
FO(z) = Zpi@)xk = g(x+ac2+x3+z4+ac5+x6).
k=1

p§o™ = Pr(head) = 1/2, p{©"™ = Pr(tail) = 1/2.

FEO () = g0 4 oMt = L(1 4 7).

A generating function for a probability distribution
is called a Probability Generating Function (p.g.f.).

We'll come back to these simple examples as we
derive various delicious properties of generating

functions.
Example
Take a degree distribution with exponential decay:
P, =ce M

where geometricsumfully, we have ¢ = 1 — e *
The generating function for this distribution is

o0 o0 c
F(x) = Z Ppak = Z ce Megh = [p—
k=0 k=0 re

Notice that F(1) = ¢/(1 —e ™) = 1.

For probability distributions, we must always have

F(1) =1since

F(1) = iPklk = ipk =
k=0

k=0
Check die and coin p.g.f.'s.

Properties:

Average degree:

o0 o0
(k) =Y kP,= Y kPt
k=0 k=0

d
= aF(z)

x=1

=F/(1)

=1

In general, many calculations become simple, if a little
abstract.
For our exponential example:

(1—eMe?

Fl@) =gy
e—)x
So: (k) = F/(1) = Aoy

Check for die and coin p.g.f's.
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Useful pieces for probability distributions:

Normalization:
First moment:

Higher moments:

(k) = (d%) Fw)|

r=1
kth element of sequence (general):
k
1 d
Po=ger @
x=0

A beautiful, fundamental thing:

The generating function for the sum of two
random variables

W=U+V

is

Py (z) = Fy(z)Fy ().
Convolve yourself with Convolutions:
Insert question from assignment 5 &'

Try with die and coin p.g.f.'s.
1. Add two coins (tail=0, head=1).
2. Add two dice.
3. Add a coin flip to one die roll.

Edge-degree distribution

Recall our condition for a giant component:

(k) — (k)
)

Let's re-express our condition in terms of
generating functions.

We first need the g.f. for R,.

We'll now use this notation:

Fp(x)is the g.f. for P,.
Fr(z)is the g.f. for R,.

(kyg = > 1.

Giant component condition in terms of g.f. is:
(k) g = Fh(1) > 1.

Now find how F}, is related to Fip ...
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Edge-degree distribution @porsvox Connecting probabilities: @potsiox Useful results we'll need for g.f.'s @porsvox
Gene(ating Genel_'ating Gene(ating
& We have Networie Networie Networie
" podes Sneaky Result 1:
Generating &% Consider two random variables U and V' whose Generating

values may be 0,1,2, ...

<& Write probability distributions as U/,, and V. and
g.f'sas Fy; and Fy.

& SR1: If a third random variable is defined as

- o= (k +1 P
Frl)=) R,z Z Rl Generating
k:0 : Functions
Shift index to j = k + 1 and pull out % -

(k)

- 1 & d |
; PIJ 1= ®2Pjalﬂ

=t References References U References
v . . d
1 d& . 1.d 1 Nk edge; W = Z V() with each V9 = v
= =N Pul=———— (Fp(a)—P,) = —Fp(z). P
<k> d.IZ: ]7“ <k‘> dl( P(I) O) <k> P(I) p i=1
j=1
) . then
Finally, since (k) = Fp(1), [Fu(@) = Fy (Fy(@)]
7 ()
Fg(z) = Flji(’) &> Markov property of random networks connects e
Fp(1) s Prr @Nd P, g
va 150f58 wa 190f58 wa v 230f58
Edge-degree distribution @porsiox Connecting probabilities: Gpotsvox Proof of SR1: @pocsvox
Gene(ating Gene(aling Generaling
Functons and Nerops and Write probability that variable W has value k as W, Retmo ™
&% Recall giant component condition is . . B . .
(k) = Fly(1) > 1. Runctions® Generating W), =Y _U; x Pr(sum of j draws of variable V = k) enerating
. e - — B
& Since we have Fiy(z) = Fio(x)/Fi(1), @ g
oo
§4 —
Fhte) = 5 2 = S Y v,
2 = e,
Aver nt Size ”Ll ’LZ Tl =R
References //é References ’ References
Setting = = 1, our condition becomes -
& Setting » =1, our condition becore R gy CCED RS 3 3D DI AR
= < k=0 {iq,ig,m0ii}]
FE(1) 51 - z1+;2i...+]ij:k
Fp(1) &> Markov
property of random networks connects p,, o S ) ) )
and R,,. = ZO U, Z Z Vi ah Vi at e V at
j= k=0 {i1.ig,mij}l
“aQ 160f58 “a v 200f58 “a v 250f58
Size distributions oo G.f.'s for component size distributions: oo Proof of SR1: orsox
Funciont and & Funciont and With some concentration, observe: Functont and
To figure out the size of the largest component (S;), Networks e =S Networks Networks
we need more resolution on component sizes. Fo(x)=Y m,a™and F,(z) = p,z"
n=0

Definitions:

& m, = probability that a random node belongs to a
finite component of size n < cc.

& p,, = probability that a random end of a random

oo o)
Generating n=0 = Generating . . . Generating
Functions Functions FW(I) = E UJ E E ‘/l ;['Ll‘/i xrte ‘/1 xli Functions
1 2 J
J=0 k=0 {i1,ig.ij}l .
iy tigtti =k

* piece of (377 Vi,xi’)j

The largest component:

& Subtle key: F,_ (1) is the probability that a node
belongs to a finite component.

link leads to a finite subcomponent of size n < co. . oo i\ J s
oo Via® = (Fy(x
References & Therefore: Sl -1 —Fﬂ(l). References Eozz =0 ) ( V( )) References
) _ i
Local-global connection: = Z U; (Fy(x))
Our mission, which we accept: J=0
Pkst < T P H :
<& Determine and connect the four generating = Fy (Fy(x))
neighbors < components functions
FP7 FRa Ll and F . : P o
& Altgrnate, groovier proof in the accompanying q
“ae 180f58 “a 210f58 aSSIgnment' “a 260f58



Useful results we'll need for g.f.'s

Sneaky Result 2:

&5 Start with a random variable U with distribution
U, (k=0,1,2,...)
& SR2: If a second random variable is defined as

V =U+1 then |Fy(z) = 2Fy(x)

& Reason: V,, =U,_, fork>1and V, =0.
&

“Fy(z) = i Vb = i Up_1a*

Useful results we'll need for g.f.'s

Generalization of SR2:
& (MIfV =U+ithen

Fy(z) = 2 Fy ().
& (IfV=U—ithen

Fy(x) = 27 Fy ()

Connecting generating functions:

&% Goal: figure out forms of the component
generating functions, F. and F,.

n odes

&% Relate 7, to P, and p,, through one step of
recursion.
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Connecting generating functions:

& m, = probability that a random node belongs to a
finite component of size n

_ i p.«pr ( SUm of sizes of subcomponents
- k at end of k random links =n — 1

Therefore: |F, (z)= z Fp(F,(z))

& Extra factor of 2 accounts for random node itself.

Connecting generating functions:

3
&4

/Q/kék m%g{mg

edges

& Relate p,, to R, and p,, through one step of
recursion.

Connecting generating functions:

& p,, = probability that a random link leads to a finite
subcomponent of size n.

&% Invoke one step of recursion:
p,, = probability that in following a random edge,
the outgoing edges of the node reached lead to
finite subcomponents of combined size n — 1,

_ E Ry xPr ( sum of sizes of subcomponents )

P at end of k random links =n — 1

Therefore: |F,(z)= z Fg(F,(z))
@ s

SR1

&% Again, extra factor of x accounts for random node
itself.
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Connecting generating functions:

&> We now have two functional equations connecting
our generating functions:

F.(z) =aFp (F,(r)) and F,(z) = 2Fg (F,(z))

&% Taking stock: We know Fp(z) and

Fgr(x) = Fp(x)/Fp(1).
< We first untangle the second equation to find F,
< We can do this because it only involves F, and Fp.

&% The first equation then immediately gives us F. in
terms of F, and F.

Component sizes

<& Remembering vaguely what we are doing:

Finding F,. to obtain the fractional size of the
largest component S; =1 — F,_(1).
&> Setx = 1in our two equations:

F.(1)=Fp(F,(1)) and F,(1) = Fg (F,(1))

< Solve second equation numerically for F,(1).
& Plug F,(1) into first equation to obtain F,(1).

Component sizes

Example: Standard random graphs.
&> We can show Fp(z) = e (F)(1-2)

= Fr(r) = Fp(z)/Fp(1)

’

= (k)e R)(1=2) /(}) o= (k) (1-2")

x’=1

= tR0-2) — p () ...aha!
&> RHS's of our two equations are the same.
& S0 F(x) = F,(v) = aFg(F,(v)) = aFp(FL(x))

< Consistent with how our dirty (but wrong) trick
worked earlier ...

& m, = p, justas P, = R,,.
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Component sizes
We are down to
F,_(z) = 2FR(F, (z)) and Fg(z) = e (F(-=2),

™

F_(z) = pe~ (K- Fa()

We're first after S, =1 — F,(1) so setz =1 and

replace F, (1) by 1 —S;:
. .

1— Sl = €7<k5>sl

1 1 0
Or: <k>:371|n175 o
1

0.2]

1 2 3 4
kO

Just as we found with our dirty trick ...
Again, we (usually) have to resort to numerics ...

A few simple random networks to contemplate
and play around with:

if i = j and 0 otherwise.

P =641-
P =6p0.
P, = 0p5.

P, = 4y, for some fixed k¥’ > 0.

P = 3051 + 3043

P, =ady; + (1 —a)ds, with0 <a <1.

Py, = 16,1 + 16, for some fixed &’ > 2.

Py, = adyy + (1 —a)d,, for some fixed & > 2 with
0<a<l

A joyful example [

1 1
Pk = §5k1 + §5k3~

We find (two ways): Ry, = 0,0 + 200
A giant component exists because:
(Y =0x1/4+2x3/4=3/2>1.
Generating functions for P, and R;;:

1 .13 _ Lo, 32

Fp(z) = 5T+ 5 and Fr(z) = 5t
Check for goodness:

Fp(z) = Fp(z)/Fp(1) and Fp(1) = Fp(1) = 1.

Fp(1) = (k)p = 2and Fp(1) = (k)5 = 3.
Things to figure out: Component size generating
functions for «,, and p,,, and the size of the giant
component.
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Find F (z) first:

We know:

— R f( k quﬁ\m@

edgeg

Sticking things in things, we have:

Rearranging:
3z [Fp(.’L’)]z —4F,(v) + 2 =0.

Please and thank you:

@@_;Qim_;g

Time for a Taylor series expansion.

The promise: non-negative powers of = with
non-negative coefficients.

First: which sign do we take?

Because p,, is a probability distribution, we know
F,(1)<1and F,(z) <1for0 <z <1.

Thinking about the limit z — 0 in

F,(z) = 3% (li A/ 1= Z:ﬂ) ,

we see that the positive sign solution blows to
smithereens, and the negative one is okay.

So we must have:

o= 2 (1-1=32).

We can now deploy the Taylor expansion:

(14 2)? = (g)zo + G)zl + (g)zZ + (g>z3 + ...
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Let's define a binomial for arbitrary 6 and k = 0,1,2,....  Generating
Functions and
(0> B F(9 T 1) Networks
k/ T(k+ 1O —k+1)

Functions

References

where we've used I'(z + 1) = zI'(z) and noted that
() =L,

Note: (1+ 2)? ~ 1+ 0z always.

a v 440f58

Totally psyched, we go back to here:

ro = (1152,

Setting z = — 222 and expanding, we have:

F(z) =
2 1/ 3,\" 173 ,\° 1/ 3.,°
?(“{“5(7” *g(”“”) +E(7I> *
Giving:

F(x)=) p,a" =
n=0

L3 9 45 3(§)k (CDMITE) ok
e 5 T3 \4) Teroreomt T

Do odd powers make sense?
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We can now find F, (x) with: Networks

F.(x)=xFp (Fp(x))

Generating
Functions

3
1|2 / 3 23 / 3
== |—|1—4/1—=2x2 1—4/1— 222  Average
“2 {31' ( 4’ ) * (3z)3 ( 4* ) :| References

Delicious.
In principle, we can now extract all the = ,.

But let’s just find the size of the giant component.
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F @) _, =357 (1 Y-t )_3.
Generating

Fur

This is the probability that a random edge leads to a
sub-component of finite size.

Next: o .

Afew examples

References

rr-irnn a3 <3302 () - 5

This is the probability that a random chosen node
belongs to a finite component.

Finally, we have

5 22
Sl—l—F,r(l)—l—ﬁ—ﬁ. ,
Qv 47 0f 58
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Generatin,
Next: find average size of finite components (n). LZTSJL‘?E;""
Using standard G.F. result: (n) = F/(1).
Generating

Try to avoid finding F,(z) ...
Starting from F, (z) = zFp (F,(z)), we
differentiate:

Functions

Fi(x) = Fp (F,(x)) + aF}(x)Fp (F,(x))

While F,(z) = 2F (F,(z)) gives

Fl(x) = Fg (F,(2)) + zF)(2)F (F,(x))

Now set z = 1 in both equations.

We solve the second equation for F/ (1) (we must
already have F,(1)).

Plug F;(1) and F,(1) into first equation to find
FL(1).

10
Bl
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Example: Standard random graphs. Rimctoneand
Networks
Use factthat Fp = Frand F,. = F,.
Two differentiated equations reduce to only one: Generating

Functions

FL(2) = Fp (Fy(2) + 2F} (@) Fp (F, (@)

_ Fp(Fyle)
1= 2F (Fy())

™

Rearrange: F/(x)

References

Simplify denominator using Fp(z) = (k) Fp(z)
Replace Fp(F . (x)) using F, . (z) = xFp(F,(x)).
Setz =1 and replace F, (1) with1— 5.

. o/ _ (1 - Sl)
End result: <n> = Fw(l) 1= <k>(1 — Sl) m |§|
va v 510f58
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Our result for standard random networks:

_ _ (I_Sl)
=) = T -5y

Functone.
Recall that (k) = 1 is the critical value of average
degree for standard random networks.

Look at what happens when we increase (k) to 1 St ortec
from below. i
We have S; =0 forall (k) <1 so

1
)

References

This blows up as (k) — 1.

Reason: we have a power law distribution of
component sizes at (k) = 1.

Typical critical point behavior ...

v 520f58
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Limits of (k) = 0 and co make sense for

N\ _ (1751)
(n) =Fr(1) = T=B(-28,)

Generating
Functions

As (k) — 0,5, =0,and (n) — 1.

All nodes are isolated.

As (k) = o0, S; — 1 and (n) — 0.

No nodes are outside of the giant component.

References

Extra on largest component size:
For (k) =1, 5; ~ N2/3/N.
For (k) <1, S; ~ (logN)/N.
i fg
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Let's return to our example: P, = 16, + 15,5.
We're after:

(n) = Fr(1) = Fp (F,(1)) + F,(1)Fp (F,(1))
where we first need to compute

F/(1) = Fg (F,(1)) + F,(1)Fg (F,(1)) .

Place stick between teeth, and recall that we have:

1 1 1 3
Fp(x) = o+ 5933 and Fr(z) = Zmo + Zmz.

Differentiation gives us:

Fp(z) = %Jr ga:2 and Fp(z) = gz

We bite harder and use F,(1) = 3 tofind:

Fj(1) = Fg (F,(1)) + F(1)Fp (F,(1))

After some reallocation of objects, we have F (1) = 13,

Finally: (n) = F/.(1) = Fp (%) + gpg, (%)

1 13/1 31 5 13 122
wt s+ =+ 2=
33" 2 \2 " 237 27 "3 27

711+
T 23

N =

So, kinda small.

Nutshell

Generating functions allow us to strangely
calculate features of random networks.

They're a bit scary and magical.

We'll find generating functions useful for
contagion.

But we'll also see that more direct, physics-bearing
calculations are possible.
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