Generalized Contagion

Last updated: 2021/10/07, 17:43:36 EDT

Principles of Complex Systems, Vols. 1 & 2 CSYS/MATH 300 and 303, 2021-2022 | @pocsvox

Prof. Peter Sheridan Dodds | @peterdodds

Computational Story Lab | Vermont Complex Systems Center Vermont Advanced Computing Core | University of Vermont

Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 License.

Pocs @pocsvox

Generalized Contagion

Introduction

Independent Interaction models

Interdependent interaction

Generalized Model

Nutshell

Appendix

These slides are brought to you by:

Pocs @pocsvox

Generalized Contagion

Introduction

Independent

Interaction

Interdependent interaction

Generalized Model

Heterogeneous version

Nutshell

Appendix

These slides are also brought to you by:

Special Guest Executive Producer

On Instagram at pratchett_the_cat

PoCS @pocsvox

Generalized Contagion

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model

Homogeneous version
Heterogeneous version

Nutshell

Appendix

References

9 a @ 3 of 65

Outline

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model Homogeneous version Heterogeneous version

Nutshell

Appendix

References

PoCS @pocsvox

Generalized Contagion

Introduction

Independent

Interaction models

Interdependent interaction models

Generalized Model Homogeneous version

Homogeneous version
Heterogeneous version

Nutshell

Appendix

"Universal Behavior in a Generalized Model of Contagion"

Dodds and Watts, Phys. Rev. Lett., **92**, 218701, 2004. [5]

"A generalized model of social and biological contagion"

Dodds and Watts.

J. Theor. Biol., **232**, 587–604, 2005. ^[6]

PoCS @pocsvox

Generalized Contagion

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model

Homogeneous version
Heterogeneous version

Nutshell

Appendix

Generalized contagion model

Basic questions about contagion

- How many types of contagion are there?
- How can we categorize real-world contagions?
- Can we connect models of disease-like and social contagion?
- Focus: mean field models.

Pocs @pocsvox

Generalized Contagion

Introduction

Independent Interaction models

Interdependent interaction

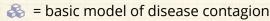
Generalized Model

Nutshell

Appendix

Mathematical Epidemiology (recap)

The standard SIR model [11]



- Three states:
 - 1. S = Susceptible
 - 2. I = Infective/Infectious
 - 3. R = Recovered or Removed or Refractory

$$\Re S(t) + I(t) + R(t) = 1$$

- Presumes random interactions (mass-action principle)
- Interactions are independent (no memory)
- Discrete and continuous time versions

PoCS @pocsvox

Generalized Contagion

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model

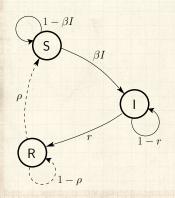
Homogeneous version
Heterogeneous version

Nutshell

Appendix

Independent Interaction Models

Discrete time automata example:



Transition Probabilities:

 β for being infected given contact with infected r for recovery ρ for loss of immunity

Pocs @pocsvox

Generalized Contagion

Introduction

Independent Interaction models

Interdependent interaction

Generalized Model

Nutshell

Appendix

Independent Interaction Models

Original models attributed to

4 1920's: Reed and Frost

1920's/1930's: Kermack and McKendrick [8, 10, 9]

Coupled differential equations with a mass-action principle

Pocs @pocsvox

Generalized Contagion

Introduction

Independent Interaction models

Interdependent interaction

Generalized Model

Nutshell

Appendix

Independent Interaction models

Differential equations for continuous model

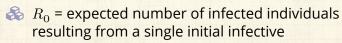
$$\frac{\mathrm{d}}{\mathrm{d}t}S = -\beta \underline{IS} + \rho R$$

$$\frac{\mathrm{d}}{\mathrm{d}t}I = \beta \underline{IS} - rI$$

$$\frac{\mathrm{d}}{\mathrm{d}t}R = rI - \rho R$$

 β , r, and ρ are now rates.

Reproduction Number R_0 :



 \clubsuit Epidemic threshold: If $R_0 > 1$, 'epidemic' occurs.

PoCS @pocsvox

Generalized Contagion

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model Homogeneous version

Heterogeneous version

Nutshell

Appendix

Reproduction Number R_0

Pocs @pocsvox

Generalized Contagion

Discrete version:

- Set up: One Infective in a randomly mixing population of Susceptibles
- \clubsuit At time t=0, single infective randomly bumps into a Susceptible
- A Probability of transmission = β
- At time t = 1, single Infective remains infected with probability 1-r
- \clubsuit At time t = k, single Infective remains infected with probability $(1-r)^k$

Introduction

Independent Interaction models

Interdependent interaction

Generalized Model

Nutshell

Appendix

Reproduction Number R_0

Discrete version:

Expected number infected by original Infective:

$$R_0 = \beta + (1-r)\beta + (1-r)^2\beta + (1-r)^3\beta + \dots$$

$$=\beta \left(1+(1-r)+(1-r)^2+(1-r)^3+\ldots \right)$$

$$=\beta \frac{1}{1-(1-r)} = \beta/r$$

Similar story for continuous model.

Pocs @pocsvox

Generalized Contagion

Introduction

Independent Interaction models

Interdependent interaction

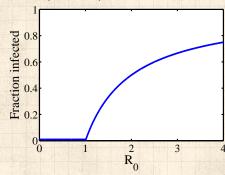
Generalized Model

Nutshell

Appendix

Independent Interaction models

Example of epidemic threshold:



Continuous phase transition.

Fine idea from a simple model.

Pocs @pocsvox

Generalized Contagion

Introduction

Independent Interaction models

Interdependent interaction

Generalized Model

Nutshell

Appendix

Simple disease spreading models

Valiant attempts to use SIR and co. elsewhere:

- Adoption of ideas/beliefs (Goffman & Newell, 1964) [7]
- Spread of rumors (Daley & Kendall, 1964, 1965) [3, 4]
- Diffusion of innovations (Bass, 1969)
- Spread of fanatical behavior (Castillo-Chávez & Song, 2003) [2]

PoCS @pocsvox

Generalized Contagion

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model

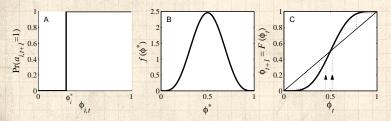
Homogeneous version Heterogeneous version

Nutshell

Appendix

Granovetter's model (recap of recap)

Action based on perceived behavior of others.



Two states: S and I.

Recovery now possible (SIS).

 $\Leftrightarrow \phi$ = fraction of contacts 'on' (e.g., rioting).

Discrete time, synchronous update.

This is a Critical mass model.

Interdependent interaction model.

PoCS @pocsvox

Generalized Contagion

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model Homogeneous version

Nutshell

Appendix

Some (of many) issues

- Disease models assume independence of infectious events.
- \ref{heat} Threshold models only involve proportions: $3/10 \equiv 30/100$.
- Threshold models ignore exact sequence of influences
- Threshold models assume immediate polling.
- Mean-field models neglect network structure
- Network effects only part of story: media, advertising, direct marketing.

PoCS @pocsvox

Generalized Contagion

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model

Homogeneous version Heterogeneous version

Nutshell

Appendix

Generalized model

PoCS @pocsvox

Generalized Contagion

Basic ingredients:

- & Incorporate memory of a contagious element [5, 6]
- $\ensuremath{\mathfrak{S}}$ Population of N individuals, each in state S, I, or R.
- Each individual randomly contacts another at each time step.
- ϕ_t = fraction infected at time t = probability of <u>contact</u> with infected individual
- \Leftrightarrow With probability p, contact with infective leads to an exposure.
- A lf exposed, individual receives a dose of size d drawn from distribution f. Otherwise d = 0.

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model

Homogeneous version Heterogeneous version

Nutshell

Appendix

Generalized model—ingredients

 $S \Rightarrow I$

Individuals 'remember' last T contacts:

$$D_{t,i} = \sum_{t'=t-T+1}^{t} d_i(t')$$

A Infection occurs if individual i's 'threshold' is exceeded:

$$D_{t,i} \ge d_i^*$$

 \mathbb{A} Threshold d_i^* drawn from arbitrary distribution qat t=0.

Pocs @pocsvox

Generalized Contagion

Introduction

Independent Interaction models

Interdependent interaction

Generalized Model

Nutshell

Appendix

Generalized model—ingredients

When $D_{t,i} < d_i^*$, individual i recovers to state R with probability r.

Once in state R, individuals become susceptible again with probability ρ .

PoCS @pocsvox

Generalized Contagion

Introduction

Independent Interaction models

Interdependent interaction models

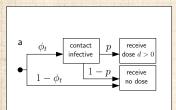
Generalized Model

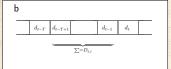
Homogeneous version
Heterogeneous version

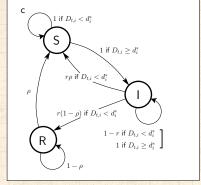
Nutshell

Appendix

A visual explanation







PoCS @pocsvox

Generalized Contagion

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model

Homogeneous version
Heterogeneous version

Nutshell

Appendix

Generalized mean-field model

Study SIS-type contagion first:

Recovered individuals are immediately susceptible again:

$$\rho = 1$$
.

- Look for steady-state behavior as a function of exposure probability p.
- \triangle Denote fixed points by ϕ^* .

Homogeneous version:

All individuals have threshold d^*

All dose sizes are equal: d=1

Pocs @pocsvox

Generalized Contagion

Introduction

Independent Interaction models

Interdependent interaction

Generalized Model

Nutshell

Appendix

Fixed points for r < 1, $d^* = 1$, and T = 1:

r < 1 means recovery is probabilistic.

T = 1 means individuals forget past interactions.

 $d^* = 1$ means one positive interaction will infect an individual.

Evolution of infection level:

$$\phi_{t+1} = \underbrace{p\phi_t}_{\mathsf{a}} + \underbrace{\phi_t(1-p\phi_t)}_{\mathsf{b}} \underbrace{(1-r)}_{\mathsf{C}}.$$

- a: Fraction infected between t and t+1, independent of past state or recovery.
- b: Probability of being infected and not being reinfected.
- c: Probability of not recovering.

Pocs @pocsvox

Generalized Contagion

Introduction

Independent Interaction models

Interdependent interaction

Generalized Model Homogeneous version

Nutshell

Appendix

Fixed points for r < 1, $d^* = 1$, and T = 1:

$$\clubsuit$$
 Set $\phi_t = \phi^*$:

$$\phi^*=p\phi^*+(1-p\phi^*)\phi^*(1-r)$$

$$\Rightarrow 1=p+(1-p\phi^*)(1-r), \quad \phi^*\neq 0,$$

$$\Rightarrow \phi^* = rac{1 - r/p}{1 - r}$$
 and $\phi^* = 0$.

- $\red{solution}$ Critical point at $p=p_c=r$.
- \clubsuit Spreading takes off if p/r > 1
- Find continuous phase transition as for SIR model.
- & Goodness: Matches $R_o = \beta/\gamma > 1$ condition.

PoCS @pocsvox

Generalized Contagion

Introduction

Independent Interaction

models

Interdependent interaction models

Generalized Model Homogeneous version

Heterogeneous version

Nutshell

Appendix

Simple homogeneous examples

Fixed points for r = 1, $d^* = 1$, and T > 1

- r = 1 means recovery is immediate.
- T > 1 means individuals remember at least 2 interactions.
- $d^* = 1$ means only one positive interaction in past T interactions will infect individual.
- Effect of individual interactions is independent from effect of others.
- \triangle Call ϕ^* the steady state level of infection.
- Pr(infected) = 1 Pr(uninfected):

$$\phi^* = 1 - (1 - p\phi^*)^T.$$

Pocs @pocsvox

Generalized Contagion

Introduction

Independent Interaction

Interdependent interaction

Generalized Model Homogeneous version

Nutshell

Appendix

Fixed points for r = 1, $d^* = 1$, and T > 1

& Closed form expression for ϕ^* :

$$\phi^* = 1 - (1 - p\phi^*)^T.$$

& Look for critical infection probability p_c .

 \Leftrightarrow As $\phi^* \to 0$, we see

$$\phi^* \simeq pT\phi^* \Rightarrow p_c = 1/T.$$

Again find continuous phase transition ...

 $\ensuremath{\mathfrak{S}}$ Note: we can solve for p but not ϕ^* :

$$p = (\phi^*)^{-1} [1 - (1 - \phi^*)^{1/T}].$$

PoCS @pocsvox

Generalized Contagion

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model Homogeneous version

Nutshell

Appendix

Fixed points for $r \le 1$, $d^* = 1$, and $T \ge 1$

Start with r=1, $d^*=1$, and $T\geq 1$ case we have just examined:

$$\phi^* = 1 - (1 - p\phi^*)^T.$$

- $\ensuremath{\&}$ For r < 1, add to right hand side fraction who:
 - 1. Did not receive any infections in last T time steps,
 - 2. And did not recover from a previous infection.
- Define corresponding dose histories. Example:

$$H_1 = \{\dots, d_{t-T-2}, d_{t-T-1}, 1, \underbrace{0, 0, \dots, 0, 0}_{T \text{ 0's}}\},$$

With history H_1 , probability of being infected (not recovering in one time step) is 1-r.

PoCS @pocsvox

Generalized Contagion

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model Homogeneous version

Nutshell

Appendix

Fixed points for $r \le 1$, $d^* = 1$, and $T \ge 1$

🗞 In general, relevant dose histories are:

$$H_{m+1} = \{\dots, d_{t-T-m-1}, 1, \underbrace{0,0,\dots,0,0}_{m \text{ 0's}}, \underbrace{0,0,\dots,0,0}_{T \text{ 0's}}\}.$$

Overall probabilities for dose histories occurring:

$$P(H_1) = p \phi^* (1 - p \phi^*)^T (1 - r),$$

$$P(H_{m+1}) = \underbrace{p\phi^*}_{a} \underbrace{(1-p\phi^*)^{T+m}}_{b} \underbrace{(1-r)^{m+1}}_{c}.$$

a: Pr(infection T + m + 1 time steps ago)

b: Pr(no doses received in T + m time steps since)

c: $Pr(no\ recovery\ in\ m\ chances)$

PoCS @pocsvox

Generalized Contagion

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model Homogeneous version

Nutshell

Appendix

Fixed points for $r \le 1$, $d^* = 1$, and $T \ge 1$

 \Re Pr(recovery) = Pr(seeing no doses for at least T time steps and recovering)

$$\begin{split} &= \mathop{r}\limits_{m=0}^{\infty} P(H_{T+m}) = \mathop{r}\limits_{m=0}^{\infty} p \phi^* (1 - p \phi^*)^{T+m} (1 - r)^m \\ &= \mathop{r}\limits_{m=0}^{\infty} \frac{p \phi^* (1 - p \phi^*)^T}{1 - (1 - p \phi^*)(1 - r)}. \end{split}$$

Using the probability of not recovering, we end up with a fixed point equation:

$$\phi^* = 1 - \frac{r(1 - p\phi^*)^T}{1 - (1 - p\phi^*)(1 - r)}.$$

PoCS @pocsvox

Generalized Contagion

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model Homogeneous version

Nutshell

Appendix

Fixed points for $r \le 1$, $d^* = 1$, and $T \ge 1$

Fixed point equation (again):

$$\phi^* = 1 - \frac{r(1 - p\phi^*)^T}{1 - (1 - p\phi^*)(1 - r)}.$$

 \Longrightarrow Find critical exposure probability by examining above as $\phi^* \to 0$.

$$\Rightarrow \quad p_c = \frac{1}{T + 1/r - 1} = \frac{1}{T + \tau}.$$

where τ = mean recovery time for simple relaxation process.

 $\ref{position}$ Decreasing r keeps individuals infected for longer and decreases p_c .

PoCS @pocsvox

Generalized Contagion

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model Homogeneous version

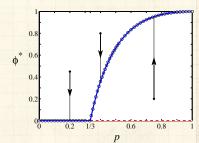
Heterogeneous version

Nutshell

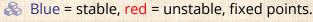
Appendix

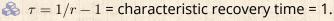
Epidemic threshold:

Fixed points for $d^* = 1$, $r \le 1$, and $T \ge 1$



 \clubsuit Example details: $T=2 \& r=1/2 \Rightarrow p_c=1/3$.





 $T + \tau \simeq$ average memory in system = 3.

Phase transition can be seen as a transcritical bifurcation. [12]

Pocs @pocsvox

Generalized Contagion

Introduction

Independent Interaction models

Interdependent interaction

Generalized Model Homogeneous version

Nutshell

Appendix

Homogeneous, multi-hit models:

All right: $d^* = 1$ models correspond to simple disease spreading models.

 \clubsuit What if we allow $d^* > 2$?

Again first consider SIS with immediate recovery (r = 1)

Also continue to assume unit dose sizes $(f(d) = \delta(d-1)).$

 \clubsuit To be infected, must have at least d^* exposures in last T time steps.

Fixed point equation:

$$\phi^* = \sum_{i=d^*}^T \binom{T}{i} (p\phi^*)^i (1-p\phi^*)^{T-i}.$$

 \clubsuit As always, $\phi^* = 0$ works too.

Pocs @pocsvox

Generalized Contagion

Introduction

Independent Interaction

Interdependent interaction

Generalized Model Homogeneous version

Nutshell

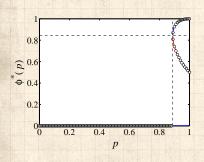
Appendix

Homogeneous, multi-hit models:

Fixed points for r = 1, $d^* > 1$, and $T \ge 1$

 \Leftrightarrow Exactly solvable for small T.

 \clubsuit e.g., for $d^* = 2$, T = 3:



8

Fixed point equation: $\phi^* = \\ 3p^2 {\phi^*}^2 (1-p\phi^*) + p^3 {\phi^*}^3$

See new structure: a saddle node bifurcation [12] appears as p increases.

Behavior akin to output of Granovetter's threshold model.

PoCS @pocsvox

Generalized Contagion

Introduction

Independent Interaction models

Interdependent interaction models

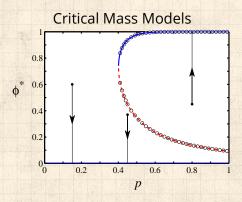
Generalized
Model
Homogeneous version
Heterogeneous version

Nutshell

Appendix

Homogeneous, multi-hit models:

Another example:



Pocs @pocsvox

Generalized Contagion

Introduction

Independent Interaction models

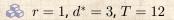
Interdependent interaction

Generalized Model Homogeneous version

Nutshell

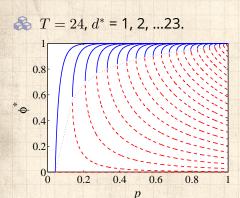
Appendix

References



Saddle-node bifurcation.

Fixed points for r=1, $d^*>1$, and $T\geq 1$



 $d^* = 1 \rightarrow d^* > 1$: jump between continuous phase transition and pure critical mass model.

Unstable curve for $d^* = 2$ does not hit $\phi^* = 0$.

See either simple phase transition or saddle-node bifurcation, nothing in between. PoCS @pocsvox

Generalized Contagion

Introduction

Independent Interaction models

Interdependent interaction models

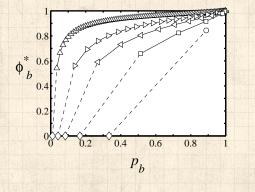
Generalized Model Homogeneous version

Nutshell

Appendix

Fixed points for r=1, $d^*>1$, and $T\geq 1$

& Bifurcation points for example fixed T, varying d^* :



$$3 T = 96$$
 ().

$$3 T = 24 (>),$$

$$\Rightarrow T = 12 (\triangleleft),$$

$$Arr T = 6 (\square),$$

$$\Rightarrow T = 3 (0),$$

PoCS @pocsvox

Generalized Contagion

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model Homogeneous version

Jutchall

Nutshell Appendix

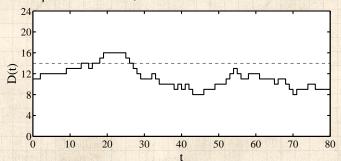
Fixed points for r < 1, $d^* > 1$, and $T \ge 1$

 For r < 1, need to determine probability of recovering as a function of time since dose load last dropped below threshold.

Partially summed random walks:

$$D_i(t) = \sum_{t'=t-T+1}^t d_i(t')$$

Example for T = 24, $d^* = 14$:



Pocs @pocsvox

Generalized Contagion

Introduction

Independent Interaction models

Interdependent interaction

Generalized Model Homogeneous version

Nutshell

Appendix

 \bigotimes Define γ_m as fraction of individuals for whom D(t)last equaled, and has since been below, their threshold m time steps ago,

Fraction of individuals below threshold but not recovered:

$$\Gamma(p,\phi^*;r) = \sum_{m=1}^{\infty} (1-r)^m \gamma_m(p,\phi^*).$$

Fixed point equation:

$$\phi^* = \Gamma(p, \phi^*; r) + \sum_{i=d^*}^T \binom{T}{i} (p\phi^*)^i (1 - p\phi^*)^{T-i}.$$

Pocs @pocsvox

Generalized Contagion

Introduction

Independent Interaction models

Interdependent interaction

Generalized Model Homogeneous version

Nutshell

Appendix

Example: T = 3, $d^* = 2$

 \clubsuit Want to examine how dose load can drop below threshold of $d^*=2$:

$$D_n = 2 \Rightarrow D_{n+1} = 1$$

Two subsequences do this:

$$\begin{aligned} &\{d_{n-2},d_{n-1},d_n,d_{n+1}\} = \{1,1,0,\textcolor{red}{0}\}\\ &\text{and } \{d_{n-2},d_{n-1},d_n,d_{n+1},d_{n+2}\} = \{1,0,1,\textcolor{red}{0},\textcolor{red}{0}\}. \end{aligned}$$

- Note: second sequence includes an extra 0 since this is necessary to stay below $d^* = 2$.
- To stay below threshold, observe acceptable following sequences may be composed of any combination of two subsequences:

$$a = \{0\}$$
 and $b = \{1, 0, 0\}.$

PoCS @pocsvox

Generalized Contagion

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model Homogeneous version

Nutshell

Appendix

ightharpoonup Determine number of sequences of length m that keep dose load below $d^*=2$.

 $\begin{cases} \&\ N_a = \mbox{number of } a = \{0\} \mbox{ subsequences.} \end{cases}$

 $\ensuremath{ \begin{subarray}{l} \ensuremath{ \&} \ensuremath{ N_b} = \ensuremath{ \mbox{number of } b = \{1,0,0\} \ensuremath{ \mbox{subsequences.}} \ensuremath{ \ensuremath{ \begin{subarray}{l} \ensuremath{ \&} \ensuremath{ \mbox{o}} \ensuremath{ \mbox$

$$m = N_a \cdot 1 + N_b \cdot 3$$

Possible values for N_b :

$$0, 1, 2, \ldots, \left\lfloor \frac{m}{3} \right\rfloor.$$

where $\lfloor \cdot \rfloor$ means floor.

& Corresponding possible values for N_a :

$$m, m-3, m-6, \dots, m-3 \left\lfloor \frac{m}{3} \right\rfloor$$
.

PoCS @pocsvox

Generalized Contagion

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model Homogeneous version

Heterogeneous version

Nutshell

Appendix

 $\red{\$}$ How many ways to arrange N_a a's and N_b b's?

Think of overall sequence in terms of subsequences:

$$\{Z_1,Z_2,\dots,Z_{N_a+N_b}\}$$

 $N_a + N_b$ slots for subsequences.

& Choose positions of either a's or b's:

$$\binom{N_a+N_b}{N_a}=\binom{N_a+N_b}{N_b}.$$

PoCS @pocsvox

Generalized Contagion

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model Homogeneous version

Homogeneous version
Heterogeneous version

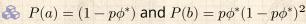
Nutshell

Appendix

 \mathfrak{S} Total number of allowable sequences of length m:

$$\sum_{N_b=0}^{\lfloor m/3\rfloor} \binom{N_b+N_a}{N_b} = \sum_{k=0}^{\lfloor m/3\rfloor} \binom{m-2k}{k}$$

where $k=N_b$ and we have used $m=N_a+3N_b$.



 \Re Total probability of allowable sequences of length m:

$$\chi_m(p,\phi^*) = \sum_{k=0}^{\lfloor m/3 \rfloor} \binom{m-2k}{k} (1-p\phi^*)^{m-k} (p\phi^*)^k.$$

Notation: Write a randomly chosen sequence of a's and b's of length m as $D_m^{a,b}$.

PoCS @pocsvox

Generalized Contagion

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model Homogeneous version

Nutshell

Appendix

Nearly there ...must account for details of sequence endings.

$$D_2 = \{1, 1, 0, 0, D_{m-2}^{a,b}, 1\}$$

$$D_3 = \{1, 1, 0, 0, D_{m-3}^{a,b}, 1, 0\}$$

 $D_1 = \{1, 1, 0, 0, D_{m-1}^{a,b}\}$

$$D_4 = \{1,0,1,0,0,D_{m-2}^{a,b}\}$$

$$D_5 = \{1,0,1,0,0,D_{m-3}^{a,b},1\}$$

$$P_{5} = (p\phi)^{3}(1 - p\phi)^{3}\chi_{m-3}(p, \phi)$$

$$D_{6} = \{1, 0, 1, 0, 0, D_{m-4}^{a,b}, 1, 0\}$$

$$\begin{array}{l} P_6 = (p\phi)^3 (1-p\phi)^4 \chi_{m-4}(p,\phi) \end{array} \hspace{-0.2cm} \mbox{\begin{tabular}{l} \end{tabular}} \mbox{\begin{tabular}{l} \end{tabular}} \mbox{\begin{tabular}{l} \end{tabular}} \end{array}$$

 $P_1 = (p\phi)^2 (1 - p\phi)^2 \chi_{m-1}(p, \phi)$

 $P_2 = (p\phi)^3 (1 - p\phi)^2 \chi_{m-2}(p, \phi)$

Pocs @pocsvox

Generalized Contagion

Introduction

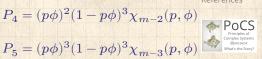
Independent Interaction models

Interdependent interaction

Generalized Model Homogeneous version

Nutshell

 $P_3=(p\phi)^3(1-p\phi)^3\chi_{m-3}(p,\phi)$ Appendix



@pocsvox Generalized Contagion

Pocs

F.P. Eq: $\phi^* = \Gamma(p, \phi^*; r) + \sum_{i=J^*}^{T} \binom{T}{i} (p\phi^*)^i (1 - p\phi^*)^{T-i}$.

Introduction

where $\Gamma(p, \phi^*; r) =$

and

Independent Interaction models

 $(1-r)(p\phi)^2(1-p\phi)^2 + \sum_{m=0}^{\infty} (1-r)^m(p\phi)^2(1-p\phi)^2 \times (1-r)^m(p\phi)^2(1-p\phi)^2$

Interdependent interaction

 $\left[\chi_{m-1} + \chi_{m-2} + 2p\phi(1-p\phi)\chi_{m-3} + p\phi(1-p\phi)^2\chi_{m-4}\right]$

Model Homogeneous version

Generalized

Appendix

References

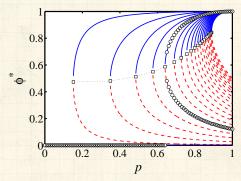
Nutshell

 $\chi_m(p,\phi^*) = \sum_{k=0}^{\lfloor m/3\rfloor} \binom{m-2k}{k} (1-p\phi^*)^{m-k} (p\phi^*)^k.$

Note: $(1-r)(p\phi)^2(1-p\phi)^2$ accounts for $\{1,0,1,0\}$ sequence.

2 Q Q 44 of 65

$$T=3, d^*=2$$



 $r = 0.01, 0.05, 0.10, 0.15, 0.20, \dots, 1.00.$

PoCS @pocsvox

Generalized Contagion

Introduction

Independent Interaction models

Interdependent interaction models

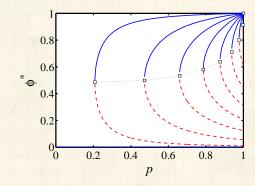
Generalized Model

Homogeneous version
Heterogeneous version

Nutshell

Appendix

$$T=2, d^*=2$$



 $r = 0.01, 0.05, 0.10, \dots, 0.3820 \pm 0.0001.$

Arr No spreading for $r \gtrsim 0.382$.

Pocs @pocsvox

Generalized Contagion

Introduction

Independent Interaction models

Interdependent interaction

Generalized Model Homogeneous version

Nutshell

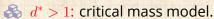
Appendix

What we have now:

Two kinds of contagion processes:

- 1. Continuous phase transition: SIR-like.
- 2. Saddle-node bifurcation: threshold model-like.

 $d^* = 1$: spreading from small seeds possible.



Are other behaviors possible?

Pocs @pocsvox

Generalized Contagion

Introduction

Independent Interaction models

Interdependent interaction

Generalized Model

Homogeneous version

Nutshell

Appendix

Generalized model

Now allow for general dose distributions (f) and threshold distributions (g).

Key quantities:

$$P_k = \int_0^\infty \mathrm{d} d^* \, g(d^*) P\left(\sum_{j=1}^k d_j \geq d^*\right) \text{ where } 1 \leq k \leq T.$$

 P_k = Probability that the threshold of a randomly selected individual will be exceeded by k doses.

ቆ e.g.,

 P_1 = Probability that <u>one dose</u> will exceed the threshold of a random individual = Fraction of most vulnerable individuals. PoCS @pocsvox

Generalized Contagion

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model Homogeneous version

Heterogeneous version

Nutshell

Appendix

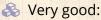
Generalized model—heterogeneity, r = 1

Fixed point equation:

$$\phi^* = \sum_{k=1}^T \binom{T}{k} (p\phi^*)^k (1 - p\phi^*)^{T-k} \underline{P_k}$$

 \clubsuit Expand around $\phi^* = 0$ to find when spread from single seed is possible:

$$pP_1T \geq 1 \hspace{1cm} \text{or} \hspace{1cm} \Rightarrow p_c = 1/(TP_1)$$



1. P_1T is the expected number of vulnerables the initial infected individual meets before recovering.

2. pP_1T is : the expected number of successful infections (equivalent to R_0).

from a small seed.

Pocs @pocsvox

Generalized Contagion

Introduction

Independent Interaction

Interdependent interaction

Generalized Model

Heterogeneous version Nutshell

Appendix

2 a a 50 of 65

Heterogeneous case

Next: Determine slope of fixed point curve at critical point p_a .

Expand fixed point equation around $(p, \phi^*) = (p_c, 0).$

 \red{slope} Find slope depends on $(P_1 - P_2/2)^{[6]}$ (see Appendix).

Behavior near fixed point depends on whether this slope is

- 1. positive: $P_1 > P_2/2$ (continuous phase transition)
- 2. negative: $P_1 < P_2/2$ (discontinuous phase transition)
- Now find three basic universal classes of contagion models ...

Pocs @pocsvox

Generalized Contagion

Introduction

Independent Interaction models

Interdependent interaction

Generalized Model

Heterogeneous version

Nutshell

Appendix

Heterogeneous case

Example configuration:

- Dose sizes are lognormally distributed with mean 1 and variance 0.433.
- Thresholds are uniformly set at
 - 1. $d_{*} = 0.5$
 - 2. $d_* = 1.6$
 - 3. $d_* = 3$
- Spread of dose sizes matters, details are not important.

Pocs @pocsvox

Generalized Contagion

Introduction

Independent Interaction models

Interdependent interaction

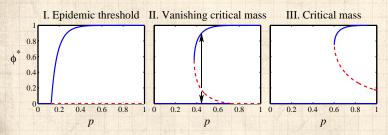
Generalized Model

Heterogeneous version

Nutshell

Appendix

Three universal classes



Epidemic threshold:

$$P_1>P_2/2$$
 , $p_c=1/(TP_1)<1$

Vanishing critical mass:

 $P_1 < P_2/2$

 $p_c = 1/(TP_1) < 1$ Pure critical mass:

 $P_1 < P_2/2$, $p_c = 1/(TP_1) > 1$

Pocs @pocsvox

Generalized Contagion

Introduction

Independent Interaction models

Interdependent interaction

Generalized Model

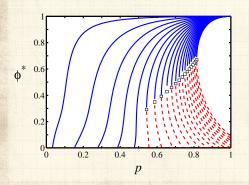
Heterogeneous version

Nutshell

Appendix

Heterogeneous case

Now allow r < 1:



 II-III transition generalizes: $p_c=1/[P_1(T+\tau)]$ where $\tau=1/r-1=$ expected recovery time

I-II transition less pleasant analytically.

PoCS @pocsvox

Generalized Contagion

Introduction

Independent Interaction models

Interdependent interaction models

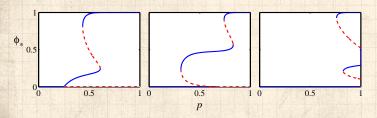
Generalized Model Homogeneous version

Heterogeneous version

Nutshell

Appendix

More complicated models



Due to heterogeneity in individual thresholds.

Three classes based on behavior for small seeds.

Same model classification holds: I, II, and III.

PoCS @pocsvox

Generalized Contagion

Introduction

Independent Interaction models

Interdependent interaction models

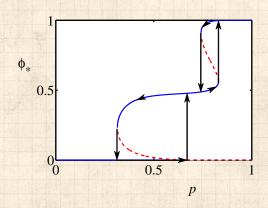
Generalized Model Homogeneous version

Heterogeneous version

Nutshell

Appendix

Hysteresis in vanishing critical mass models



PoCS @pocsvox

Generalized Contagion

Introduction

Independent Interaction models

Interdependent interaction

Generalized Model

Heterogeneous version

Nutshell

Appendix

Nutshell (one half)

Memory is a natural ingredient.

Three universal classes of contagion processes:

I. Epidemic Threshold II. Vanishing Critical Mass III. Critical Mass

Dramatic changes in behavior possible.

To change kind of model: 'adjust' memory, recovery, fraction of vulnerable individuals (T, r, ρ, ρ) P_1 , and/or P_2).

To change behavior given model: 'adjust' probability of exposure (p) and/or initial number infected (ϕ_0).

Pocs @pocsvox

Generalized Contagion

Introduction

Independent

Interaction models

Interdependent interaction

Generalized Model

Nutshell

Appendix

Nutshell (other half)

Single seed infects others if $pP_1(T+\tau) > 1$.

Key quantity: $p_c = 1/[P_1(T+\tau)]$

 \clubsuit If $p_c < 1 \Rightarrow$ contagion can spread from single seed.

Depends only on:

1. System Memory $(T + \tau)$.

2. Fraction of highly vulnerable individuals (P_1).

Arr Details unimportant: Many threshold and dose distributions give same P_k .

Another example of a model where vulnerable/gullible population may be more important than a small group of super-spreaders or influentials.

PoCS @pocsvox

Generalized Contagion

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model Homogeneous version

Nutshell

Nutshell

Appendix

Appendix: Details for Class I-II transition:

$$\begin{split} \phi^* &= \sum_{k=1}^T \binom{T}{k} P_k (p\phi^*)^k (1-p\phi^*)^{T-k}, \\ &= \sum_{k=1}^T \binom{T}{k} P_k (p\phi^*)^k \sum_{j=0}^{T-k} \binom{T-k}{j} (-p\phi^*)^j, \\ &= \sum_{k=1}^T \sum_{j=0}^{T-k} \binom{T}{k} \binom{T-k}{j} P_k (-1)^j (p\phi^*)^{k+j}, \\ &= \sum_{m=1}^T \sum_{k=1}^m \binom{T}{k} \binom{T-k}{m-k} P_k (-1)^{m-k} (p\phi^*)^m, \\ &= \sum_{m=1}^T C_m (p\phi^*)^m \end{split}$$

PoCS @pocsvox

Generalized Contagion

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model Homogeneous ver

Heterogeneous version

Nutshell

Appendix

Appendix: Details for Class I-II transition:

$$C_m = (-1)^m \binom{T}{m} \sum_{k=1}^m (-1)^k \binom{m}{k} P_k,$$

since

Pocs @pocsvox

Generalized Contagion

Introduction

Independent Interaction models

Interdependent interaction

Generalized Model

Nutshell

Appendix

Appendix: Details for Class I-II transition:

Pocs @pocsvox

Generalized Contagion

Linearization gives

$$\phi^* \simeq C_1 p \phi^* + C_2 p_c^2 {\phi^*}^2.$$

where
$$C_1=TP_1(=1/p_c)$$
 and $C_2={T\choose 2}(-2P_1+P_2).$

 \Leftrightarrow Using $p_c = 1/(TP_1)$:

$$\phi^* \simeq \frac{C_1}{C_2 p_c^2} (p-p_c) = \frac{T^2 P_1^3}{(T-1)(P_1-P_2/2)} (p-p_c).$$

Sign of derivative governed by $P_1 - P_2/2$.

Introduction

Independent Interaction models

Interdependent interaction

Generalized Model

Nutshell

Appendix

References I

[1] F. Bass.A new product growth model for consumer durables.

Manage. Sci., 15:215-227, 1969. pdf

- [2] C. Castillo-Chavez and B. Song.

 Models for the Transmission Dynamics of Fanatic
 Behaviors, volume 28, chapter 7, pages 155–172.

 SIAM, 2003.
- [3] D. J. Daley and D. G. Kendall. Epidemics and rumours.

 Nature, 204:1118, 1964. pdf
- [4] D. J. Daley and D. G. Kendall.Stochastic rumours.J. Inst. Math. Appl., 1:42–55, 1965.

PoCS @pocsvox

Generalized Contagion

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model

Homogeneous version
Heterogeneous version

Nutshell

Appendix

References II

[5] P. S. Dodds and D. J. Watts. Universal behavior in a generalized model of contagion. Phys. Rev. Lett., 92:218701, 2004. pdf

[6] P. S. Dodds and D. J. Watts. A generalized model of social and biological contagion. J. Theor. Biol., 232:587–604, 2005. pdf

[7] W. Goffman and V. A. Newill.

Generalization of epidemic theory: An application to the transmission of ideas.

Nature, 204:225–228, 1964. pdf

▼

PoCS @pocsvox

Generalized Contagion

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model

Homogeneous version Heterogeneous version

Nutshell

Appendix

References III

[8] W. O. Kermack and A. G. McKendrick. A contribution to the mathematical theory of epidemics.

Proc. R. Soc. Lond. A, 115:700-721, 1927. pdf

[9] W. O. Kermack and A. G. McKendrick. A contribution to the mathematical theory of epidemics. III. Further studies of the problem of endemicity.

Proc. R. Soc. Lond. A, 141(843):94–122, 1927. pdf ✓

[10] W. O. Kermack and A. G. McKendrick. Contributions to the mathematical theory of epidemics. II. The problem of endemicity. Proc. R. Soc. Lond. A, 138(834):55–83, 1927. pdf PoCS @pocsvox

Generalized Contagion

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model

Homogeneous version
Heterogeneous version

Nutshell

Appendix

References IV

[11] J. D. Murray. Mathematical Biology. Springer, New York, Third edition, 2002.

[12] S. H. Strogatz. Nonlinear Dynamics and Chaos. Addison Wesley, Reading, Massachusetts, 1994.

Pocs @pocsvox

Generalized Contagion

Introduction

Independent Interaction models

Interdependent interaction

Generalized Model

Nutshell

Appendix

