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Imagine a single random walker moving around i
on a network.

At t = 0, start walker at node j and take time to be
discrete.
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Imagine a single random walker moving around i
on a network.

At t = 0, start walker at node 5 and take time to be
discrete.

Q: What's the long term probability distribution for
where the walker will be?
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Imagine a single random walker moving around i
on a network.

At t = 0, start walker at node 5 and take time to be
discrete.

Q: What's the long term probability distribution for
where the walker will be?

Define p,(t) as the probability that at time step ¢,
our walker is at node i.
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Imagine a single random walker moving around i
on a network.

At t = 0, start walker at node 5 and take time to be
discrete.

Q: What's the long term probability distribution for
where the walker will be?

Define p,(t) as the probability that at time step ¢,
our walker is at node i.

We want to characterize the evolution of p(¢).
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Imagine a single random walker moving around i
on a network.

At t = 0, start walker at node 5 and take time to be
discrete.

Q: What's the long term probability distribution for
where the walker will be?

Define p,(t) as the probability that at time step ¢,
our walker is at node i.

We want to characterize the evolution of p(¢).
First task: connect p(¢ + 1) to p(t).
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Imagine a single random walker moving around i
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At t = 0, start walker at node 5 and take time to be
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Q: What's the long term probability distribution for
where the walker will be?

Define p,(t) as the probability that at time step ¢,
our walker is at node i.

We want to characterize the evolution of p(¢).
First task: connect p(¢ + 1) to p(t).

Let's call our walker Barry. 5 PoCS
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Imagine a single random walker moving around i
on a network.

At t = 0, start walker at node 5 and take time to be
discrete.

Q: What's the long term probability distribution for
where the walker will be?

Define p,(t) as the probability that at time step ¢,
our walker is at node i.

We want to characterize the evolution of p(¢).
First task: connect p(¢ + 1) to p(t).
Let's call our walker Barry.

Unfortunately for Barry, he lives on a high
dimensional graph and is far from home.
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Imagine a single random walker moving around i
on a network.

At t = 0, start walker at node 5 and take time to be
discrete.

Q: What's the long term probability distribution for
where the walker will be?

Define p,(t) as the probability that at time step ¢,
our walker is at node i.

We want to characterize the evolution of p(¢).
First task: connect p(¢ + 1) to p(t).
Let's call our walker Barry.

Unfortunately for Barry, he lives on a high
dimensional graph and is far from home.

Worse still: Barry is texting.

& PoCS



Where |S Ba rry? The PoCSverse

Diffusion
7 of 11

Consider simple undirected, ergodic (strongly Rafklofs walkabl
connected) networks. networks

@ PoCS



Where is Barry? Difusion . &,

7 of 11

Consider simple undirected, ergodic (strongly Random walks on
connected) networks. netiete

As usual, represent network by adjacency matrix

A where

a;; = 1if i has an edge leading to j,
a;; = 0 otherwise.
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Consider simple undirected, ergodic (strongly Random walks on
connected) networks. netiete

As usual, represent network by adjacency matrix

A where

a;; = 1if i has an edge leading to j,
a;; = 0 otherwise.

Barry is at node j at time ¢ with probability p;(t).
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Consider simple undirected, ergodic (strongly Random walks on
connectedymetwarks, 7 | | 7 TEESERE AETTARER T 1 i
As usual, represent network by adjacency matrix
A where
a;; = 1if i has an edge leading to j,
a;; = 0 otherwise.

Barry is at node j at time ¢ with probability p;(t).
In the next time step, he randomly lurches toward
one of j's neighbors.
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Consider simple undirected, ergodic (strongly Random walks on
corpectedymetworks, " || 7 ToETERE N A ] o] A
As usual, represent network by adjacency matrix
A where
a;; = 1if i has an edge leading to j,
a;; = 0 otherwise.

Barry is at node j at time ¢ with probability p;(t).
In the next time step, he randomly lurches toward
one of j's neighbors.

Barry arrives at node i from node j with
probability kij if an edge connects j to i.

@< PoCS



Where is Barry? Difusion . &,
7 of 11

Consider simple undirected, ergodic (strongly Random walks on
corpectedymetworks, " || 7 ToETERE N A ] o] A
As usual, represent network by adjacency matrix
A where
a;; = 1if i has an edge leading to j,
a;; = 0 otherwise.
Barry is at node j at time ¢ with probability p;(t).
In the next time step, he randomly lurches toward
one of j's neighbors.

Barry arrives at node i from node j with
probability ;- if an edge connects j to i.

Equatlon—W|se. 5 POCS
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where k; is j's degree.
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Consider simple undirected, ergodic (strongly Random walks on
corpectedymetworks, " || 7 ToETERE N A ] o] A
As usual, represent network by adjacency matrix
A where
a;; = 1if i has an edge leading to j,
a;; = 0 otherwise.
Barry is at node j at time ¢ with probability p;(t).
In the next time step, he randomly lurches toward
one of j's neighbors.

Barry arrives at node i from node j with
probability ;- if an edge connects j to i.

Equatlon—W|se. 5 POCS
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{(t+1) Z}? iP5 (t
=i

where k; is j's degree. Note: k; = Lo
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Excellent observation: The same equation applies
for stuff moving around a network, such that at
each time step all material at node i is sent to its
neighbors.
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Excellent observation: The same equation applies
for stuff moving around a network, such that at
each time step all material at node i is sent to its
neighbors.

x,;(t) = amount of stuff at node i at time ¢.

(3
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x,;(t) = amount of stuff at node i at time ¢.
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Excellent observation: The same equation applies
for stuff moving around a network, such that at
each time step all material at node i is sent to its
neighbors.

x,;(t) = amount of stuff at node i at time ¢.

Random walking is equivalent to diffusion (Z. % PoCS
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Linear algebra-based excitement: =~ =
pi(t+1) =37 | aj;3-p,(t) is more usefully viewed

=% J
as

pt+1) = ATK15(t)

where [K ;] = [§,;k;] has node degrees on the
main diagonal and zeros everywhere else.
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pi(t+1) =37 | aj;3-p,(t) is more usefully viewed

St i
as

Bt+1) = ATK'p(t)

where [K ;] = [§,;k;] has node degrees on the
main diagonal and zeros everywhere else.

So... we need to find the dominant eigenvalue of
ATl
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Linear algebra-based excitement: =~ =
pi(t+1) =37 | aj;3-p,(t) is more usefully viewed

=% J
as

Bt +1) = ATK15(1)
where [K ;] = [§,;k;] has node degrees on the
main diagonal and zeros everywhere else.
So... we need to find the dominant eigenvalue of
At
Expect this eigenvalue will be 1 (doesn't make
sense for total probability to change).
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pi(t+1) =37 | aj;3-p,(t) is more usefully viewed

=% J
as

Bt +1) = ATK15(1)
where [K ;] = [§,;k;] has node degrees on the
main diagonal and zeros everywhere else.
So... we need to find the dominant eigenvalue of
At
Expect this eigenvalue will be 1 (doesn't make
sense for total probability to change).

The corresponding eigenvector will be the limiting 5 POCS
probability distribution (or invariant measure). ‘
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Linear algebra-based excitement: =~ =
pi(t+1) =37 | aj;3-p,(t) is more usefully viewed

=% J
as

Bt +1) = ATK15(1)
where [K ;] = [§,;k;] has node degrees on the
main diagonal and zeros everywhere else.
So... we need to find the dominant eigenvalue of
At
Expect this eigenvalue will be 1 (doesn't make
sense for total probability to change).

The corresponding eigenvector will be the limiting
probability distribution (or invariant measure).

Extra concerns: multiplicity of eigenvalue = 1, and
network connectedness.
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By inspection, we see that
- S
]KOO):“ﬁf‘Ejk
Zizl 2

satisfies p(o0o) = ATK~15(00) with eigenvalue 1.
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By Ihspection;we see that! = [t p L it | o WS

fxoo):“ﬁf“*%

Zizl kz
satisfies p(o0o) = ATK~15(00) with eigenvalue 1.
We will find Barry at node i with probability
proportional to its degree k,.
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By Ihspection;we see that! = [t p L it | o WS

1%00):“7744*%

Zizl kz
satisfies p(o0o) = ATK~15(00) with eigenvalue 1.
We will find Barry at node i with probability
proportional to its degree k,.

Beautiful implication: probability of finding Barry
travelling along any edge is uniform.
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By Ihspection;we see that! = [t p L it | o WS

B(o0) S kik
satisfies p(o0o) = ATK~15(00) with eigenvalue 1.
We will find Barry at node i with probability
proportional to its degree k,.
Beautiful implication: probability of finding Barry
travelling along any edge is uniform.
Diffusion in real space smooths things out.
&< PoCS
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By Ihspection;we see that! = [t p L it | o WS

p(o0) = ni%

Zizl kz
satisfies p(o0o) = ATK~15(00) with eigenvalue 1.
We will find Barry at node i with probability
proportional to its degree k,.

Beautiful implication: probability of finding Barry
travelling along any edge is uniform.

Diffusion in real space smooths things out.
On networks, uniformity occurs on edges. ®PoCS
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By Ihspection;we see that! = [t p L it | o WS

p(o0) = ni%

Zizl kz
satisfies p(o0o) = ATK~15(00) with eigenvalue 1.
We will find Barry at node i with probability
proportional to its degree k,.

Beautiful implication: probability of finding Barry
travelling along any edge is uniform.

Diffusion in real space smooths things out.
On networks, uniformity occurs on edges. ®PoCS

So in fact, diffusion in real space is about the
edges too but we just don't see that.
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Goodness: ATK ! is similar to a real symmetric
matrix if A = AT,
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Goodness: ATK ! is similar to a real symmetric
matrix if A = AT,

Consider the transformation M = K 1/2:

K2 Alipe =Tty 2 00 pe 2 A T2
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Goodness: ATK ! is similar to a real symmetric
matrix if A = AT,

Consider the transformation M = K 1/2:
K2 Alipe =Tty 2 00 pe 2 A T2
Since AT = A, we have

(K—I/QAK—l/Q)T e K_1/2AK_1/2.
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Goodness: ATK ! is similar to a real symmetric
matrix if A = AT,

Consider the transformation M = K 1/2:
K12 ATR-1K1/2 = K-1/2 AT-1/2.
Since AT = A, we have
(K—1/2AK—1/2)T _ K12 AR=1/2

Upshot: ATK—! = AK—! has real eigenvalues and

a complete set of orthogonal eigenvectors. % PoCS
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Goodness: ATK ! is similar to a real symmetric
matrix if A = AT,

Consider the transformation M = K 1/2:
K12 ATR-1K1/2 = K-1/2 AT-1/2.
Since AT = A, we have
(l(_1/214l(_1/2)T _ K12 AR=1/2

Upshot: ATK—! = AK—! has real eigenvalues and
a complete set of orthogonal eigenvectors.

Can also show that maximum eigenvalue
magnitude is indeed 1.
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