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Random walks on networks—basics:

 Imagine a single random walker moving around
on a network.

 At 𝑡 = 0, start walker at node 𝑗 and take time to be
discrete.

 Q: What’s the long term probability distribution for
where the walker will be?

 Define 𝑝𝑖(𝑡) as the probability that at time step 𝑡,
our walker is at node 𝑖.

 We want to characterize the evolution of ⃗𝑝(𝑡).
 First task: connect ⃗𝑝(𝑡 + 1) to ⃗𝑝(𝑡).
 Let’s call our walker Barry.
 Unfortunately for Barry, he lives on a high

dimensional graph and is far from home.
 Worse still: Barry is texting.

PoCS
@pocsvox

Diffusion

Random walks on
networks

.
.
.
.
.

.
5 of 9

Where is Barry?
 Consider simple undirected, ergodic (strongly

connected) networks.
 As usual, represent network by adjacency matrix𝐴 where𝑎𝑖𝑗 = 1 if 𝑖 has an edge leading to 𝑗,𝑎𝑖𝑗 = 0 otherwise.
 Barry is at node 𝑗 at time 𝑡 with probability 𝑝𝑗(𝑡).
 In the next time step, he randomly lurches toward

one of 𝑗’s neighbors.
 Barry arrives at node 𝑖 from node 𝑗 with

probability 1𝑘𝑗 if an edge connects 𝑗 to 𝑖.
 Equation-wise:𝑝𝑖(𝑡 + 1) = 𝑛∑𝑗=1 1𝑘𝑗 𝑎𝑗𝑖𝑝𝑗(𝑡).

where 𝑘𝑗 is 𝑗’s degree. Note: 𝑘𝑖 = ∑𝑛𝑗=1 𝑎𝑖𝑗.
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Inebriation and diffusion:

 Excellent observation: The same equation applies
for stuff moving around a network, such that at
each time step all material at node 𝑖 is sent to its
neighbors.

 𝑥𝑖(𝑡) = amount of stuff at node 𝑖 at time 𝑡.
 𝑥𝑖(𝑡 + 1) = 𝑛∑𝑗=1 1𝑘𝑗 𝑎𝑗𝑖𝑥𝑗(𝑡).
 Random walking is equivalent to diffusion.

PoCS
@pocsvox

Diffusion

Random walks on
networks

.
.
.
.
.

.
7 of 9

Where is Barry?

 Linear algebra-based excitement:𝑝𝑖(𝑡 + 1) = ∑𝑛𝑗=1 𝑎𝑗𝑖 1𝑘𝑗 𝑝𝑗(𝑡) is more usefully viewed
as ⃗𝑝(𝑡 + 1) = 𝐴T𝐾−1 ⃗𝑝(𝑡)
where [𝐾𝑖𝑗] = [𝛿𝑖𝑗𝑘𝑖] has node degrees on the
main diagonal and zeros everywhere else.

 So... we need to find the dominant eigenvalue of𝐴T𝐾−1.
 Expect this eigenvalue will be 1 (doesn’t make

sense for total probability to change).
 The corresponding eigenvector will be the limiting

probability distribution (or invariant measure).
 Extra concerns: multiplicity of eigenvalue = 1, and

network connectedness.
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Where is Barry?

 By inspection, we see that⃗𝑝(∞) = 1∑𝑛𝑖=1 𝑘𝑖 �⃗�
satisfies ⃗𝑝(∞) = 𝐴T𝐾−1 ⃗𝑝(∞) with eigenvalue 1.

 We will find Barry at node 𝑖 with probability
proportional to its degree 𝑘𝑖.

 Beautiful implication: probability of finding Barry
travelling along any edge is uniform.

 Diffusion in real space smooths things out.
 On networks, uniformity occurs on edges.
 So in fact, diffusion in real space is about the

edges too but we just don’t see that.
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Other pieces:

 Goodness: 𝐴T𝐾−1 is similar to a real symmetric
matrix if 𝐴 = 𝐴T.

 Consider the transformation 𝑀 = 𝐾−1/2:𝐾−1/2𝐴T𝐾−1𝐾1/2 = 𝐾−1/2𝐴T𝐾−1/2.
 Since 𝐴T = 𝐴, we have(𝐾−1/2𝐴𝐾−1/2)T = 𝐾−1/2𝐴𝐾−1/2.
 Upshot: 𝐴T𝐾−1 = 𝐴𝐾−1 has real eigenvalues and

a complete set of orthogonal eigenvectors.
 Can also show that maximum eigenvalue

magnitude is indeed 1.


