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Contagion models

Some large questions concerning network
contagion:
1. For a given spreading mechanism on a given

network, what’s the probability that there will be
global spreading?

2. If spreading does take off, how far will it go?
3. How do the details of the network affect the

outcome?
4. How do the details of the spreading mechanism

affect the outcome?
5. What if the seed is one or many nodes?

 Next up: We’ll look at some fundamental kinds of
spreading on generalized random networks.
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Spreading mechanisms

uninfected
infected

 General spreading
mechanism:
State of node 𝑖
depends on history of𝑖 and 𝑖’s neighbors’
states.

 Doses of entity may be
stochastic and
history-dependent.

 May have multiple,
interacting entities
spreading at once.
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Spreading on Random Networks

 For random networks, we know local structure is
pure branching.

 Successful spreading is ∴ contingent on single
edges infecting nodes.
Success Failure:

 Focus on binary case with edges and nodes either
infected or not.

 First big question: for a given network and
contagion process, can global spreading from a
single seed occur?
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Global spreading condition
 We need to find: [5]

R = the average # of infected edges that one
random infected edge brings about.

 Call R the gain ratio.
 Define 𝐵𝑘1 as the probability that a node of

degree 𝑘 is infected by a single infected edge.


R = ∞∑𝑘=0 𝑘𝑃𝑘⟨𝑘⟩⏟
prob. of
connecting to
a degree 𝑘 node

• (𝑘 − 1)⏟
# outgoing
infected
edges

• 𝐵𝑘1⏟
Prob. of
infection

+ ∞∑𝑘=0 ⏞𝑘𝑃𝑘⟨𝑘⟩ • 0⏟
# outgoing
infected
edges

• (1 − 𝐵𝑘1)⏟⏟⏟⏟⏟
Prob. of
no infection
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Global spreading condition

 Our global spreading condition is then:

R = ∞∑𝑘=0 𝑘𝑃𝑘⟨𝑘⟩ • (𝑘 − 1) • 𝐵𝑘1 > 1.
 Case 1: If 𝐵𝑘1 = 1 then

R = ∞∑𝑘=0 𝑘𝑃𝑘⟨𝑘⟩ • (𝑘 − 1) = ⟨𝑘(𝑘 − 1)⟩⟨𝑘⟩ > 1.
 Good: This is just our giant component condition

again.
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Global spreading condition
 Case 2: If 𝐵𝑘1 = 𝛽 < 1 then

R = ∞∑𝑘=0 𝑘𝑃𝑘⟨𝑘⟩ • (𝑘 − 1) • 𝛽 > 1.
 A fraction (1-𝛽) of edges do not transmit infection.
 Analogous phase transition to giant component

case but critical value of ⟨𝑘⟩ is increased.
 Aka bond percolation.
 Resulting degree distribution ̃𝑃𝑘:̃𝑃𝑘 = 𝛽𝑘 ∞∑𝑖=𝑘 (𝑖𝑘)(1 − 𝛽)𝑖−𝑘𝑃𝑖.

Insert question from assignment 9

 We can show 𝐹𝑃̃ (𝑥) = 𝐹𝑃 (𝛽𝑥 + 1 − 𝛽).
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Global spreading condition

 Cases 3, 4, 5, ...: Now allow 𝐵𝑘1 to depend on 𝑘
 Asymmetry: Transmission along an edge depends

on node’s degree at other end.
 Possibility: 𝐵𝑘1 increases with 𝑘... unlikely.
 Possibility: 𝐵𝑘1 is not monotonic in 𝑘... unlikely.
 Possibility: 𝐵𝑘1 decreases with 𝑘... hmmm.
 𝐵𝑘1 ↘ is a plausible representation of a simple

kind of social contagion.
 The story:

More well connected people are harder to
influence.
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Global spreading condition

 Example: 𝐵𝑘1 = 1/𝑘.


R = ∞∑𝑘=1 𝑘𝑃𝑘⟨𝑘⟩ • (𝑘 − 1) • 𝐵𝑘1 = ∞∑𝑘=1(𝑘 − 1) • 𝑘𝑃𝑘⟨𝑘⟩ • 1𝑘= ∞∑𝑘=1 𝑃𝑘⟨𝑘⟩ • (𝑘 − 1) = 1 − 1 − 𝑃0⟨𝑘⟩
 Since R is always less than 1, no spreading can

occur for this mechanism.
 Decay of 𝐵𝑘1 is too fast.
 Result is independent of degree distribution.
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Global spreading condition

 Example: 𝐵𝑘1 = 𝐻( 1𝑘 − 𝜙)
where 0 < 𝜙 ≤ 1 is a threshold and 𝐻 is the
Heaviside function.

 Infection only occurs for nodes with low degree.
 Call these nodes vulnerables:

they flip when only one of their friends flips.


R = ∞∑𝑘=1 𝑘𝑃𝑘⟨𝑘⟩ •(𝑘−1)•𝐵𝑘1 = ∞∑𝑘=1 𝑘𝑃𝑘⟨𝑘⟩ •(𝑘−1)•𝐻 (1𝑘 − 𝜙)
= ⌊ 1𝜙 ⌋∑𝑘=1(𝑘 − 1) • 𝑘𝑃𝑘⟨𝑘⟩ where ⌊⋅⌋ means floor.
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Global spreading condition

 The uniform threshold model global spreading
condition:

R = ⌊ 1𝜙 ⌋∑𝑘=1(𝑘 − 1) • 𝑘𝑃𝑘⟨𝑘⟩ > 1.
 As 𝜙 → 1, all nodes become resilient and 𝑟 → 0.
 As 𝜙 → 0, all nodes become vulnerable and the

contagion condition matches up with the giant
component condition.

 Key: If we fix 𝜙 and then vary ⟨𝑘⟩, we may see two
phase transitions.

 Added to our standard giant component
transition, we will see a cut off in spreading as
nodes become more connected.
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Virtual contagion: Corrupted Blood, a 2005 virtual
plague in World of Warcraft:
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Social Contagion

Some important models (recap from CSYS 300)
 Tipping models—Schelling (1971) [11, 12, 13]

 Simulation on checker boards.
 Idea of thresholds.

 Threshold models—Granovetter (1978) [8]

 Herding models—Bikhchandani et al. (1992) [1, 2]
 Social learning theory, Informational cascades,...
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Threshold model on a network

Original work:

A simple model of global cascades on
random networks
Duncan J. Watts*

Department of Sociology, Columbia University New York, NY 10027

Communicated by Murray Gell-Mann, Santa Fe Institute, Santa Fe, NM, February 14, 2002 (received for review May 29, 2001)

The origin of large but rare cascades that are triggered by small initial

shocks is a phenomenon that manifests itself as diversely as cultural

fads, collective action, the diffusion of norms and innovations, and

cascading failures in infrastructure and organizational networks. This

paper presents a possible explanation of this phenomenon in terms

of a sparse, random network of interacting agents whose decisions

are determined by the actions of their neighbors according to a simple

threshold rule. Two regimes are identified in which the network is

susceptible to very large cascades—herein called global cascades—

that occur very rarely. When cascade propagation is limited by the

connectivity of the network, a power law distribution of cascade sizes

is observed, analogous to the cluster size distribution in standard

percolation theory and avalanches in self-organized criticality. But

when the network is highly connected, cascade propagation is limited

instead by the local stability of the nodes themselves, and the size

distribution of cascades is bimodal, implying a more extreme kind of

instability that is correspondingly harder to anticipate. In the first

regime, where the distribution of network neighbors is highly

skewed, it is found that the most connected nodes are far more

likely than average nodes to trigger cascades, but not in the second

regime. Finally, it is shown that heterogeneity plays an ambiguous

role in determining a system’s stability: increasingly heteroge-

neous thresholds make the system more vulnerable to global

cascades; but an increasingly heterogeneous degree distribution

makes it less vulnerable.

How is it that small initial shocks can cascade to affect or disrupt
large systems that have proven stable with respect to similar

disturbances in the past? Why do some books, movies, and albums
emerge out of obscurity, and with small marketing budgets, to
become popular hits (1), when many a priori indistinguishable
efforts fail to rise above the noise? Why does the stock market
exhibit occasional large fluctuations that cannot be traced to the
arrival of any correspondingly significant piece of information (2)?
How do large, grassroots social movements start in the absence of
centralized control or public communication (3)?

These phenomena are all examples of what economists call
information cascades (ref. 4; but which are herein called simply
cascades), during which individuals in a population exhibit
herd-like behavior because they are making decisions based on
the actions of other individuals rather than relying on their own
information about the problem. Although they are generated by
quite different mechanisms, cascades in social and economic
systems (3–6) are similar to cascading failures in physical infra-
structure networks (7, 8) and complex organizations (9) in that
initial failures increase the likelihood of subsequent failures,
leading to eventual outcomes that, like the August 10, 1996
cascading failure in the western United States power transmis-
sion grid (8), are extremely difficult to predict, even when the
properties of the individual components are well understood.
Not as newsworthy, but just as important as the cascades
themselves, is that the very same systems routinely display great
stability in the presence of continual small failures and shocks
that are at least as large as the shocks that ultimately generate
a cascade. Cascades can therefore be regarded as a specific
manifestation of the robust yet fragile nature of many complex
systems (10): a system may appear stable for long periods of time

and withstand many external shocks (robust), then suddenly and
apparently inexplicably exhibit a large cascade (fragile).

Although the social, economic, and physical mechanisms respon-
sible for the occurrence of cascades are complex and may vary
widely across systems and even between particular cascades in the
same system, it is proposed in this paper that some generic features
of cascades can be explained in terms of the connectivity of the
network by which influence is transmitted between individuals.
Specifically, this paper addresses the set of qualitative observations
that (i) global (i.e., very large) cascades can be triggered by
exogenous events (shocks) that are very small relative to the system
size, and (ii) global cascades occur rarely relative to the number of
shocks that the system receives, and may be triggered by shocks that
are a priori indistinguishable from shocks that do not.

Model Motivation: Binary Decisions with Externalities

This model is motivated by considering a population of individuals
each of whom must decide between two alternative actions, and
whose decisions depend explicitly on the actions of other members
of the population. In social and economic systems, decision makers
often pay attention to each other either because they have limited
information about the problem itself or limited ability to process
even the information that is available (6). When deciding which
movie (11) or restaurant (12) to visit, we often have little informa-
tion with which to evaluate the alternatives, so frequently we rely on
the recommendation of friends, or simply pick the movie or
restaurant to which most people are going. Even when we have
access to plentiful information, such as when we evaluate new
technologies, risky financial assets, or job candidates, we often lack
the ability to make sense of it; hence, again we rely on the advice
of trusted friends, colleagues, or advisors. In other decision making
scenarios, such as in collective action problems (3) or social
dilemmas (13), an individual’s payoff is an explicit function of the
actions of others. And in other problems still, involving say the
diffusion of a new technology (14), the utility of a single additional
unit—a fax machine for example—may depend on the number of
units that have already been sold. In all these problems, therefore,
regardless of the details, individual decision makers have an incen-
tive to pay attention to the decisions of others.

In economic terms, this entire class of problems is known
generically as binary decisions with externalities (6). As simplistic as
it appears, a binary decision framework is relevant to surprisingly
complex problems. To take an extreme example, the creation of a
political coalition or an international treaty is unquestionably a
complex, multifaceted process with many potential outcomes. But
once the coalition exists or the treaty has been drafted, the decision
of whether or not to join is essential a binary one. Similar reasoning
applies to a firm’s choice between two technologies, or an individ-
ual’s choice between two neighborhood restaurants—the factors
involved in the decision may be many, but the decision itself can be
regarded as binary.

Both the detailed mechanisms involved in binary decision prob-
lems, and also the origins of the externalities can vary widely across
specific problems. Nevertheless, in many applications that have
been examined in the economics and sociology literature—for

*E-mail: djw24@columbia.edu.

5766–5771 � PNAS � April 30, 2002 � vol. 99 � no. 9 www.pnas.org�cgi�doi�10.1073�pnas.082090499

“A simple model of global cascades on
random networks”
Duncan J. Watts,
Proc. Natl. Acad. Sci., 99, 5766–5771,
2002. [15]

 Mean field Granovetter model → network model
 Individuals now have a limited view of the world
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Threshold model on a network

 Interactions between individuals now represented
by a network

 Network is sparse
 Individual 𝑖 has 𝑘𝑖 contacts
 Influence on each link is reciprocal and of unit

weight
 Each individual 𝑖 has a fixed threshold 𝜙𝑖
 Individuals repeatedly poll contacts on network
 Synchronous, discrete time updating
 Individual 𝑖 becomes active when

number of active contacts 𝑎𝑖 ≥ 𝜙𝑖𝑘𝑖
 Activation is permanent (SI)
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Threshold model on a network

t=1 t=2 t=3

c

a

b
c

e

a

b

e

a

b
c

e

d dd

 All nodes have threshold 𝜙 = 0.2.
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The most gullible

Vulnerables:
 Recall definition: individuals who can be activated

by just one contact being active are vulnerables.
 The vulnerability condition for node 𝑖: 1/𝑘𝑖 ≥ 𝜙𝑖.
 Means # contacts 𝑘𝑖 ≤ ⌊1/𝜙𝑖⌋.
 Key: For global spreading events (cascades) on

random networks, must have a global component
of vulnerables [15]

 For a uniform threshold 𝜙, our global spreading
condition tells us when such a component exists:

R = ⌊ 1𝜙 ⌋∑𝑘=1 𝑘𝑃𝑘⟨𝑘⟩ • (𝑘 − 1) > 1.
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Example random network structure:

 Ωcrit = critical
mass = global
vulnerable
component

 Ωtrig =
triggering
component

 Ωfinal =
potential
extent of
spread

 Ω = entire
networkΩcrit ⊂ Ωtrig; Ωcrit ⊂ Ωfinal; and Ωtrig, Ωfinal ⊂ Ω.

PoCS
@pocsvox

Contagion

Basic Contagion
Models

Global spreading
condition

Social Contagion
Models
Network version

All-to-all networks

Theory
Spreading possibility

Spreading probability

Physical explanation

Final size

References

.
.
.
.
.

.
27 of 86

Global spreading events on random
networks [15]

𝑧 = ⟨𝑘⟩

 Top curve: final fraction
infected if successful.

 Middle curve: chance of
starting a global
spreading event
(cascade).

 Bottom curve: fractional
size of vulnerable
subcomponent. [15]

 Global spreading events occur only if size of vulnerable
subcomponent > 0.

 System is robust-yet-fragile just below upper
boundary [3, 4, 14]

 ‘Ignorance’ facilitates spreading.
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Cascades on random networks

 Above lower phase
transition

 Just below upper
phase transition
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Cascades on random networks

( n.b., 𝑧 = ⟨𝑘⟩)
 Time taken for cascade

to spread through
network. [15]

 Two phase transitions.

 Largest vulnerable component = critical mass.
 Now have endogenous mechanism for spreading

from an individual to the critical mass and then
beyond.
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Cascade window for random networks

0.05 0.1 0.15 0.2 0.25
0

5

10

15

20

25

30

φ

z

cascades

no cascades

( n.b., 𝑧 = ⟨𝑘⟩)
 Outline of cascade window for random networks.
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Cascade window for random networks

1 2 3 4 5 6 7
0

0.2

0.4

0.6

0.8

1

z

 〈 
S 

〉

Example networks

Possible
No

Cascades

Low influence

Fraction of
Vulnerables

cascade size
Final

Cascades
No Cascades

Cascades
No

High influence

0.05 0.1 0.15 0.2 0.25
0

5

10

15

20

25

30

φ

z

cascades

no cascades

= uniform individual threshold

in
fl

ue
nc

e 

PoCS
@pocsvox

Contagion

Basic Contagion
Models

Global spreading
condition

Social Contagion
Models
Network version

All-to-all networks

Theory
Spreading possibility

Spreading probability

Physical explanation

Final size

References

.
.
.
.
.

.
33 of 86

Social Contagion

Granovetter’s Threshold model—recap

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

φ
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ob

(a
ct

iv
at
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n)

 Assumes deterministic
response functions

 𝜙∗ = threshold of an
individual.

 𝑓(𝜙∗) = distribution of
thresholds in a population.

 𝐹(𝜙∗) = cumulative
distribution = ∫𝜙∗𝜙′∗=0 𝑓(𝜙′∗)d𝜙′∗

 𝜙𝑡 = fraction of people
‘rioting’ at time step 𝑡.
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Social Sciences—Threshold models

 At time 𝑡 + 1, fraction rioting = fraction with𝜙∗ ≤ 𝜙𝑡.
 𝜙𝑡+1 = ∫𝜙𝑡0 𝑓(𝜙∗)d𝜙∗ = 𝐹(𝜙∗)|𝜙𝑡0 = 𝐹(𝜙𝑡)
 ⇒ Iterative maps of the unit interval [0, 1].
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Social Sciences—Threshold models

Action based on perceived behavior of others.
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 Two states: S and I
 Recover now possible (SIS)
 𝜙 = fraction of contacts ‘on’ (e.g., rioting)
 Discrete time, synchronous update (strong

assumption!)
 This is a Critical mass model
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Social Sciences—Threshold models
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 Example of single stable state model
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Social Sciences—Threshold models

Implications for collective action theory:
1. Collective uniformity ⇏ individual uniformity
2. Small individual changes ⇒ large global changes

Next:
 Connect mean-field model to network model.
 Single seed for network model: 1/𝑁 → 0.
 Comparison between network and mean-field

model sensible for vanishing seed size for the
latter.
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All-to-all versus random networks
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Threshold contagion on random networks

Three key pieces to describe analytically:
1. The fractional size of the largest subcomponent of

vulnerable nodes, 𝑆vuln.
2. The chance of starting a global spreading event,𝑃trig = 𝑆trig.
3. The expected final size of any successful spread,𝑆.

 n.b., the distribution of 𝑆 is almost always
bimodal.
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Example random network structure:
 Ωcrit = Ωvuln =

critical mass =
global
vulnerable
component

 Ωtrig =
triggering
component

 Ωfinal =
potential
extent of
spread

 Ω = entire
networkΩcrit ⊂ Ωtrig; Ωcrit ⊂ Ωfinal; and Ωtrig, Ωfinal ⊂ Ω.
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Threshold contagion on random networks

 First goal: Find the largest component of
vulnerable nodes.

 Recall that for finding the giant component’s size,
we had to solve:𝐹𝜋(𝑥) = 𝑥𝐹𝑃 (𝐹𝜌(𝑥)) and 𝐹𝜌(𝑥) = 𝑥𝐹𝑅 (𝐹𝜌(𝑥))

 We’ll find a similar result for the subset of nodes
that are vulnerable.

 This is a node-based percolation problem.
 For a general monotonic threshold distribution𝑓(𝜙), a degree 𝑘 node is vulnerable with probability𝐵𝑘1 = ∫1/𝑘0 𝑓(𝜙)d𝜙 .
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Threshold contagion on random networks

 We now have a generating function for the probability
that a randomly chosen node is vulnerable and has
degree 𝑘: 𝐹 (vuln)𝑃 (𝑥) = ∞∑𝑘=0 𝑃𝑘𝐵𝑘1𝑥𝑘.

 The generating function for friends-of-friends
distribution is similar to before:𝐹 (vuln)𝑅 (𝑥) = ∞∑𝑘=0 𝑘𝑃𝑘⟨𝑘⟩ 𝐵𝑘1𝑥𝑘−1

= d
d𝑥 𝐹 (vuln)𝑃 (𝑥)
d
d𝑥 𝐹𝑃 (𝑥)|𝑥=1 = d

d𝑥 𝐹 (vuln)𝑃 (𝑥)𝐹𝑅(1)
 Detail: We still have the underlying degree distribution

involved in the denominator.
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Threshold contagion on random networks
 Functional relations for component size g.f.’s are

almost the same …𝐹 (vuln)𝜋 (𝑥) = 1 − 𝐹 (vuln)𝑃 (1)⏟⏟⏟⏟⏟
central node
is not
vulnerable

+𝑥𝐹 (vuln)𝑃 (𝐹 (vuln)𝜌 (𝑥))
𝐹 (vuln)𝜌 (𝑥) = 1 − 𝐹 (vuln)𝑅 (1)⏟⏟⏟⏟⏟

first node
is not
vulnerable

+𝑥𝐹 (vuln)𝑅 (𝐹 (vuln)𝜌 (𝑥))
 Can now solve as before to find𝑆vuln = 1 − 𝐹 (vuln)𝜋 (1).
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Threshold contagion on random networks

 Second goal: Find probability of triggering largest
vulnerable component.

 Assumption is first node is randomly chosen.
 Same set up as for vulnerable component except

now we don’t care if the initial node is vulnerable
or not: 𝐹 (trig)𝜋 (𝑥) = 𝑥𝐹𝑃 (𝐹 (vuln)𝜌 (𝑥))𝐹 (vuln)𝜌 (𝑥) = 1 − 𝐹 (vuln)𝑅 (1) + 𝑥𝐹 (vuln)𝑅 (𝐹 (vuln)𝜌 (𝑥))

 Solve as before to find 𝑃trig = 𝑆trig = 1 − 𝐹 (trig)𝜋 (1).
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Physical derivation of possibility and probability
of global spreading:

 Possibility: binary indicator of phase. Global spreading
events are either possible or can never happen.

 For random networks, global spreading possibility is
understood as meaning a giant component of
vulnerable nodes exists.

 Next: what’s the probability that a randomly infected
node will cause a global spreading event?

 Call this 𝑃trig.

 As usual, it’s all about edges and we need to first
determine the probability that an infected edge leads
to a global spreading event.

 Call this 𝑄trig.

 Later: Generalize to more complex networks involving
assortativity of all kinds.
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Probability an infected edge leads to a global
spreading event:
 𝑄trig must satisfying a one-step recursion relation.
 Follow an infected edge and use three pieces:

1. Probability of reaching a degree 𝑘 node is𝑄𝑘 = 𝑘𝑃𝑘⟨𝑘⟩ .
2. The node reached is vulnerable with probability𝐵𝑘1.
3. At least one of the node’s outgoing edges leads to

a global spreading event = 1 - probability no edges
do so = 1 − (1 − 𝑄trig)𝑘−1.

 Put everything together and solve for 𝑄trig:𝑄trig = ∑𝑘 𝑘𝑃𝑘⟨𝑘⟩ • 𝐵𝑘1 • [1 − (1 − 𝑄trig)𝑘−1] .
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Good things about our equation for 𝑄trig:

𝑄trig = ∑𝑘 𝑘𝑃𝑘⟨𝑘⟩ •𝐵𝑘1•[1 − (1 − 𝑄trig)𝑘−1] = 𝑓(𝑄trig; 𝑃𝑘, 𝐵𝑘1)
 𝑄trig = 0 is always a solution.

 Spreading occurs if a second solution exists for which0 < 𝑄trig ≤ 1.
 Given 𝑃𝑘 and 𝐵𝑘1, we can use any kind of root finder

to solve for 𝑄trig, but …

 The function 𝑓 increases monotonically with 𝑄trig.

 We can therefore use an iterative cobwebbing
approach to find the solution:𝑄(𝑛+1)

trig = 𝑓(𝑄(𝑛)
trig ; 𝑃𝑘, 𝐵𝑘1).

 Start with a suitably small seed 𝑄(1)
trig > 0 and iterate

while rubbing hands together.
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 Global spreading is possible if the fractional size 𝑆vuln
of the largest component of vulnerables is “giant”.

 Interpret 𝑆vuln as the probability a randomly chosen
node is vulnerable and that infecting it leads to a global
spreading event:𝑆vuln = ∑𝑘 𝑃𝑘 • 𝐵𝑘1 • [1 − (1 − 𝑄trig)𝑘] > 0.

 Amounts to having 𝑄trig > 0.
 Probability of global spreading differs only in that we

don’t care if the initial seed is vulnerable or not:𝑃trig = 𝑆trig = ∑𝑘 𝑃𝑘 • [1 − (1 − 𝑄trig)𝑘]
 As for 𝑆vuln, 𝑃trig is non-zero when 𝑄trig > 0.
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Connection to generating function results:

 We found that 𝐹 (vuln)𝜌 (1)—the probability that a random
edge leads to a finite vulnerable component—satisfies𝐹 (vuln)𝜌 (1) = 1 − 𝐹 (vuln)𝑅 (1) + 1 ⋅ 𝐹 (vuln)𝑅 (𝐹 (vuln)𝜌 (1)) .

 We set 𝐹 (vuln)𝜌 (1) = 1 − 𝑄trig and deploy𝐹 (vuln)𝑅 (𝑥) = ∑∞𝑘=0 𝑘𝑃𝑘⟨𝑘⟩ 𝐵𝑘1𝑥𝑘−1 to find1−𝑄trig = 1− ∞∑𝑘=0 𝑘𝑃𝑘⟨𝑘⟩ 𝐵𝑘1+ ∞∑𝑘=0 𝑘𝑃𝑘⟨𝑘⟩ 𝐵𝑘1 (1 − 𝑄trig)𝑘−1 .
 Some breathless algebra it all matches:𝑄trig = ∞∑𝑘=0 𝑘𝑃𝑘⟨𝑘⟩ • 𝐵𝑘1 • [1 − (1 − 𝑄trig)𝑘−1] .
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Fractional size of the largest vulnerable
component:

 The generating function approach gave𝑆vuln = 1 − 𝐹 (vuln)𝜋 (1) where𝐹 (vuln)𝜋 (1) = 1 − 𝐹 (vuln)𝑃 (1) + 1 ⋅ 𝐹 (vuln)𝑃 (𝐹 (vuln)𝜌 (1)) .
 Again using 𝐹 (vuln)𝜌 (1) = 1 − 𝑄trig along with𝐹 (vuln)𝑃 (𝑥) = ∑∞𝑘=0 𝑃𝑘𝐵𝑘1𝑥𝑘, we have:1 − 𝑆vuln = 1 − ∞∑𝑘=0 𝑃𝑘𝐵𝑘1 + ∞∑𝑘=0 𝑃𝑘𝐵𝑘1 (1 − 𝑄trig)𝑘 .
 Excited scrabbling about gives us, as before:𝑆vuln = ∞∑𝑘=0 𝑃𝑘𝐵𝑘1 [1 − (1 − 𝑄trig)𝑘] .
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Triggering probability for single-seed global
spreading events:

 Slight adjustment to the vulnerable component
calculation.

 𝑆trig = 1 − 𝐹 (trig)𝜋 (1) where𝐹 (trig)𝜋 (1) = 1 ⋅ 𝐹𝑃 (𝐹 (vuln)𝜌 (1)) .
 We play these cards: 𝐹 (vuln)𝜌 (1) = 1 − 𝑄trig and𝐹𝑃 (𝑥) = ∑∞𝑘=0 𝑃𝑘𝑥𝑘 to arrive at1 − 𝑆trig = 1 + ∞∑𝑘=0 𝑃𝑘 (1 − 𝑄trig)𝑘 .
 More scruffing around brings happiness:𝑆trig = ∞∑𝑘=0 𝑃𝑘 [1 − (1 − 𝑄trig)𝑘] .
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Connection to simple gain ratio argument:

 Earlier, we showed the global spreading condition
follows from the gain ratio R > 1:

R = ∞∑𝑘=0 𝑘𝑃𝑘⟨𝑘⟩ • (𝑘 − 1) • 𝐵𝑘1 > 1.
 We would very much like to see that R > 1 matches up

with 𝑄trig > 0.
 It really would be just so totally awesome.

 Must come from our basic edge triggering probability
equation:𝑄trig = ∑𝑘 𝑘𝑃𝑘⟨𝑘⟩ • 𝐵𝑘1 • [1 − (1 − 𝑄trig)𝑘−1] .

 When does this equation have a solution 0 < 𝑄trig ≤ 1?
 We need to find out what happens as 𝑄trig → 0. [9]
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What we’re doing:

motivated
Microsopic

Possibility of a

Global Spreading Event

Probability of a

Global Spreading Event

derivation
mathematical
purely

C

B

A

physically

derivationsDescription
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 For 𝑄trig → 0+, equation tends towards𝑄trig = ∑𝑘 𝑘𝑃𝑘⟨𝑘⟩ • 𝐵𝑘1 • [✁1+ (✁1+(𝑘 − 1)𝑄trig + …)]
⇒ 𝑄trig = ∑𝑘 𝑘𝑃𝑘⟨𝑘⟩ • 𝐵𝑘1 • (𝑘 − 1)𝑄trig⇒ 1 = ∑𝑘 𝑘𝑃𝑘⟨𝑘⟩ • (𝑘 − 1) • 𝐵𝑘1

 Only defines the phase transition points (i.e., R = 1).
 Inequality?

 Again take 𝑄trig → 0+, but keep next higher order term:𝑄trig = ∑𝑘 𝑘𝑃𝑘⟨𝑘⟩ •𝐵𝑘1•[✁1+ (✁1+(𝑘 − 1)𝑄trig−(𝑘 − 12 )𝑄2
trig)]

⇒ 𝑄trig = ∑𝑘 𝑘𝑃𝑘⟨𝑘⟩ • 𝐵𝑘1 • [(𝑘 − 1)𝑄trig − (𝑘 − 12 )𝑄2
trig]⇒ ∑𝑘 𝑘𝑃𝑘⟨𝑘⟩ •(𝑘−1)•𝐵𝑘1 = 1+∑𝑘 𝑘𝑃𝑘⟨𝑘⟩ 𝐵𝑘1(𝑘 − 12 )𝑄trig

 We have 𝑄trig > 0 if ∑𝑘 𝑘𝑃𝑘⟨𝑘⟩ • (𝑘 − 1) • 𝐵𝑘1 > 1.
 Repeat: Above is a mathematical connection between

two physically derived equations.

 From this connection, we don’t know anything about a
gain ratio R or how to arrange the pieces.
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Threshold contagion on random networks

 Third goal: Find expected fractional size of spread.
 Not obvious even for uniform threshold problem.
 Difficulty is in figuring out if and when nodes that

need ≥ 2 hits switch on.
 Problem solved for infinite seed case by Gleeson

and Cahalane:
“Seed size strongly affects cascades on random
networks,” Phys. Rev. E, 2007. [7]

 Developed further by Gleeson in “Cascades on
correlated and modular random networks,” Phys.
Rev. E, 2008. [6]
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Meme species:

 More here at http://knowyourmeme.com
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Expected size of spread
Idea:
 Randomly turn on a fraction 𝜙0 of nodes at time 𝑡 = 0
 Capitalize on local branching network structure of

random networks (again)

 Now think about what must happen for a specific node𝑖 to become active at time 𝑡:• 𝑡 = 0: 𝑖 is one of the seeds (prob = 𝜙0)• 𝑡 = 1: 𝑖 was not a seed but enough of 𝑖’s friends
switched on at time 𝑡 = 0 so that 𝑖’s threshold is now
exceeded.• 𝑡 = 2: enough of 𝑖’s friends and friends-of-friends
switched on at time 𝑡 = 0 so that 𝑖’s threshold is now
exceeded.• 𝑡 = 𝑛: enough nodes within 𝑛 hops of 𝑖 switched on at𝑡 = 0 and their effects have propagated to reach 𝑖.
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Expected size of spread

i

ϕ = 1/3

t=0
= active,
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Expected size of spread

i

ϕ = 1/3

t=4
= active at t=0

= active at t=1

= active at t=2

= active at t=3

= active at t=4
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Expected size of spread

Notes:
 Calculations presume nodes do not become

inactive (strong restriction, liftable)
 Not just for threshold model—works for a wide

range of contagion processes.
 We can analytically determine the entire time

evolution, not just the final size.
 We can in fact determine

Pr(node of degree 𝑘 switches on at time 𝑡).
 Even more, we can compute: Pr(specific node 𝑖

switches on at time 𝑡).
 Asynchronous updating can be handled too.
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Expected size of spread

Pleasantness:
 Taking off from a single seed story is about

expansion away from a node.
 Extent of spreading story is about contraction at a

node.
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Expected size of spread
 Notation:𝜙𝑘,𝑡 = Pr(a degree 𝑘 node is active at time 𝑡).
 Notation: 𝐵𝑘𝑗 = Pr (a degree 𝑘 node becomes

active if 𝑗 neighbors are active).
 Our starting point: 𝜙𝑘,0 = 𝜙0.
 (𝑘𝑗 )𝜙 𝑗0(1 − 𝜙0)𝑘−𝑗 = Pr (𝑗 of a degree 𝑘 node’s

neighbors were seeded at time 𝑡 = 0).
 Probability a degree 𝑘 node was a seed at 𝑡 = 0 is𝜙0 (as above).
 Probability a degree 𝑘 node was not a seed at 𝑡 = 0

is (1 − 𝜙0).
 Combining everything, we have:𝜙𝑘,1 = 𝜙0 + (1 − 𝜙0) 𝑘∑𝑗=0 (𝑘𝑗 )𝜙 𝑗0(1 − 𝜙0)𝑘−𝑗𝐵𝑘𝑗.
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Expected size of spread
 For general 𝑡, we need to know the probability an

edge coming into a degree 𝑘 node at time 𝑡 is
active.

 Notation: call this probability 𝜃𝑡.
 We already know 𝜃0 = 𝜙0.
 Story analogous to 𝑡 = 1 case. For specific node 𝑖:𝜙𝑖,𝑡+1 = 𝜙0 + (1 − 𝜙0) 𝑘𝑖∑𝑗=0 (𝑘𝑖𝑗 )𝜃 𝑗𝑡 (1 − 𝜃𝑡)𝑘𝑖−𝑗𝐵𝑘𝑖𝑗.
 Average over all nodes with degree 𝑘 to obtain

expression for 𝜙𝑡+1:𝜙𝑡+1 = 𝜙0+(1−𝜙0) ∞∑𝑘=0 𝑃𝑘 𝑘∑𝑗=0 (𝑘𝑗 )𝜃 𝑗𝑡 (1 − 𝜃𝑡)𝑘−𝑗𝐵𝑘𝑗.
 So we need to compute 𝜃𝑡... massive excitement...
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Expected size of spread

First connect 𝜃0 to 𝜃1:
 𝜃1 = 𝜙0+(1 − 𝜙0) ∞∑𝑘=1 𝑘𝑃𝑘⟨𝑘⟩ 𝑘−1∑𝑗=0(𝑘 − 1𝑗 )𝜃 𝑗0 (1 − 𝜃0)𝑘−1−𝑗𝐵𝑘𝑗
 𝑘𝑃𝑘⟨𝑘⟩ = 𝑄𝑘 = Pr (edge connects to a degree 𝑘 node).

 ∑𝑘−1𝑗=0 piece gives Pr (degree node 𝑘 activates if 𝑗
of its 𝑘 − 1 incoming neighbors are active).

 𝜙0 and (1 − 𝜙0) terms account for state of node at
time 𝑡 = 0.

 See this all generalizes to give 𝜃𝑡+1 in terms of 𝜃𝑡...
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Expected size of spread
Two pieces: edges first, and then nodes
1. 𝜃𝑡+1 = 𝜙0⏟

exogenous+(1 − 𝜙0) ∞∑𝑘=1 𝑘𝑃𝑘⟨𝑘⟩ 𝑘−1∑𝑗=0 (𝑘 − 1𝑗 )𝜃 𝑗𝑡 (1 − 𝜃𝑡)𝑘−1−𝑗𝐵𝑘𝑗⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
social effects

with 𝜃0 = 𝜙0.
2. 𝜙𝑡+1 =𝜙0⏟

exogenous
+(1−𝜙0) ∞∑𝑘=0 𝑃𝑘 𝑘∑𝑗=0 (𝑘𝑗 )𝜃 𝑗𝑡 (1 − 𝜃𝑡)𝑘−𝑗𝐵𝑘𝑗⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

social effects

.
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Comparison between theory and
simulations
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From Gleeson and
Cahalane [7]

 Pure random networks
with simple threshold
responses

 𝑅 = uniform threshold
(our 𝜙∗); 𝑧 = average
degree; 𝜌 = 𝜙; 𝑞 = 𝜃;𝑁 = 105.

 𝜙0 = 10−3, 0.5 × 10−2,
and 10−2.

 Cascade window is for𝜙0 = 10−2 case.
 Sensible expansion of

cascade window as 𝜙0
increases.
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Notes:
 Retrieve cascade condition for spreading from a

single seed in limit 𝜙0 → 0.
 Depends on map 𝜃𝑡+1 = 𝐺(𝜃𝑡; 𝜙0).
 First: if self-starters are present, some activation is

assured: 𝐺(0; 𝜙0) = ∞∑𝑘=1 𝑘𝑃𝑘⟨𝑘⟩ • 𝐵𝑘0 > 0.
meaning 𝐵𝑘0 > 0 for at least one value of 𝑘 ≥ 1.

 If 𝜃 = 0 is a fixed point of 𝐺 (i.e., 𝐺(0; 𝜙0) = 0) then
spreading occurs for a small seed if𝐺′(0; 𝜙0) = ∞∑𝑘=0 𝑘𝑃𝑘⟨𝑘⟩ • (𝑘 − 1) • 𝐵𝑘1 > 1.
Insert question from assignment 10

PoCS
@pocsvox

Contagion

Basic Contagion
Models

Global spreading
condition

Social Contagion
Models
Network version

All-to-all networks

Theory
Spreading possibility

Spreading probability

Physical explanation

Final size

References

.
.
.
.
.

.
74 of 86

Notes:

In words:
 If 𝐺(0; 𝜙0) > 0, spreading must occur because

some nodes turn on for free.
 If 𝐺 has an unstable fixed point at 𝜃 = 0, then

cascades are also always possible.

Non-vanishing seed case:
 Cascade condition is more complicated for 𝜙0 > 0.
 If 𝐺 has a stable fixed point at 𝜃 = 0, and an

unstable fixed point for some 0 < 𝜃∗ < 1, then for𝜃0 > 𝜃∗, spreading takes off.
 Tricky point: 𝐺 depends on 𝜙0, so as we change𝜙0, we also change 𝐺.
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General fixed point story:

0
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 Given 𝜃0(= 𝜙0), 𝜃∞ will be the nearest stable fixed
point, either above or below.

 n.b., adjacent fixed points must have opposite stability
types.

 Important: Actual form of 𝐺 depends on 𝜙0.
 Important: 𝜙𝑡 can only increase monotonically so 𝜙0

must shape 𝐺 so that 𝜙0 is at or above an unstable
fixed point.

 First reason: 𝜙1 ≥ 𝜙0.
 Second: 𝐺′(𝜃; 𝜙0) ≥ 0, 0 ≤ 𝜃 ≤ 1.
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Interesting behavior:
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" #

From Gleeson and
Cahalane [7]

 Now allow thresholds
to be distributed
according to a
Gaussian with mean 𝑅.

 𝑅 = 0.2, 0.362, and
0.38; 𝜎 = 0.2.

 𝜙0 = 0 but some nodes
have thresholds ≤ 0 so
effectively 𝜙0 > 0.

 Now see a (nasty)
discontinuous phase
transition for low ⟨𝑘⟩.
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Interesting behavior:
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From Gleeson and
Cahalane [7]

 Plots of stability points
for 𝜃𝑡+1 = 𝐺(𝜃𝑡; 𝜙0).

 n.b.: 0 is not a fixed
point here: 𝜃0 = 0
always takes off.

 Top to bottom: 𝑅 =
0.35, 0.371, and 0.375.

 Saddle node
bifurcations appear
and merge (b and c).
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What’s happening:
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 Fixed points slip above and below the 𝜃𝑡+1 = 𝜃𝑡
line:
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Time-dependent solutions

Synchronous update
 Done: Evolution of 𝜙𝑡 and 𝜃𝑡 given exactly by the

maps we have derived.

Asynchronous updates
 Update nodes with probability 𝛼.
 As 𝛼 → 0, updates become effectively

independent.
 Now can talk about 𝜙(𝑡) and 𝜃(𝑡).
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Nutshell:
 Solid dive into understanding contagion on generalized

random networks.

 Threshold model leads to idea of vulnerables and a
critical mass. [16, 8]

 Generating function approaches provided first
breakthroughs and gave possibility and probability of
spreading. [10, 16]

 Later: A probabilistic, physical method solved the
whole story for a fractional seed—final size, dynamics,
… [7, 6]

 Much can be generalized for more realistic kinds of
networks: degree-correlated, modular, bipartite, …

 The single seed contagion condition and triggering
probability can be fully developed using a physical
story. [5, 9]

 Many connections to other kinds of models: Voter
models, Ising models, …
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