Chaotic Contagion:

 The Idealized Hipster Effect
Prof. Peter Sheridan Dodds | @peterdodds

Computational Story Lab | Vermont Complex Systems Center Vermont Advanced Computing Core | University of Vermont

These slides are brought to you by:

Sealie \& Lambie Productions

These slides are also brought to you by:

Special Guest Executive Producer

Chaotic Contagion
Chaos
Invariant densities

References

© On Instagram at pratchett_the_cat $\mathbb{}$ ©

Outline

Chaotic Contagion

Chaos
Invariant densities

References

Chaotic Contagion on Networks:

> "Limited Imitation Contagion on random networks: Chaos, universality, and unpredictability" [̄]
> Dodds, Harris, and Danforth, Phys. Rev. Lett., 110, 158701, 2013. ${ }^{[1]}$
"Dynamical influence processes on networks: General theory and applications to social contagion"
Harris, Danforth, and Dodds, Phys. Rev. E, 88, 022816, 2013. ${ }^{[2]}$
A. Mandel, conference at Urbana-Champaign, 2007:
"If I was a younger man, I would have stolen this from you."

Chaotic contagion:

What if individual response functions are not monotonic?

Consider a simple deterministic version:
(Node i has an 'activation threshold' $\phi_{i, 1}$
...and a 'de-activation threshold' $\phi_{i, 2}$

- Nodes like to imitate but only up to a limit-they don't want to be like everyone else.

Chaotic
Contagion
Chaos
invariant densities

References

Chaotic contagion

Definition of the tent map:

$$
F(x)=\left\{\begin{array}{l}
r x \text { for } 0 \leq x \leq \frac{1}{2} \\
r(1-x) \text { for } \frac{1}{2} \leq x \leq 1
\end{array}\right.
$$

The usual business: look at how F iteratively maps the unit interval $[0,1]$.

The tent map

Effect of increasing r from 1 to 2.

Orbit diagram:

Chaotic behavior increases as map slope r is increased.
(min) | \mid
のac 11 of 33

Chaotic behavior

Take $r=2$ case:

What happens if nodes have limited information?
As before, allow interactions to take place on a sparse random network.
8
Vary average degree $z=\langle k\rangle$, a measure of information

Two population examples:

Chaotic
Contagion
Chaos
Invariant densities
References

Randomly select $\left(\phi_{i, 1}, \phi_{i, 2}\right)$ from gray regions shown in plots B and C.
\& Insets show composite response function averaged over population.
We'll consider plot C's example: the tent map.

What's the Ston

っด® 13 of 33

Invariant densities-stochastic response functions

activation time series

activation density

Invariant densities-stochastic response functions

Chaotic
Contagion
Chaos
Invariant densities
References
*um $\left|\begin{array}{l}0 \\ 0\end{array}\right|$
のac 16 of 33

Invariant densities-deterministic response functions for one specific network with $\langle k\rangle=18$

Invariant densities-stochastic response functions

Trying out higher values of $\langle k\rangle$...

Invariant densities-deterministic response functions

Chaotic
Contagion
Chaos
Invariant densities

Trying out higher values of $\langle k\rangle \ldots$

Connectivity leads to chaos:

Stochastic response functions:

Chaotic
Contagion
Chaos
Invariant densities
References

Bifurcation diagram: Asynchronous updating

Chaotic
Contagion Chaos
Invariant densities
References

UYM

のac 21 of 33

Bifurcation diagram: Asynchronous updating

Chaotic

Contagion

Chaotic

Contagion
Chaos
Invariant densities
References

FIG. 3. Bifurcation diagram for the dense map $\Phi(\phi ; \alpha)$, Eqn. (18). This was generated by iterating the map at 1000 α values between 0 and 1 . The iteration was carried out with 3 random initial conditions for 10000 time steps each, discarding the first 1000 . The ϕ-axis contains 1000 bins and the invariant density, shown by the grayscale value, is normalized by the maximum for each α. With $\alpha<2 / 3$, all trajectories go to the fixed point at $\phi=2 / 3$.

PoCS
Principles of
Complex Systems
Complex Systems
@pocsvox
What's the Story?

っのल 22 of 33
https://www.youtube.com/watch?v=7JHrZyyq870?rel=0[` How the bifurcation diagram changes with increasing average degree $\langle k\rangle$ as a function of the synchronicity parameter α for the stochastic response (tent map) case.
https://www.youtube.com/watch?v=_zwK6polBvc?rel=0[入 How the bifurcation diagram changes with increasing α, the synchronicity parameter as a function of average degree $\langle k\rangle$ for the stochastic response (tent map) case.
https://www.youtube.com/watch?v=3bo4fzp4Snw?rel=0[LIC dynamics on a fixed graph with a shared stochastic (tent map) response function. Average degree $=6$, update synchronicity parameter $\alpha=1$. The macroscopic behavior is period-1, plus noisy fluctuations.
https://www.youtube.com/watch?v=7UCula_ktmw?rel=0匹 LIC dynamics on a fixed graph with a shared stochastic (tent $\mathrm{map})$ response function. Average degree = 11, update synchronicity parameter $\alpha=1$. The macroscopic behavior is period-2, plus noisy fluctuations.
https://www.youtube.com/watch?v=oWKt8Zj1 Ccw?rel=0[ß Líc dynamics on a fixed graph with a shared stochastic (tent map) response function. $\langle k\rangle=30$, update synchronicity parameter $\alpha=1$. The macroscopic behavior is chaotic.
https://www.youtube.com/watch?v=AfhUlkIOiOU?rel=0 © LIC dynamics on a fixed graph with fixed, deterministic response functions. Average degree $=30$, update synchronicity parameter $\alpha=1$. Shown are nodes which continue changing (703/1000) after the transient chaotic behavior has "collapsed."
https://www.youtube.com/watch?v=ZwY0hTstJ2M?rel=0【
LIC dynamics on a fixed graph with fixed, deterministic response functions. Average degree $=30$, update synchronicity parameter $\alpha=1$. The dynamics exhibit transient chaotic behavior before collapsing to a fixed point.
https://www.youtube.com/watch?v=YDhjmFyBSn4?rel=0〔
LIC dynamics on a fixed graph with fixed, deterministic response functions. Average degree $=17$, update synchronicity parameter $\alpha=1$. The dynamics exhibit transient chaotic behavior before collapsing to a period-4 orbit.

Maps of the Interval:

Limited Imitation Contagion on Networks:
$\chi\left(\phi \mid k_{\text {avg }}\right) / \max \chi\left(\phi \mid k_{\text {avg }}\right)$

References I

[1] P. S. Dodds, K. D. Harris, and C. M. Danforth. Limited Imitation Contagion on random networks:
Chaos, universality, and unpredictability. Phys. Rev. Lett., 110:158701, 2013. pdf[
[2] K. D. Harris, C. M. Danforth, and P. S. Dodds.
Dynamical influence processes on networks: General theory and applications to social contagion.
Phys. Rev. E, 88:022816, 2013. pdf[天

