Chaotic Contagion: The Idealized Hipster Effect

Last updated: 2021/10/26, 23:31:24 EDT

Principles of Complex Systems, Vols. 1 & 2 CSYS/MATH 300 and 303, 2021–2022 | @pocsvox

Prof. Peter Sheridan Dodds | @peterdodds

Computational Story Lab | Vermont Complex Systems Center Vermont Advanced Computing Core | University of Vermont

The PoCSverse Chaotic Contagion 1 of 33

Chaotic Contagion

Chaos Invariant densities

These slides are brought to you by:

The PoCSverse Chaotic Contagion 2 of 33

Chaotic Contagion

Chaos Invariant densiti

These slides are also brought to you by:

Special Guest Executive Producer

☑ On Instagram at pratchett_the_cat ☑

The PoCSverse Chaotic Contagion 3 of 33

Chaotic Contagion

Chaos Invariant densitie

Outline

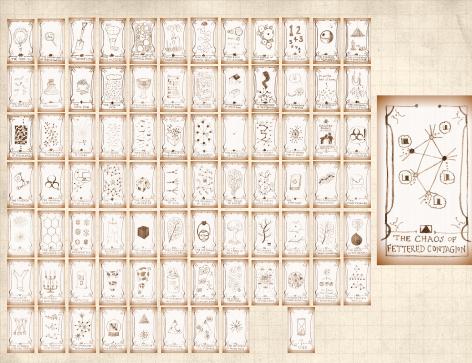
Chaotic Contagion
Chaos
Invariant densities

References

The PoCSverse Chaotic Contagion 4 of 33

Chaotic Contagion

Chaos Invariant densitie



Chaotic Contagion on Networks:

"Limited Imitation Contagion on random networks: Chaos, universality, and unpredictability" 🖸

Dodds, Harris, and Danforth, Phys. Rev. Lett., **110**, 158701, 2013. [1]

"Dynamical influence processes on networks: General theory and applications to social contagion" The Harris, Danforth, and Dodds,

Harris, Danforth, and Dodds, Phys. Rev. E, **88**, 022816, 2013. [2]

A. Mandel, conference at Urbana-Champaign, 2007:

"If I was a younger man, I would have stolen this from you."

The PoCSverse Chaotic Contagion 6 of 33

Chaotic Contagion

Chaos Invariant densities

Outline

Chaotic Contagion Chaos

References

The PoCSverse Chaotic Contagion 7 of 33

Chaotic Contagion Chaos

Chaos Invariant densitie

Chaotic contagion:

What if individual response functions are not monotonic?

The PoCSverse Chaotic Contagion 8 of 33

Chaotic Contagion Chaos

Chaotic contagion:

Chaotic Contagion 8 of 33 Chaotic

The PoCSverse

Contagion Chaos

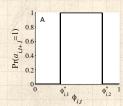
References

What if individual response functions are not monotonic?

Consider a simple deterministic version:

Node i has an 'activation threshold' $\phi_{i,1}$

...and a 'de-activation threshold' $\phi_{i,2}$



Chaotic contagion:

The PoCSverse Chaotic Contagion 8 of 33

Chaotic Contagion Chaos

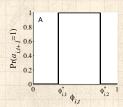
References

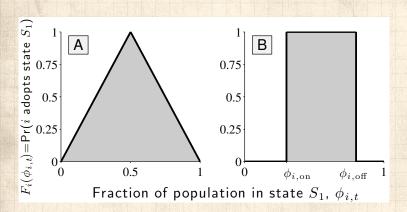
What if individual response functions are not monotonic?

- Consider a simple deterministic version:
- Node i has an 'activation threshold' $\phi_{i,1}$

...and a 'de-activation threshold' $\phi_{i,2}$

Nodes like to imitate but only up to a limit—they don't want to be like everyone else.





The PoCSverse Chaotic Contagion 9 of 33

Chaotic Contagion

Chaos Invariant densities

Chaotic contagion

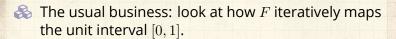
The PoCSverse Chaotic Contagion 10 of 33

Chaotic Contagion Chaos

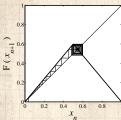
References

Definition of the tent map:

$$F(x) = \left\{ \begin{array}{l} rx \text{ for } 0 \leq x \leq \frac{1}{2}, \\ r(1-x) \text{ for } \frac{1}{2} \leq x \leq 1. \end{array} \right.$$



Effect of increasing r from 1 to 2.

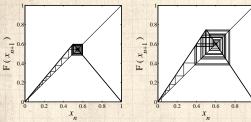


The PoCSverse Chaotic Contagion 11 of 33

Chaotic Contagion

Chaos Invariant densitie

Effect of increasing r from 1 to 2.

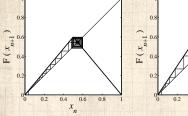


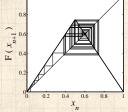
The PoCSverse Chaotic Contagion 11 of 33

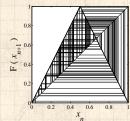
Chaotic Contagion

Chaos Invariant densitie

Effect of increasing r from 1 to 2.







The PoCSverse Chaotic Contagion 11 of 33

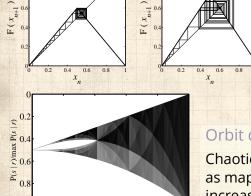
Chaotic Contagion

Chaos Invariant densities

1.2

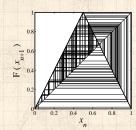
1.4

Effect of increasing r from 1 to 2.



1.6

1.8



The PoCSverse Chaotic Contagion 11 of 33

Chaotic Contagion

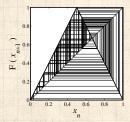
Chaos Invariant densitie

References

Orbit diagram:

Chaotic behavior increases as map slope r is increased.

Take r=2 case:

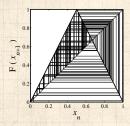


The PoCSverse Chaotic Contagion 12 of 33

Chaotic Contagion

Chaos Invariant densities

Take r=2 case:



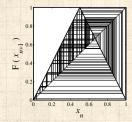
The PoCSverse Chaotic Contagion 12 of 33

Chaotic Contagion Chaos

References

What happens if nodes have limited information?

Take r=2 case:

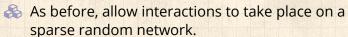


The PoCSverse Chaotic Contagion 12 of 33

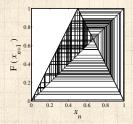
Chaotic Contagion Chaos

References

What happens if nodes have limited information?



Take r=2 case:



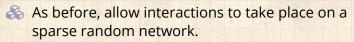
The PoCSverse Chaotic Contagion 12 of 33

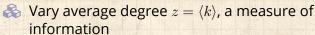
Chaotic Contagion Chaos

Invariant dens

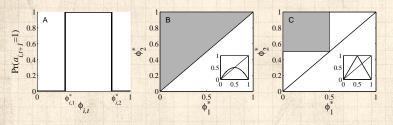
References

What happens if nodes have limited information?





Two population examples:



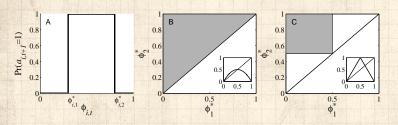
The PoCSverse Chaotic Contagion 13 of 33

Chaotic Contagion

Chaos Invariant densities

- Randomly select $(\phi_{i,1},\phi_{i,2})$ from gray regions shown in plots B and C.
- Insets show composite response function averaged over population.

Two population examples:



The PoCSverse Chaotic Contagion 13 of 33

Chaotic Contagion

Chaos Invariant densitie

- Randomly select $(\phi_{i,1},\phi_{i,2})$ from gray regions shown in plots B and C.
- Insets show composite response function averaged over population.
- & We'll consider plot C's example: the tent map.

Outline

Chaotic Contagion
Chaos
Invariant densities

Reference

The PoCSverse Chaotic Contagion 14 of 33

Chaotic Contagion Chaos

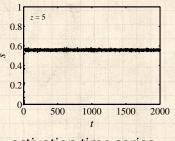
Invariant densities

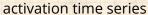
Invariant densities—stochastic response functions

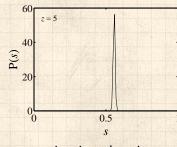
The PoCSverse Chaotic Contagion 15 of 33

Chaotic Contagion Chaos

Chaos Invariant densities

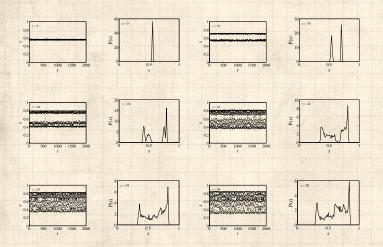






activation density

Invariant densities—stochastic response functions

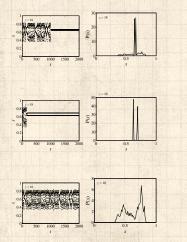


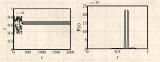
The PoCSverse Chaotic Contagion 16 of 33

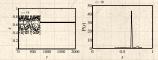
Chaotic Contagion

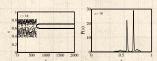
Chaos Invariant densities

Invariant densities—deterministic response functions for one specific network with $\langle k \rangle = 18$









The PoCSverse Chaotic Contagion 17 of 33

Contagion

Invariant densities

Invariant densities—stochastic response functions

The PoCSverse Chaotic Contagion 18 of 33

Chaotic Contagion Chaos

Chaos Invariant densities

References

Trying out higher values of $\langle k \rangle$...

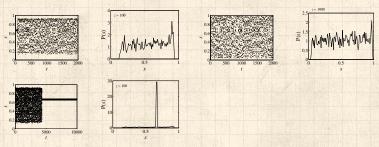
Invariant densities—deterministic response functions

The PoCSverse Chaotic Contagion 19 of 33

Chaotic Contagion Chaos

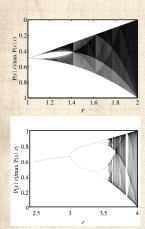
Chaos Invariant densities

References

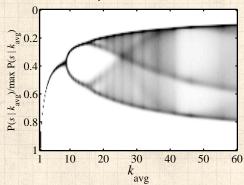


Trying out higher values of $\langle k \rangle$...

Connectivity leads to chaos:



Stochastic response functions:

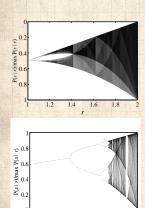


The PoCSverse Chaotic Contagion 20 of 33

Chaotic Contagion

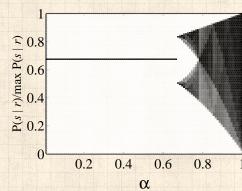
Chaos Invariant densities

Bifurcation diagram: Asynchronous updating



3.5

2.5



The PoCSverse Chaotic Contagion 21 of 33

Chaotic Contagion Chaos

Invariant densities

Bifurcation diagram: Asynchronous updating

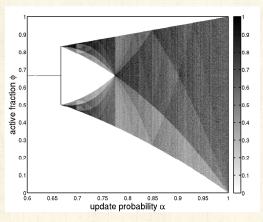


FIG. 3. Bifurcation diagram for the dense map $\Phi(\phi;\alpha)$, Eqn. (18). This was generated by iterating the map at 1000 α values between 0 and 1. The iteration was carried out with 3 random initial conditions for 10000 time steps each, discarding the first 1000. The ϕ -axis contains 1000 bins and the invariant density, shown by the grayscale value, is normalized by the maximum for each α . With $\alpha < 2/3$, all trajectories go to the fixed point at $\phi = 2/3$.

The PoCSverse Chaotic Contagion 22 of 33

Chaotic Contagion

Chaos Invariant densities

The PoCSverse Chaotic Contagion 23 of 33 Chaotic

Contagion

Chaos

Invariant densities

References

https://www.youtube.com/watch?v=7JHrZyyq870?rel=0 \square How the bifurcation diagram changes with increasing average degree $\langle k \rangle$ as a function of the synchronicity parameter α for the stochastic response (tent map) case.

The PoCSverse Chaotic Contagion 24 of 33 Chaotic

Contagion

Chaos

Invariant densities

References

https://www.youtube.com/watch?v=_zwK6poIBvc?rel=0

How the bifurcation diagram changes with increasing α , the synchronicity parameter as a function of average degree $\langle k \rangle$ for the stochastic response (tent map) case.

The PoCSverse Chaotic Contagion 25 of 33 Chaotic

Contagion Chaos Invariant densities

References

https://www.youtube.com/watch?v=3bo4fzp4Snw?rel=0

LIC dynamics on a fixed graph with a shared stochastic (tent map) response function. Average degree = 6, update synchronicity parameter α = 1. The macroscopic behavior is period-1, plus noisy fluctuations.

The PoCSverse Chaotic Contagion 26 of 33 Chaotic

Contagion Chaos Invariant densities

References

https://www.youtube.com/watch?v=7UCula_ktmw?rel=0 🗗

LIC dynamics on a fixed graph with a shared stochastic (tent map) response function. Average degree = 11, update synchronicity parameter $\alpha=1$. The macroscopic behavior is period-2, plus noisy fluctuations.

The PoCSverse Chaotic Contagion 27 of 33 Chaotic

Contagion Chaos Invariant densities

References

https://www.youtube.com/watch?v=oWKt8Zj1Ccw?rel=0 \(\bar{\substack} \) LIC dynamics on a fixed graph with a shared stochastic (tent map) response function. $\langle k \rangle = 30$, update synchronicity parameter $\alpha = 1$. The macroscopic behavior is chaotic.

The PoCSverse Chaotic Contagion 28 of 33

Chaotic Contagion Chaos Invariant densities

References

https://www.youtube.com/watch?v=AfhUlklOiOU?rel=0

LIC dynamics on a fixed graph with fixed, deterministic response functions. Average degree = 30, update synchronicity parameter α = 1. Shown are nodes which continue changing (703/1000) after the transient chaotic behavior has "collapsed."

The PoCSverse Chaotic Contagion 29 of 33 Chaotic

Contagion Chaos Invariant densities

References

https://www.youtube.com/watch?v=ZwY0hTstJ2M?rel=0

LIC dynamics on a fixed graph with fixed, deterministic response functions. Average degree = 30, update synchronicity parameter α = 1. The dynamics exhibit transient chaotic behavior before collapsing to a fixed point.

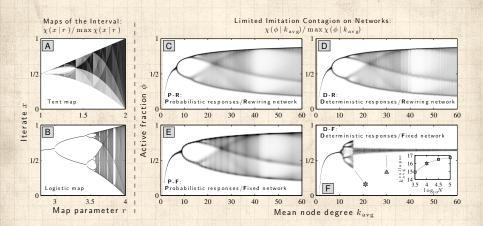
The PoCSverse Chaotic Contagion 30 of 33

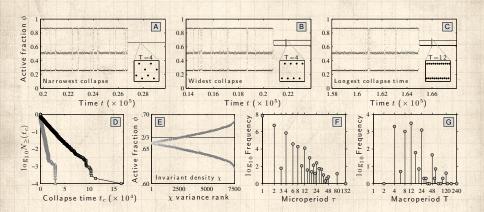
Chaotic Contagion Chaos Invariant densities

References

https://www.youtube.com/watch?v=YDhjmFyBSn4?rel=0

LIC dynamics on a fixed graph with fixed, deterministic response functions. Average degree = 17, update synchronicity parameter α = 1. The dynamics exhibit transient chaotic behavior before collapsing to a period-4 orbit.





References I

The PoCSverse Chaotic Contagion 33 of 33

Chaotic Contagion Chaos

References

- [1] P. S. Dodds, K. D. Harris, and C. M. Danforth. Limited Imitation Contagion on random networks: Chaos, universality, and unpredictability. Phys. Rev. Lett., 110:158701, 2013. pdf
- [2] K. D. Harris, C. M. Danforth, and P. S. Dodds. Dynamical influence processes on networks: General theory and applications to social contagion.

Phys. Rev. E, 88:022816, 2013. pdf

