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How big is my node?

 Basic question: how ‘important’ are specific nodes
and edges in a network?

 An important node or edge might:
1. handle a relatively large amount of the network’s

traffic (e.g., cars, information);
2. bridge two or more distinct groups (e.g., liason,

interpreter);
3. be a source of important ideas, knowledge, or

judgments (e.g., supreme court decisions, an
employee who ‘knows where everything is’).

 So how do we quantify such a slippery concept as
importance?

 We generate ad hoc, reasonable measures, and
examine their utility …
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Centrality

 One possible reflection of importance is centrality.
 Presumption is that nodes or edges that are (in

some sense) in the middle of a network are
important for the network’s function.

 Idea of centrality comes from social networks
literature [7].

 Many flavors of centrality …
1. Many are topological and quasi-dynamical;
2. Some are based on dynamics (e.g., traffic).

 We will define and examine a few …
 (Later: see centrality useful in identifying

communities in networks.)
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Centrality

Degree centrality
 Naively estimate importance by node degree. [7]

 Doh: assumes linearity
(If node 𝑖 has twice as many friends as node 𝑗, it’s
twice as important.)

 Doh: doesn’t take in any non-local information.
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Closeness centrality
 Idea: Nodes are more central if they can reach

other nodes ‘easily.’
 Measure average shortest path from a node to all

other nodes.
 Define Closeness Centrality for node 𝑖 as𝑁 − 1∑𝑗,𝑗≠𝑖(shortest distance from 𝑖 to 𝑗).
 Range is 0 (no friends) to 1 (single hub).
 Unclear what the exact values of this measure tells

us because of its ad-hocness.
 General problem with simple centrality measures:

what do they exactly mean?
 Perhaps, at least, we obtain an ordering of nodes

in terms of ‘importance.’
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Betweenness centrality

 Betweenness centrality is based on coherence of
shortest paths in a network.

 Idea: If the quickest way between any two nodes
on a network disproportionately involves certain
nodes, then they are ‘important’ in terms of global
cohesion.

 For each node 𝑖, count how many shortest paths
pass through 𝑖.

 In the case of ties, divide counts between paths.
 Call frequency of shortest paths passing through

node 𝑖 the betweenness of 𝑖, 𝐵𝑖.
 Note: Exclude shortest paths between 𝑖 and other

nodes.
 Note: works for weighted and unweighted

networks.
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 Consider a network with 𝑁 nodes and 𝑚 edges
(possibly weighted).

 Computational goal: Find (𝑁2 ) shortest paths
between all pairs of nodes.

 Traditionally use Floyd-Warshall algorithm.
 Computation time grows as 𝑂(𝑁3).
 See also:

1. Dijkstra’s algorithm for finding shortest path
between two specific nodes,

2. and Johnson’s algorithm which outperforms
Floyd-Warshall for sparse networks:𝑂(𝑚𝑁 + 𝑁2log𝑁).

 Newman (2001) [4, 5] and Brandes (2001) [1]
independently derive equally fast algorithms that
also compute betweenness.

 Computation times grow as:
1. 𝑂(𝑚𝑁) for unweighted graphs;
2. and 𝑂(𝑚𝑁 + 𝑁2log𝑁) for weighted graphs.
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Shortest path between node 𝑖 and all others:

 Consider unweighted networks.

 Use breadth-first search:

1. Start at node 𝑖, giving it a distance 𝑑 = 0 from
itself.

2. Create a list of all of 𝑖’s neighbors and label them
being at a distance 𝑑 = 1.

3. Go through list of most recently visited nodes and
find all of their neighbors.

4. Exclude any nodes already assigned a distance.
5. Increment distance 𝑑 by 1.
6. Label newly reached nodes as being at distance 𝑑.
7. Repeat steps 3 through 6 until all nodes are

visited.

 Record which nodes link to which nodes moving out
from 𝑖 (former are ‘predecessors’ with respect to 𝑖’s
shortest path structure).

 Runs in 𝑂(𝑚) time and gives 𝑁 − 1 shortest paths.

 Find all shortest paths in 𝑂(𝑚𝑁) time

 Much, much better than naive estimate of 𝑂(𝑚𝑁2).
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Newman’s Betweenness algorithm: [4]
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Newman’s Betweenness algorithm: [4]

1. Set all nodes to have a value 𝑐𝑖𝑗 = 0, 𝑗 = 1, …
(𝑐 for count).

2. Select one node 𝑖 and find shortest paths to all other𝑁 − 1 nodes using breadth-first search.

3. Record # equal shortest paths reaching each node.

4. Move through nodes according to their distance from 𝑖,
starting with the furthest.

5. Travel back towards 𝑖 from each starting node 𝑗, along
shortest path(s), adding 1 to every value of 𝑐𝑖ℓ at each
node ℓ along the way.

6. Whenever more than one possibility exists, apportion
according to total number of short paths coming
through predecessors.

7. Exclude starting node 𝑗 and 𝑖 from increment.

8. Repeat steps 2–8 for every node 𝑖 and obtain
betweenness as 𝐵𝑗 = ∑𝑁𝑖=1 𝑐𝑖𝑗.

PoCS
@pocsvox

Measures of
centrality

Background

Centrality
measures
Degree centrality

Closeness centrality

Betweenness

Eigenvalue centrality

Hubs and Authorities

Nutshell

References

.
.
.
.
.

.
16 of 31

Newman’s Betweenness algorithm: [4]

 For a pure tree network, 𝑐𝑖𝑗 is the number of
nodes beyond 𝑗 from 𝑖’s vantage point.

 Same algorithm for computing drainage area in
river networks (with 1 added across the board).

 For edge betweenness, use exact same algorithm
but now
1. 𝑗 indexes edges,
2. and we add one to each edge as we traverse it.

 For both algorithms, computation time grows as𝑂(𝑚𝑁).
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Newman’s Betweenness algorithm: [4]
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Important nodes have important friends:
 Define 𝑥𝑖 as the ‘importance’ of node 𝑖.
 Idea: 𝑥𝑖 depends (somehow) on 𝑥𝑗

if 𝑗 is a neighbor of 𝑖.
 Recursive: importance is transmitted through a

network.
 Simplest possibility is a linear combination:𝑥𝑖 ∝ ∑𝑗 𝑎𝑗𝑖𝑥𝑗
 Assume further that constant of proportionality, 𝑐,

is independent of 𝑖.
 Above gives ⃗𝑥 = 𝑐AT ⃗𝑥 or AT ⃗𝑥 = 𝑐−1 ⃗𝑥= 𝜆 ⃗𝑥 .
 Eigenvalue equation based on adjacency matrix …
 Note: Lots of despair over size of the largest

eigenvalue. [7] Lose sight of original assumption’s
non-physicality.
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Important nodes have important friends:
 So: solve AT ⃗𝑥 = 𝜆 ⃗𝑥.
 But which eigenvalue and eigenvector?
 We, the people, would like:

1. A unique solution. 
2. 𝜆 to be real. 
3. Entries of 𝑥⃗ to be real. 
4. Entries of 𝑥⃗ to be non-negative. 
5. 𝜆 to actually mean something … (maybe too much)
6. Values of 𝑥𝑖 to mean something

(what does an observation that 𝑥3 = 5𝑥7 mean?)
(maybe only ordering is informative …)
(maybe too much)

7. 𝜆 to equal 1 would be nice … (maybe too much)
8. Ordering of 𝑥⃗ entries to be robust to reasonable

modifications of linear assumption (maybe too
much)

 We rummage around in bag of tricks and pull out
the Perron-Frobenius theorem …
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Perron-Frobenius theorem: If an 𝑁×𝑁 matrix𝐴 has non-negative entries then:

1. 𝐴 has a real eigenvalue 𝜆1 ≥ |𝜆𝑖| for 𝑖 = 2, … , 𝑁 .

2. 𝜆1 corresponds to left and right 1-d eigenspaces for
which we can choose a basis vector that has
non-negative entries.

3. The dominant real eigenvalue 𝜆1 is bounded by the
minimum and maximum row sums of 𝐴:

min𝑖 𝑁∑𝑗=1 𝑎𝑖𝑗 ≤ 𝜆1 ≤ max𝑖 𝑁∑𝑗=1 𝑎𝑖𝑗
4. All other eigenvectors have one or more negative

entries.

5. The matrix 𝐴 can make toast.

6. Note: Proof is relatively short for symmetric matrices
that are strictly positive [6] and just non-negative [3].
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Other Perron-Frobenius aspects:

 Assuming our network is irreducible, meaning
there is only one component, is reasonable: just
consider one component at a time if more than
one exists.

 Irreducibility means largest eigenvalue’s
eigenvector has strictly non-negative entries.

 Analogous to notion of ergodicity: every state is
reachable.

 (Another term: Primitive graphs and matrices.)
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Hubs and Authorities
 Generalize eigenvalue centrality to allow nodes to

have two attributes:
1. Authority: how much knowledge, information,

etc., held by a node on a topic.
2. Hubness (or Hubosity or Hubbishness or

Hubtasticness): how well a node ‘knows’ where to
find information on a given topic.

 Original work due to the legendary Jon
Kleinberg. [2]

 Best hubs point to best authorities.
 Recursive: Hubs authoritatively link to hubs,

authorities hubbishly link to other authorities.
 More: look for dense links between sets of ‘good’

hubs pointing to sets of ‘good’ authorities.
 Known as the HITS algorithm

(Hyperlink-Induced Topics Search).
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Hubs and Authorities
 Give each node two scores:

1. 𝑥𝑖 = authority score for node 𝑖
2. 𝑦𝑖 = hubtasticness score for node 𝑖

 As for eigenvector centrality, we connect the
scores of neighboring nodes.

 New story I: a good authority is linked to by good
hubs.

 Means 𝑥𝑖 should increase as ∑𝑁𝑗=1 𝑎𝑗𝑖𝑦𝑗 increases.
 Note: indices are 𝑗𝑖 meaning 𝑗 has a directed link

to 𝑖.
 New story II: good hubs point to good authorities.
 Means 𝑦𝑖 should increase as ∑𝑁𝑗=1 𝑎𝑖𝑗𝑥𝑗 increases.
 Linearity assumption:⃗𝑥 ∝ 𝐴𝑇 ⃗𝑦 and ⃗𝑦 ∝ 𝐴 ⃗𝑥
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Hubs and Authorities

 So let’s say we have⃗𝑥 = 𝑐1𝐴𝑇 ⃗𝑦 and ⃗𝑦 = 𝑐2𝐴 ⃗𝑥
where 𝑐1 and 𝑐2 must be positive.

 Above equations combine to give⃗𝑥 = 𝑐1𝐴𝑇 𝑐2𝐴 ⃗𝑥 = 𝜆𝐴𝑇 𝐴 ⃗𝑥.
where 𝜆 = 𝑐1𝑐2 > 0.

 It’s all good: we have the heart of singular value
decomposition before us …
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We can do this:

 𝐴𝑇 𝐴 is symmetric.
 𝐴𝑇 𝐴 is semi-positive definite so its eigenvalues

are all ≥ 0.
 𝐴𝑇 𝐴’s eigenvalues are the square of 𝐴’s singular

values.
 𝐴𝑇 𝐴’s eigenvectors form a joyful orthogonal basis.
 Perron-Frobenius tells us that only the dominant

eigenvalue’s eigenvector can be chosen to have
non-negative entries.

 So: linear assumption leads to a solvable system.
 What would be very good: find networks where we

have independent measures of node ‘importance’
and see how importance is actually distributed.
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Nutshell:
 Measuring centrality is well motivated if hard to

carry out well.
 We’ve only looked at a few major ones.
 Methods are often taken to be more sophisticated

than they really are.
 Centrality can be used pragmatically to perform

diagnostics on networks (see structure detection).
 Focus on nodes rather than groups or modules is

a homo narrativus constraint.
 Possible that better approaches will be developed.
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