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Basic idea:
 Random networks with arbitrary degree

distributions cover much territory but do not
represent all networks.

 Moving away from pure random networks was a
key first step.

 We can extend in many other directions and a
natural one is to introduce correlations between
different kinds of nodes.

 Node attributes may be anything, e.g.:
1. degree
2. demographics (age, gender, etc.)
3. group affiliation

 We speak of mixing patterns, correlations, biases...
 Networks are still random at base but now have

more global structure.
 Build on work by Newman [5, 6], and Boguñá and

Serano. [1].
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General mixing between node categories
 Assume types of nodes are countable, and are

assigned numbers 1, 2, 3, ….
 Consider networks with directed edges.𝑒𝜇𝜈 = Pr( an edge connects a node of type 𝜇

to a node of type 𝜈 )𝑎𝜇 = Pr(an edge comes from a node of type 𝜇)𝑏𝜈 = Pr(an edge leads to a node of type 𝜈)
 Write E = [𝑒𝜇𝜈], ⃗𝑎 = [𝑎𝜇], and 𝑏⃗ = [𝑏𝜈].
 Requirements:∑𝜇 𝜈 𝑒𝜇𝜈 = 1, ∑𝜈 𝑒𝜇𝜈 = 𝑎𝜇, and∑𝜇 𝑒𝜇𝜈 = 𝑏𝜈.
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Notes:

 Varying 𝑒𝜇𝜈 allows us to move between the
following:
1. Perfectly assortative networks where nodes only

connect to like nodes, and the network breaks into
subnetworks.
Requires 𝑒𝜇𝜈 = 0 if 𝜇 ≠ 𝜈 and ∑𝜇 𝑒𝜇𝜇 = 1.

2. Uncorrelated networks (as we have studied so far)
For these we must have independence:𝑒𝜇𝜈 = 𝑎𝜇𝑏𝜈.

3. Disassortative networks where nodes connect to
nodes distinct from themselves.

 Disassortative networks can be hard to build and
may require constraints on the 𝑒𝜇𝜈.

 Basic story: level of assortativity reflects the
degree to which nodes are connected to nodes
within their group.
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Correlation coefficient:

 Quantify the level of assortativity with the
following assortativity coefficient [6]:𝑟 = ∑𝜇 𝑒𝜇𝜇 − ∑𝜇 𝑎𝜇𝑏𝜇1 − ∑𝜇 𝑎𝜇𝑏𝜇 = TrE − ||𝐸2||11 − ||𝐸2||1
where || ⋅ ||1 is the 1-norm = sum of a matrix’s
entries.

 TrE is the fraction of edges that are within groups.
 ||𝐸2||1 is the fraction of edges that would be

within groups if connections were random.
 1 − ||𝐸2||1 is a normalization factor so 𝑟max = 1.
 When Tr 𝑒𝜇𝜇 = 1, we have 𝑟 = 1. 
 When 𝑒𝜇𝜇 = 𝑎𝜇𝑏𝜇, we have 𝑟 = 0. 
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Correlation coefficient:

Notes:
 𝑟 = −1 is inaccessible if three or more types are

present.
 Disassortative networks simply have nodes

connected to unlike nodes—no measure of how
unlike nodes are.

 Minimum value of 𝑟 occurs when all links between
non-like nodes: Tr 𝑒𝜇𝜇 = 0.

 𝑟min = −||𝐸2||11 − ||𝐸2||1
where −1 ≤ 𝑟min < 0.
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Scalar quantities
 Now consider nodes defined by a scalar integer

quantity.
 Examples: age in years, height in inches, number

of friends, ...
 𝑒𝑗𝑘 = Pr (a randomly chosen edge connects a node

with value 𝑗 to a node with value 𝑘).
 𝑎𝑗 and 𝑏𝑘 are defined as before.
 Can now measure correlations between nodes

based on this scalar quantity using standard
Pearson correlation coefficient:𝑟 = ∑𝑗 𝑘 𝑗 𝑘(𝑒𝑗𝑘 − 𝑎𝑗𝑏𝑘)𝜎𝑎 𝜎𝑏 = ⟨𝑗𝑘⟩ − ⟨𝑗⟩𝑎⟨𝑘⟩𝑏√⟨𝑗2⟩𝑎 − ⟨𝑗⟩2𝑎√⟨𝑘2⟩𝑏 − ⟨𝑘⟩2𝑏

 This is the observed normalized deviation from
randomness in the product 𝑗𝑘.
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Degree-degree correlations

 Natural correlation is between the degrees of
connected nodes.

 Now define 𝑒𝑗𝑘 with a slight twist:𝑒𝑗𝑘 = Pr( an edge connects a degree 𝑗 + 1 node
to a degree 𝑘 + 1 node )

= Pr( an edge runs between a node of in-degree 𝑗
and a node of out-degree 𝑘 )

 Useful for calculations (as per 𝑅𝑘)
 Important: Must separately define 𝑃0 as the {𝑒𝑗𝑘}

contain no information about isolated nodes.
 Directed networks still fine but we will assume

from here on that 𝑒𝑗𝑘 = 𝑒𝑘𝑗.
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Degree-degree correlations

 Notation reconciliation for undirected networks:𝑟 = ∑𝑗 𝑘 𝑗 𝑘(𝑒𝑗𝑘 − 𝑅𝑗𝑅𝑘)𝜎2𝑅
where, as before, 𝑅𝑘 is the probability that a
randomly chosen edge leads to a node of degree𝑘 + 1, and 𝜎2𝑅 = ∑𝑗 𝑗2𝑅𝑗 − [∑𝑗 𝑗𝑅𝑗]2 .
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Degree-degree correlations

Error estimate for 𝑟:
 Remove edge 𝑖 and recompute 𝑟 to obtain 𝑟𝑖.
 Repeat for all edges and compute using the

jackknife method [3]𝜎2𝑟 = ∑𝑖 (𝑟𝑖 − 𝑟)2.
 Mildly sneaky as variables need to be independent

for us to be truly happy and edges are correlated...
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Measurements of degree-degree
correlations

Group Network Type Size n Assortativity r Error &r

a Physics coauthorship undirected 52 909 0.363 0.002

a Biology coauthorship undirected 1 520 251 0.127 0.0004

b Mathematics coauthorship undirected 253 339 0.120 0.002

Social c Film actor collaborations undirected 449 913 0.208 0.0002

d Company directors undirected 7 673 0.276 0.004

e Student relationships undirected 573 !0.029 0.037

f Email address books directed 16 881 0.092 0.004

g Power grid undirected 4 941 !0.003 0.013

Technological h Internet undirected 10 697 !0.189 0.002

i World Wide Web directed 269 504 !0.067 0.0002

j Software dependencies directed 3 162 !0.016 0.020

k Protein interactions undirected 2 115 !0.156 0.010

l Metabolic network undirected 765 !0.240 0.007

Biological m Neural network directed 307 !0.226 0.016

n Marine food web directed 134 !0.263 0.037

o Freshwater food web directed 92 !0.326 0.031

 Social networks tend to be assortative (homophily)
 Technological and biological networks tend to be

disassortative
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Spreading on degree-correlated networks

 Next: Generalize our work for random networks
to degree-correlated networks.

 As before, by allowing that a node of degree 𝑘 is
activated by one neighbor with probability 𝐵𝑘1,
we can handle various problems:
1. find the giant component size.
2. find the probability and extent of spread for

simple disease models.
3. find the probability of spreading for simple

threshold models.
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Spreading on degree-correlated networks

 Goal: Find 𝑓𝑛,𝑗 = Pr an edge emanating from a
degree 𝑗 + 1 node leads to a finite active
subcomponent of size 𝑛.

 Repeat: a node of degree 𝑘 is in the game with
probability 𝐵𝑘1.

 Define 𝐵⃗1 = [𝐵𝑘1].
 Plan: Find the generating function𝐹𝑗(𝑥; 𝐵⃗1) = ∑∞𝑛=0 𝑓𝑛,𝑗𝑥𝑛.
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Spreading on degree-correlated networks

 Recursive relationship:𝐹𝑗(𝑥; 𝐵⃗1) = 𝑥0 ∞∑𝑘=0 𝑒𝑗𝑘𝑅𝑗 (1 − 𝐵𝑘+1,1)+ 𝑥 ∞∑𝑘=0 𝑒𝑗𝑘𝑅𝑗 𝐵𝑘+1,1 [𝐹𝑘(𝑥; 𝐵⃗1)]𝑘 .
 First term = Pr (that the first node we reach is not

in the game).
 Second term involves Pr (we hit an active node

which has 𝑘 outgoing edges).
 Next: find average size of active components

reached by following a link from a degree 𝑗 + 1
node = 𝐹 ′𝑗(1; 𝐵⃗1).
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Spreading on degree-correlated networks

 Differentiate 𝐹𝑗(𝑥; 𝐵⃗1), set 𝑥 = 1, and rearrange.

 We use 𝐹𝑘(1; 𝐵⃗1) = 1 which is true when no giant
component exists. We find:𝑅𝑗𝐹 ′𝑗(1; 𝐵⃗1) = ∞∑𝑘=0 𝑒𝑗𝑘𝐵𝑘+1,1+ ∞∑𝑘=0 𝑘𝑒𝑗𝑘𝐵𝑘+1,1𝐹 ′𝑘(1; 𝐵⃗1).

 Rearranging and introducing a sneaky 𝛿𝑗𝑘:∞∑𝑘=0 (𝛿𝑗𝑘𝑅𝑘 − 𝑘𝐵𝑘+1,1𝑒𝑗𝑘) 𝐹 ′𝑘(1; 𝐵⃗1) = ∞∑𝑘=0 𝑒𝑗𝑘𝐵𝑘+1,1.
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Spreading on degree-correlated networks

 In matrix form, we have

AE,𝐵⃗1 ⃗𝐹 ′(1; 𝐵⃗1) = E𝐵⃗1
where[AE,𝐵⃗1]𝑗+1,𝑘+1 = 𝛿𝑗𝑘𝑅𝑘 − 𝑘𝐵𝑘+1,1𝑒𝑗𝑘,[ ⃗𝐹 ′(1; 𝐵⃗1)]𝑘+1 = 𝐹 ′𝑘(1; 𝐵⃗1),[E]𝑗+1,𝑘+1 = 𝑒𝑗𝑘, and [𝐵⃗1]𝑘+1 = 𝐵𝑘+1,1.
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Spreading on degree-correlated networks

 So, in principle at least:⃗𝐹 ′(1; 𝐵⃗1) = A−1
E,𝐵⃗1 E𝐵⃗1.

 Now: as ⃗𝐹 ′(1; 𝐵⃗1), the average size of an active
component reached along an edge, increases, we
move towards a transition to a giant component.

 Right at the transition, the average component
size explodes.

 Exploding inverses of matrices occur when their
determinants are 0.

 The condition is therefore:

detAE,𝐵⃗1 = 0
.
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Spreading on degree-correlated networks
 General condition details:

detAE,𝐵⃗1 = det [𝛿𝑗𝑘𝑅𝑘−1 − (𝑘 − 1)𝐵𝑘,1𝑒𝑗−1,𝑘−1] = 0.
 The above collapses to our standard contagion

condition when 𝑒𝑗𝑘 = 𝑅𝑗𝑅𝑘 (see next slide). [2]

 When 𝐵⃗1 = 𝐵 ⃗1, we have the condition for a simple
disease model’s successful spread

det [𝛿𝑗𝑘𝑅𝑘−1 − 𝐵(𝑘 − 1)𝑒𝑗−1,𝑘−1] = 0.
 When 𝐵⃗1 = ⃗1, we have the condition for the

existence of a giant component:

det [𝛿𝑗𝑘𝑅𝑘−1 − (𝑘 − 1)𝑒𝑗−1,𝑘−1] = 0.
 Bonusville: We’ll find a much better version of this

set of conditions later...
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Spreading on degree-correlated networks

We’ll next find two more pieces:
1. 𝑃trig, the probability of starting a cascade
2. 𝑆, the expected extent of activation given a small

seed.

Triggering probability:
 Generating function:𝐻(𝑥; 𝐵⃗1) = 𝑥 ∞∑𝑘=0 𝑃𝑘 [𝐹𝑘−1(𝑥; 𝐵⃗1)]𝑘 .
 Generating function for vulnerable component

size is more complicated.
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Spreading on degree-correlated networks

 Want probability of not reaching a finite
component.𝑃trig = 𝑆trig =1 − 𝐻(1; 𝐵⃗1)=1 − ∞∑𝑘=0 𝑃𝑘 [𝐹𝑘−1(1; 𝐵⃗1)]𝑘 .

 Last piece: we have to compute 𝐹𝑘−1(1; 𝐵⃗1).
 Nastier (nonlinear)—we have to solve the

recursive expression we started with when 𝑥 = 1:𝐹𝑗(1; 𝐵⃗1) = ∑∞𝑘=0 𝑒𝑗𝑘𝑅𝑗 (1 − 𝐵𝑘+1,1)+∑∞𝑘=0 𝑒𝑗𝑘𝑅𝑗 𝐵𝑘+1,1 [𝐹𝑘(1; 𝐵⃗1)]𝑘 .
 Iterative methods should work here.
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Spreading on degree-correlated networks
 Truly final piece: Find final size using approach of

Gleeson [4], a generalization of that used for
uncorrelated random networks.

 Need to compute 𝜃𝑗,𝑡, the probability that an edge
leading to a degree 𝑗 node is infected at time 𝑡.

 Evolution of edge activity probability:𝜃𝑗,𝑡+1 = 𝐺𝑗( ⃗𝜃𝑡) = 𝜙0 + (1 − 𝜙0)×∞∑𝑘=1 𝑒𝑗−1,𝑘−1𝑅𝑗−1 𝑘−1∑𝑖=0 (𝑘 − 1𝑖 )𝜃 𝑖𝑘,𝑡(1 − 𝜃𝑘,𝑡)𝑘−1−𝑖𝐵𝑘𝑖.
 Overall active fraction’s evolution:𝜙𝑡+1 = 𝜙0+(1−𝜙0) ∞∑𝑘=0 𝑃𝑘 𝑘∑𝑖=0 (𝑘𝑖 )𝜃 𝑖𝑘,𝑡(1−𝜃𝑘,𝑡)𝑘−𝑖𝐵𝑘𝑖.
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Spreading on degree-correlated networks
 As before, these equations give the actual

evolution of 𝜙𝑡 for synchronous updates.
 Contagion condition follows from ⃗𝜃𝑡+1 = ⃗𝐺( ⃗𝜃𝑡).
 Expand ⃗𝐺 around ⃗𝜃0 = ⃗0.𝜃𝑗,𝑡+1 = 𝐺𝑗( ⃗0)+ ∞∑𝑘=1 𝜕𝐺𝑗( ⃗0)𝜕𝜃𝑘,𝑡 𝜃𝑘,𝑡+ 12! ∞∑𝑘=1 𝜕2𝐺𝑗( ⃗0)𝜕𝜃2𝑘,𝑡 𝜃2𝑘,𝑡+…
 If 𝐺𝑗( ⃗0) ≠ 0 for at least one 𝑗, always have some

infection.
 If 𝐺𝑗( ⃗0) = 0 ∀ 𝑗, want largest eigenvalue[𝜕𝐺𝑗(0⃗)𝜕𝜃𝑘,𝑡 ] > 1.
 Condition for spreading is therefore dependent on

eigenvalues of this matrix:𝜕𝐺𝑗( ⃗0)𝜕𝜃𝑘,𝑡 = 𝑒𝑗−1,𝑘−1𝑅𝑗−1 (𝑘 − 1)𝐵𝑘1
Insert question from assignment 9
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How the giant component changes with
assortativity:
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from Newman, 2002 [5]

 More assortative
networks
percolate for
lower average
degrees

 But
disassortative
networks end up
with higher
extents of
spreading.
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