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Basic idea:
 Random networks with arbitrary degree

distributions cover much territory but do not
represent all networks.

 Moving away from pure random networks was a
key first step.

 We can extend in many other directions and a
natural one is to introduce correlations between
different kinds of nodes.

 Node attributes may be anything, e.g.:
1. degree
2. demographics (age, gender, etc.)
3. group affiliation

 We speak of mixing patterns, correlations, biases...
 Networks are still random at base but now have

more global structure.
 Build on work by Newman [5, 6], and Boguñá and

Serano. [1].

PoCS
@pocsvox

Assortativity and
Mixing

Definition

General mixing

Assortativity by
degree

Contagion
Spreading condition

Triggering probability

Expected size

References

.
.
.
.
.

.
4 of 38

General mixing between node categories
 Assume types of nodes are countable, and are

assigned numbers 1, 2, 3, ….
 Consider networks with directed edges.𝑒𝜇𝜈 = Pr( an edge connects a node of type 𝜇

to a node of type 𝜈 )𝑎𝜇 = Pr(an edge comes from a node of type 𝜇)𝑏𝜈 = Pr(an edge leads to a node of type 𝜈)
 Write E = [𝑒𝜇𝜈], ⃗𝑎 = [𝑎𝜇], and �⃗� = [𝑏𝜈].
 Requirements:∑𝜇 𝜈 𝑒𝜇𝜈 = 1, ∑𝜈 𝑒𝜇𝜈 = 𝑎𝜇, and∑𝜇 𝑒𝜇𝜈 = 𝑏𝜈.
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Notes:

 Varying 𝑒𝜇𝜈 allows us to move between the
following:
1. Perfectly assortative networks where nodes only

connect to like nodes, and the network breaks into
subnetworks.
Requires 𝑒𝜇𝜈 = 0 if 𝜇 ≠ 𝜈 and ∑𝜇 𝑒𝜇𝜇 = 1.

2. Uncorrelated networks (as we have studied so far)
For these we must have independence:𝑒𝜇𝜈 = 𝑎𝜇𝑏𝜈.

3. Disassortative networks where nodes connect to
nodes distinct from themselves.

 Disassortative networks can be hard to build and
may require constraints on the 𝑒𝜇𝜈.

 Basic story: level of assortativity reflects the
degree to which nodes are connected to nodes
within their group.
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Correlation coefficient:

 Quantify the level of assortativity with the
following assortativity coefficient [6]:𝑟 = ∑𝜇 𝑒𝜇𝜇 − ∑𝜇 𝑎𝜇𝑏𝜇1 − ∑𝜇 𝑎𝜇𝑏𝜇 = TrE − ||𝐸2||11 − ||𝐸2||1
where || ⋅ ||1 is the 1-norm = sum of a matrix’s
entries.

 TrE is the fraction of edges that are within groups.
 ||𝐸2||1 is the fraction of edges that would be

within groups if connections were random.
 1 − ||𝐸2||1 is a normalization factor so 𝑟max = 1.
 When Tr 𝑒𝜇𝜇 = 1, we have 𝑟 = 1. 
 When 𝑒𝜇𝜇 = 𝑎𝜇𝑏𝜇, we have 𝑟 = 0. 
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Correlation coefficient:

Notes:
 𝑟 = −1 is inaccessible if three or more types are

present.
 Disassortative networks simply have nodes

connected to unlike nodes—no measure of how
unlike nodes are.

 Minimum value of 𝑟 occurs when all links between
non-like nodes: Tr 𝑒𝜇𝜇 = 0.

 𝑟min = −||𝐸2||11 − ||𝐸2||1
where −1 ≤ 𝑟min < 0.
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Scalar quantities
 Now consider nodes defined by a scalar integer

quantity.
 Examples: age in years, height in inches, number

of friends, ...
 𝑒𝑗𝑘 = Pr (a randomly chosen edge connects a node

with value 𝑗 to a node with value 𝑘).
 𝑎𝑗 and 𝑏𝑘 are defined as before.
 Can now measure correlations between nodes

based on this scalar quantity using standard
Pearson correlation coefficient:𝑟 = ∑𝑗 𝑘 𝑗 𝑘(𝑒𝑗𝑘 − 𝑎𝑗𝑏𝑘)𝜎𝑎 𝜎𝑏 = ⟨𝑗𝑘⟩ − ⟨𝑗⟩𝑎⟨𝑘⟩𝑏√⟨𝑗2⟩𝑎 − ⟨𝑗⟩2𝑎√⟨𝑘2⟩𝑏 − ⟨𝑘⟩2𝑏

 This is the observed normalized deviation from
randomness in the product 𝑗𝑘.
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Degree-degree correlations

 Natural correlation is between the degrees of
connected nodes.

 Now define 𝑒𝑗𝑘 with a slight twist:𝑒𝑗𝑘 = Pr( an edge connects a degree 𝑗 + 1 node
to a degree 𝑘 + 1 node )

= Pr( an edge runs between a node of in-degree 𝑗
and a node of out-degree 𝑘 )

 Useful for calculations (as per 𝑅𝑘)
 Important: Must separately define 𝑃0 as the {𝑒𝑗𝑘}

contain no information about isolated nodes.
 Directed networks still fine but we will assume

from here on that 𝑒𝑗𝑘 = 𝑒𝑘𝑗.
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Degree-degree correlations

 Notation reconciliation for undirected networks:𝑟 = ∑𝑗 𝑘 𝑗 𝑘(𝑒𝑗𝑘 − 𝑅𝑗𝑅𝑘)𝜎2𝑅
where, as before, 𝑅𝑘 is the probability that a
randomly chosen edge leads to a node of degree𝑘 + 1, and 𝜎2𝑅 = ∑𝑗 𝑗2𝑅𝑗 − [∑𝑗 𝑗𝑅𝑗]2 .
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Degree-degree correlations

Error estimate for 𝑟:
 Remove edge 𝑖 and recompute 𝑟 to obtain 𝑟𝑖.
 Repeat for all edges and compute using the

jackknife method [3]𝜎2𝑟 = ∑𝑖 (𝑟𝑖 − 𝑟)2.
 Mildly sneaky as variables need to be independent

for us to be truly happy and edges are correlated...
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Measurements of degree-degree
correlations

Group Network Type Size n Assortativity r Error &r

a Physics coauthorship undirected 52 909 0.363 0.002

a Biology coauthorship undirected 1 520 251 0.127 0.0004

b Mathematics coauthorship undirected 253 339 0.120 0.002

Social c Film actor collaborations undirected 449 913 0.208 0.0002

d Company directors undirected 7 673 0.276 0.004

e Student relationships undirected 573 !0.029 0.037

f Email address books directed 16 881 0.092 0.004

g Power grid undirected 4 941 !0.003 0.013

Technological h Internet undirected 10 697 !0.189 0.002

i World Wide Web directed 269 504 !0.067 0.0002

j Software dependencies directed 3 162 !0.016 0.020

k Protein interactions undirected 2 115 !0.156 0.010

l Metabolic network undirected 765 !0.240 0.007

Biological m Neural network directed 307 !0.226 0.016

n Marine food web directed 134 !0.263 0.037

o Freshwater food web directed 92 !0.326 0.031

 Social networks tend to be assortative (homophily)
 Technological and biological networks tend to be

disassortative
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Spreading on degree-correlated networks

 Next: Generalize our work for random networks
to degree-correlated networks.

 As before, by allowing that a node of degree 𝑘 is
activated by one neighbor with probability 𝐵𝑘1,
we can handle various problems:
1. find the giant component size.
2. find the probability and extent of spread for

simple disease models.
3. find the probability of spreading for simple

threshold models.
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Spreading on degree-correlated networks

 Goal: Find 𝑓𝑛,𝑗 = Pr an edge emanating from a
degree 𝑗 + 1 node leads to a finite active
subcomponent of size 𝑛.

 Repeat: a node of degree 𝑘 is in the game with
probability 𝐵𝑘1.

 Define �⃗�1 = [𝐵𝑘1].
 Plan: Find the generating function𝐹𝑗(𝑥; �⃗�1) = ∑∞𝑛=0 𝑓𝑛,𝑗𝑥𝑛.
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Spreading on degree-correlated networks

 Recursive relationship:𝐹𝑗(𝑥; �⃗�1) = 𝑥0 ∞∑𝑘=0 𝑒𝑗𝑘𝑅𝑗 (1 − 𝐵𝑘+1,1)+ 𝑥 ∞∑𝑘=0 𝑒𝑗𝑘𝑅𝑗 𝐵𝑘+1,1 [𝐹𝑘(𝑥; �⃗�1)]𝑘 .
 First term = Pr (that the first node we reach is not

in the game).
 Second term involves Pr (we hit an active node

which has 𝑘 outgoing edges).
 Next: find average size of active components

reached by following a link from a degree 𝑗 + 1
node = 𝐹 ′𝑗(1; �⃗�1).
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Spreading on degree-correlated networks

 Differentiate 𝐹𝑗(𝑥; �⃗�1), set 𝑥 = 1, and rearrange.

 We use 𝐹𝑘(1; �⃗�1) = 1 which is true when no giant
component exists. We find:𝑅𝑗𝐹 ′𝑗(1; �⃗�1) = ∞∑𝑘=0 𝑒𝑗𝑘𝐵𝑘+1,1+ ∞∑𝑘=0 𝑘𝑒𝑗𝑘𝐵𝑘+1,1𝐹 ′𝑘(1; �⃗�1).

 Rearranging and introducing a sneaky 𝛿𝑗𝑘:∞∑𝑘=0 (𝛿𝑗𝑘𝑅𝑘 − 𝑘𝐵𝑘+1,1𝑒𝑗𝑘) 𝐹 ′𝑘(1; �⃗�1) = ∞∑𝑘=0 𝑒𝑗𝑘𝐵𝑘+1,1.
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Spreading on degree-correlated networks

 In matrix form, we have

AE,�⃗�1 ⃗𝐹 ′(1; �⃗�1) = E�⃗�1
where[AE,�⃗�1]𝑗+1,𝑘+1 = 𝛿𝑗𝑘𝑅𝑘 − 𝑘𝐵𝑘+1,1𝑒𝑗𝑘,[ ⃗𝐹 ′(1; �⃗�1)]𝑘+1 = 𝐹 ′𝑘(1; �⃗�1),[E]𝑗+1,𝑘+1 = 𝑒𝑗𝑘, and [�⃗�1]𝑘+1 = 𝐵𝑘+1,1.
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Spreading on degree-correlated networks

 So, in principle at least:⃗𝐹 ′(1; �⃗�1) = A−1
E,�⃗�1 E�⃗�1.

 Now: as ⃗𝐹 ′(1; �⃗�1), the average size of an active
component reached along an edge, increases, we
move towards a transition to a giant component.

 Right at the transition, the average component
size explodes.

 Exploding inverses of matrices occur when their
determinants are 0.

 The condition is therefore:

detAE,�⃗�1 = 0
.
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Spreading on degree-correlated networks
 General condition details:

detAE,�⃗�1 = det [𝛿𝑗𝑘𝑅𝑘−1 − (𝑘 − 1)𝐵𝑘,1𝑒𝑗−1,𝑘−1] = 0.
 The above collapses to our standard contagion

condition when 𝑒𝑗𝑘 = 𝑅𝑗𝑅𝑘 (see next slide). [2]

 When �⃗�1 = 𝐵 ⃗1, we have the condition for a simple
disease model’s successful spread

det [𝛿𝑗𝑘𝑅𝑘−1 − 𝐵(𝑘 − 1)𝑒𝑗−1,𝑘−1] = 0.
 When �⃗�1 = ⃗1, we have the condition for the

existence of a giant component:

det [𝛿𝑗𝑘𝑅𝑘−1 − (𝑘 − 1)𝑒𝑗−1,𝑘−1] = 0.
 Bonusville: We’ll find a much better version of this

set of conditions later...
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Spreading on degree-correlated networks

We’ll next find two more pieces:
1. 𝑃trig, the probability of starting a cascade
2. 𝑆, the expected extent of activation given a small

seed.

Triggering probability:
 Generating function:𝐻(𝑥; �⃗�1) = 𝑥 ∞∑𝑘=0 𝑃𝑘 [𝐹𝑘−1(𝑥; �⃗�1)]𝑘 .
 Generating function for vulnerable component

size is more complicated.
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Spreading on degree-correlated networks

 Want probability of not reaching a finite
component.𝑃trig = 𝑆trig =1 − 𝐻(1; �⃗�1)=1 − ∞∑𝑘=0 𝑃𝑘 [𝐹𝑘−1(1; �⃗�1)]𝑘 .

 Last piece: we have to compute 𝐹𝑘−1(1; �⃗�1).
 Nastier (nonlinear)—we have to solve the

recursive expression we started with when 𝑥 = 1:𝐹𝑗(1; �⃗�1) = ∑∞𝑘=0 𝑒𝑗𝑘𝑅𝑗 (1 − 𝐵𝑘+1,1)+∑∞𝑘=0 𝑒𝑗𝑘𝑅𝑗 𝐵𝑘+1,1 [𝐹𝑘(1; �⃗�1)]𝑘 .
 Iterative methods should work here.
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Spreading on degree-correlated networks
 Truly final piece: Find final size using approach of

Gleeson [4], a generalization of that used for
uncorrelated random networks.

 Need to compute 𝜃𝑗,𝑡, the probability that an edge
leading to a degree 𝑗 node is infected at time 𝑡.

 Evolution of edge activity probability:𝜃𝑗,𝑡+1 = 𝐺𝑗( ⃗𝜃𝑡) = 𝜙0 + (1 − 𝜙0)×∞∑𝑘=1 𝑒𝑗−1,𝑘−1𝑅𝑗−1 𝑘−1∑𝑖=0 (𝑘 − 1𝑖 )𝜃 𝑖𝑘,𝑡(1 − 𝜃𝑘,𝑡)𝑘−1−𝑖𝐵𝑘𝑖.
 Overall active fraction’s evolution:𝜙𝑡+1 = 𝜙0+(1−𝜙0) ∞∑𝑘=0 𝑃𝑘 𝑘∑𝑖=0 (𝑘𝑖 )𝜃 𝑖𝑘,𝑡(1−𝜃𝑘,𝑡)𝑘−𝑖𝐵𝑘𝑖.
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Spreading on degree-correlated networks
 As before, these equations give the actual

evolution of 𝜙𝑡 for synchronous updates.
 Contagion condition follows from ⃗𝜃𝑡+1 = ⃗𝐺( ⃗𝜃𝑡).
 Expand ⃗𝐺 around ⃗𝜃0 = ⃗0.𝜃𝑗,𝑡+1 = 𝐺𝑗( ⃗0)+ ∞∑𝑘=1 𝜕𝐺𝑗( ⃗0)𝜕𝜃𝑘,𝑡 𝜃𝑘,𝑡+ 12! ∞∑𝑘=1 𝜕2𝐺𝑗( ⃗0)𝜕𝜃2𝑘,𝑡 𝜃2𝑘,𝑡+…
 If 𝐺𝑗( ⃗0) ≠ 0 for at least one 𝑗, always have some

infection.
 If 𝐺𝑗( ⃗0) = 0 ∀ 𝑗, want largest eigenvalue[𝜕𝐺𝑗(0⃗)𝜕𝜃𝑘,𝑡 ] > 1.
 Condition for spreading is therefore dependent on

eigenvalues of this matrix:𝜕𝐺𝑗( ⃗0)𝜕𝜃𝑘,𝑡 = 𝑒𝑗−1,𝑘−1𝑅𝑗−1 (𝑘 − 1)𝐵𝑘1
Insert question from assignment 9
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How the giant component changes with
assortativity:
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from Newman, 2002 [5]

 More assortative
networks
percolate for
lower average
degrees

 But
disassortative
networks end up
with higher
extents of
spreading.
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