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®© Ex. The Monty Hall Problem.(Z'

here @

2. Logarithmic scales.

The PoCSverse
Power-Law Size
Distributions
5of 78

Our Intuition
Definition
Examples
Wild vs. Mild
CCDFs

Zipf's law
Zipf < CCDF

References

Pl~x"


https://pdodds.w3.uvm.edu/teaching/courses/2024-2025pocsverse
http://en.wikipedia.org/wiki/Monty_Hall_problem
http://www.sciencenews.org/view/generic/id/60598/title/When_intuition_and_math_probably_look_wrong
http://en.wikipedia.org/wiki/Boy_or_Girl_paradox
http://www.radiolab.org/2009/nov/30/
http://en.wikipedia.org/wiki/Benford's_law
https://en.wikipedia.org/wiki/Dunning–Kruger_effect
https://en.wikipedia.org/wiki/Dunning–Kruger_effect

Two of the many things we struggle with
cognitively:
1. Probability.
®© Ex. The Monty Hall Problem.(Z'

here @

2. Logarithmic scales.

On counting and logarithms:

—
,O‘ 3 ,! < Listen to Radiolab’s 2009 piece:
1188 “Numbers.” 3\

The PoCSverse
Power-Law Size
Distributions
5of 78

Our Intuition
Definition
Examples
Wild vs. Mild
CCDFs

Zipf's law
Zipf < CCDF

References

Pl~x"


https://pdodds.w3.uvm.edu/teaching/courses/2024-2025pocsverse
http://en.wikipedia.org/wiki/Monty_Hall_problem
http://www.sciencenews.org/view/generic/id/60598/title/When_intuition_and_math_probably_look_wrong
http://en.wikipedia.org/wiki/Boy_or_Girl_paradox
http://www.radiolab.org/2009/nov/30/
http://en.wikipedia.org/wiki/Benford's_law
https://en.wikipedia.org/wiki/Dunning–Kruger_effect
https://en.wikipedia.org/wiki/Dunning–Kruger_effect

Two of the many things we struggle with
cognitively:
1. Probability.
®© Ex. The Monty Hall Problem.(Z'

here @

2. Logarithmic scales.

On counting and logarithms:

E¥ 5 Listen to Radiolab’s 2009 piece:
J “Numbers.”".

Also to be enjoyed: the magnificence of the
Dunning-Kruger effect('
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Wealth distribution in the United States:

= Top 20% = 2nd 20% = Middle 20% u 4th 20% = Bottom 20%
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Fig. 2. The actual United States wealth distribution plotted against the estimated and ideal
distributions across all respondents. Because of their small percentage share of total
wealth, both the “4th 20%" value (0.2%) and the “Bottom 20%" value (0.1%) are not visible
in the “Actual” distribution.

“Building a better America—One wealth quintile at a time”
Norton and Ariely, 2011.11°!
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Wealth distribution in the United States:
wTop20% ®™2nd20% = Middle20% = 4th20% = Bottom 20%
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Estimated ($50-100K)
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Estimated (Kerry Voters) — e ¥
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Fig. 3. The actual United States wealth distribution plotted against the estimated and ideal
distributions of respondents of different income levels, political affiliations, and genders.
Because of their small percentage share of total wealth, both the “4th 20%” value (0.2%)
and the “Bottom 20%" value (0.1%) are not visible in the “Actual” distribution.

<% A highly watched video based on this research is
here.('
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The sizes of many systems’ elements appear to obey an

inverse power-law size distribution:

P(size=z) ~ca™?

wherer 0 <ipt By <ipe

and ~ > 1.
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Negative linear relationship in log-log space:

log, ,P(z) = log, ,c —log, =
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The sizes of many systems' elements appear to obey an
inverse power-law size distribution:

P(size=z) ~ca™?
where 0<zpin <z <ZTmax and > 1.
Zmin = lower cutoff, z,,,,, = upper cutoff
Negative linear relationship in log-log space:
log, ,P(z) = log, ,c —log, =

We use base 10 because we are good people.
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Size distributions:

Word frequency

Node degree in networks: # friends, # hyperlinks,
etc.
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Size distributions:

Word frequency

Node degree in networks: # friends, # hyperlinks,
etc.

# citations for articles, court decisions, etc.
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Size distributions:

Word frequency

Node degree in networks: # friends, # hyperlinks,
etc.

# citations for articles, court decisions, etc.

P(k) ~ck™

Whereik .= k <k .,

Obvious fail for k£ = 0.
Again, typically a description of distribution’s tail.
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Word frequency:

rank word % q rank word % q
T the 6.8872 1945, apply 0.0055
2. of 3.5839 1946. vital 0.0055
3. and 2.8401 1947. September 0.0055
4. to 2.5744 1948. review 0.0055
5. a 2.299 1949. wage 0.0055
6. in 2.1010 1950. motor 0.0055
7. that 1.0428 1951. fifteen 0.0055
8. is 0.9943 1952. regarded 0.0055
9. was 0.9661 1953. draw 0.0055

10. he 0.9392 1954, wheel 0.0055
11 for 0.9340 1955. organized 0.0055
12. it 0.8623 1956. vision 0.0055
13.  with 0.7176 1957. wild  0.0055
14. as 0.7137 1958. Palmer 0.0055
{li=x his 0.6886 1959. intensity  0.0055
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The statistics of surprise—words:

First—a Gaussian example:
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mean u = 10, variance o2 = 1.

Activity: Sketch P(z) ~x ! forz =1toz = 10".
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Also known as the ‘Exceedance Probability.’
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The statistics of surprise:

N(M>m) [earthquakes/year]
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From both the very awkwardly similar Christensen
etal. and Bak et al.
“Unified scaling law for earthquakes”* '
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The statistics of surprise:

‘What is perhaps most surprising about the Japan
earthquake is how misleading history can be. In the
past 300 years, no earthquake nearly that
large—nothing larger than magnitude eight—had
struck in the Japan subduction zone. That, in turn, led
to assumptions about how large a tsunami might
strike the coast.’

“It did them a giant disservice,” said Dr. Stein of the
geological survey. That is not the first time that the
earthquake potential of a fault has been
underestimated. Most geophysicists did not think the
Sumatra fault could generate a magnitude 9.1
earthquake, ...
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Zhu et al.,
PLoS ONE, 8, 79161, 2013.[%
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recipes.
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e e Cumulative Distribution
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“On a class of skew distribution

Herbert A. Simon,
Biometrika, 42, 425-440, 1955.1°]

“Power laws, Pareto distributions and Zipf's
M. E. J. Newman,

Contemporary Physics, 46, 323-351,

2005. 141

“Power-law distributions in empirical

Clauset, Shalizi, and Newman,
SIAM Review, 51, 661-703, 2009. [°!
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Size distributions:

Some examples:
< Earthquake magnitude (Gutenberg-Richter

law@): P P(M) oc M2
<& # war deaths: "™ P(d) oc d~18
&% Sizes of forest fires [°!
& Sizes of cities: ['®! P(n) oc n=21
<& # links to and from websites [*/

<= Note: Exponents range in error
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<& The gravitational force at a random point in the Zipf - CCDF

universe: "% P(F) o« F~5/2, (See the Holtsmark References



https://pdodds.w3.uvm.edu/teaching/courses/2024-2025pocsverse
http://en.wikipedia.org/wiki/Holtsmark_distribution
http://en.wikipedia.org/wiki/Holtsmark_distribution
http://en.wikipedia.org/wiki/Stable_distribution

Size distributions:

More examples:

<o # citations to papers:1® 4 P(k) o k3.
< Individual wealth (maybe): P(W) oc W2,

<= Distributions of tree trunk diameters: P(d) o d—2.

<& The gravitational force at a random point in the
universe: "% P(F) o« F~5/2, (See the Holtsmark

< Diameter of moon craters:"?! P(d) oc d=3.
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More examples:

<o # citations to papers:1® 4 P(k) o k3.
< Individual wealth (maybe): P(W) oc W2,

<= Distributions of tree trunk diameters: P(d) o d—2.

<& The gravitational force at a random point in the
universe: "% P(F) o« F~5/2, (See the Holtsmark

< Diameter of moon craters:"?! P(d) oc d=3.
< Word frequency:!'® e.g., P(k) o k=22 (variable).
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<o # citations to papers:1® 4 P(k) o k3.
< Individual wealth (maybe): P(W) oc W2,

<= Distributions of tree trunk diameters: P(d) o d—2.

<& The gravitational force at a random point in the
universe: "% P(F) o« F~5/2, (See the Holtsmark

< Diameter of moon craters:"?! P(d) oc d=3.
< Word frequency:!'® e.g., P(k) o k=22 (variable).
<o # religious adherents in cults: ®! P(k) oc k~1:8+0-1,
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Our Intuition

More examples:

Definition
<o # citations to papers:1® 4 P(k) o k3. Examples
<o Individual wealth (maybe): P(W) oc W2, ZVC”S:'M”C'
<= Distributions of tree trunk diameters: P(d) o d—2. T
<& The gravitational force at a random point in the Zipf - CCDF

universe: "% P(F) o« F~5/2, (See the Holtsmark References

< Diameter of moon craters:"?! P(d) oc d=3.
< Word frequency:!'® e.g., P(k) o k=22 (variable).
<o # religious adherents in cults: ®! P(k) oc k~1:8+0-1,

<& # sightings of birds per species (North American
Breeding Bird Survey for 2003): P! P(k) oc k=21£01,
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|\/|O|’e examples Our Intuition

Definition

<o # citations to papers:1® 4 P(k) o k3. Examples
<o Individual wealth (maybe): P(W) oc W—2. ZV;‘SFVS-MM
<% Distributions of tree trunk diameters: P(d) o d—2. T
<& The gravitational force at a random point in the Zipf - CCDF
universe: "% P(F) o« F~5/2, (See the Holtsmark References

< Diameter of moon craters:"?! P(d) oc d=3.
< Word frequency:!'® e.g., P(k) o k=22 (variable).
<o # religious adherents in cults: ®! P(k) oc k~1:8+0-1,

<& # sightings of birds per species (North American
Breeding Bird Survey for 2003): P! P(k) oc k=21£0-1,

& # species per genus:[1816:5] p(g) o p=2402,
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Basic parameters of the data sets described in se , along with their power-law fits and the corre ding p-values (: fi values
are denoted in bold).
Quantity n (z) o Tmax Tmin Ttail P
count of word use 18855 11.14 148.33 14 086 T2 2958 + 987 0.49
protein interaction degree 1846 2.34 3.05 56 5+2 204 + 263 0.31
metabolic degree 1641 5.68 17.81 468 4+1 748 £ 136 0.00
Internet degree 22688 5.63 37.83 2583 21+9 770 £1124 0.29
telephone calls received 51360423 3.88 179.09 375746 120 £ 49 102592 + 210 147 0.63
intensity of wars 115 15.70 49.97 382 2.1+£35 70+ 14 0.20
tack severity 9101 4.35 31.58 2749 12+4 547 £+ 1663 0.68
e (kilobytes) 226 386 7.36 57.94 10971 36.25 + 22.74 6794 £ 2232 0.00
species per genus 509 5.59 6.94 56 4£2 233 £138 0.10
bird species sightings 591 | 3384.36  10952.34 138705 6679 + 2463 66 + 41 0.55
blackouts (x 10‘7) 211 253.87 610.31 7500 230 £ 90 59 £ 35 0.62
sales of books (x10%) 633 | 1986.67 1396.60 19077 2400 £ 430 139 £ 115 0.66
population of cities (x10%) 19447 9.00 77.83 8009 52.46 +=11.88 2.37(8) 580 £ 177 0.76
email address books size 4581 12.45 21.49 333 5721 3.5(6) 196 + 449 0.16
forest fire size (acres) 203 785 20.99 4121 6324 + 3487 2.2(3) 521 & 6801 0.05
solar flare intensity 12773 20.59 231300 323 +£89 1.79(2) 1711 + 384 1.00
quake intensity (x10%) 19302 563.83 63 096 0.794 +80.198  1.64(4) 11697 £ 2159 0.00
religious followers (x106) 103 136.64 1050 3.85 £ 1.60 1.8(1) 39+ 26 0.42
freq. of surnames (x10%) 2753 113.99 2502 111.92 & 40.67 2.5(2) 239 £215 0.20
net worth (mil. USD) 400 4167.35 46 000 900 £ 364 2.3(1) 302477 0.00
citations to papers 415229 44.02 8904 160 + 35 3.16(6) 3455 + 1859 0.20
papers authored 401 445 16.52 1416 133+ 13 4.3(1) 988 + 377 0.90
hits to web sites 119724 392.52 129 641 2+13 1.81(8) 50981 £ 16 898 0.00
links to web sites 241428853 9.15 106871.65 1199466 3684 £+ 151 2.336(9) 28 986 + 1560 0.00

We'll explore various exponent measurement
techniques in assignments.
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Mild versus Wild (Mandelbrot) 2

Example: Height versus wealth. Zipfs law
Zipf < CCDF

References
THE

BLACK SWAN
See “The Black Swan” by Nassim

» Taleb. ['7)
s Terrible if successful framing:
HIGHLY IMPROBABLI Black swans are nOt that
surprising ...

Nassim Nicholas Taleb
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FIGURE 1: ONE THOUSAND AND ONE DAYS OF HISTORY
Examples
140 Wild vs. Mild
CCDFs
120
Zipf's law
100
5 : Zipf < CCDF
o 80 »
» SURPRISE! References
2 60
m
40
20
0
200 400 600 800 1000
DAYS

A turkey before and after Thanksgiving. The history of a process over a thousand
days tells you nothing about what Is to happen next. This naive projection of the fu-
ture from the past can be applied to anything.

From “The Black Swan” 1!
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Size distributions:

Power-law size distributions are
sometimes called
Pareto distributions £ after Italian

Pareto noted wealth in Italy was
distributed unevenly (80/20 rule;
misleading, see later).

Term used especially by
practitioners of the Dismal
Science (.

The PoCSverse
Power-Law Size
Distributions
37 0of 78

Our Intuition
Definition
Examples
Wild vs. Mild
Zipf's law
Zipf < CCDF

References



https://pdodds.w3.uvm.edu/teaching/courses/2024-2025pocsverse
http://en.wikipedia.org/wiki/Pareto_distribution
http://en.wikipedia.org/wiki/Vilfredo_Pareto
http://en.wikipedia.org/wiki/The_dismal_science
http://en.wikipedia.org/wiki/The_dismal_science

Devilish power-law size distribution details: rowercawsie

Distributions
38 of 78

Our Intuition
AR Definition
Exhibit A: et
& Given P(z) =crx "With0 < o < m < 2 wild vs. Mild
the mean is (v # 2): el

£ c 2 2ty Zipf's law
(x) = 55 Tmax — Lmin | - Zipf < CCDF

References

Insert assignment question (%'



https://pdodds.w3.uvm.edu/teaching/courses/2024-2025pocsverse
https://pdodds.w3.uvm.edu/teaching/courses/2024-2025pocsverse/assignments/

Devilish power-law size distribution details:

Exhibit A:
GiverR B (z) Sco WwWith 0 < zpriampi e wii |
the mean is (y # 2):

c - -
(z) = e (x?na’; _x?nir;y) .

Mean ‘blows up’ with upper cutoff if v < 2.
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Examples
GIVeEER (o) = o BWIth 0 o memp o pid ol Wild vs. Mild
the mean is (y # 2): cCDFs

£ C 2 2~ Zipf's law
(z) = R, Tmax — Lmin | - Zipf < CCDF

References
Mean ‘blows up’ with upper cutoff if v < 2.
Mean depends on lower cutoff if v > 2.
~ < 2: Typical sample is large.

Insert assignment question (%'
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Our Intuition

Definition

Examples
GIVeEER (o) = o BWIth 0 o memp o pid ol Wild vs. Mild
the mean is (y # 2): cCDFs
Zipf's law
<CL’> = Q%Y (x?n_a’; S x?ﬂ_ll;y) x Zipf < CCDF

References
Mean ‘blows up’ with upper cutoff if v < 2.
Mean depends on lower cutoff if v > 2.

~ < 2: Typical sample is large.
~ > 2: Typical sample is small.

Insert assignment question (%'
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And in general ...

Moments:
<= All moments depend only on cutoffs.

& No internal scale that dominates/matters.
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All moments depend only on cutoffs.

No internal scale that dominates/matters.
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And in general ...

Moments:
<= All moments depend only on cutoffs.

& No internal scale that dominates/matters.

<= Compare to a Gaussian, exponential, etc.

For many real size distributions: 2 < v < 3
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And in general ...

All moments depend only on cutoffs.

No internal scale that dominates/matters.

Compare to a Gaussian, exponential, etc.

mean is finite (depends on lower cutoff)
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All moments depend only on cutoffs. E;T:“VZ“G;HC‘
No internal scale that dominates/matters. bl
Compare to a Gaussian, exponential, etc. Zipfs law

Zipf < CCDF

References

mean is finite (depends on lower cutoff)
o2 = variance is ‘infinite’ (depends on upper cutoff)

Insert assignment question &'
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All moments depend only on cutoffs. EVX::“VZ“E;HC‘
No internal scale that dominates/matters. bl
Compare to a Gaussian, exponential, etc. Zipfs law

Zipf < CCDF

References

mean is finite (depends on lower cutoff)
o2 = variance is ‘infinite’ (depends on upper cutoff)
Width of distribution is ‘infinite’
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Definition
All moments depend only on cutoffs. E;T;“Vz"e;“d
No internal scale that dominates/matters. bl
Compare to a Gaussian, exponential, etc. Zipfs law

Zipf < CCDF

References

mean is finite (depends on lower cutoff)

o2 = variance is ‘infinite’ (depends on upper cutoff)
Width of distribution is ‘infinite’

If v > 3, distribution is less terrifying and may be
easily confused with other kinds of distributions.

Insert assignment question (%'
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Standard deviation is a mathematical e

: : Examples
convenience: wild vs. Mild

<o Variance is nice analytically ... CCDFs
Zipf's law
Zipf < CCDF

References



https://pdodds.w3.uvm.edu/teaching/courses/2024-2025pocsverse

Moments

Variance is nice analytically ...
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Mean average deviation (MAD) = (|z — (z)|)
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Mean average deviation (MAD) = (|z — (z)|)
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Moments

Variance is nice analytically ...
Another measure of distribution width:

Mean average deviation (MAD) = (|z — (z)|)
For a pure power law with 2 < v < 3:
(|lz — (z)|) is finite.

But MAD is mildly unpleasant analytically ...
We still speak of infinite ‘width’ if v < 3.
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How sample sizes grow ...

Giver
We can show that after n samples, we expect the
largest sample to be’

T Z c/n1/<'y_1)

Insert assignment question 4’

'Later, we see that the largest sample grows as n” where p is
the Zipf exponent
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How sample sizes grow ...

We can show that after n samples, we expect the
largest sample to be’

45, 2 c/n1/<'y_1)

Sampling from a finite-variance distribution gives
a much slower growth with n.

Insert assignment question 4’

'Later, we see that the largest sample grows as n” where p is
the Zipf exponent
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Distributions
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Sampling from a finite-variance distribution gives References

a much slower growth with n.
e.g., for P(z) = Xe %, we find

1
i X|nn.

Insert assignment question 4’

'Later, we see that the largest sample grows as n” where p is
the Zipf exponent
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& CCDFs
% /g 2 Zipf's law
10
3 = Zipf < CCDF
=8
5 éﬁ ; References
1 4
0 2
0
1 2 3 4 B; 6 1 2 2 4 5 6
log,, IV log;o IV

Fit for 4= 5/2:%k,.5, ~ IN:860x0.066 (syblinear)
Fit for v = 3/2: kpax ~ N2003+£0-215 (syperlinear)

295% confidence interval
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Back to understanding the 80/20 rule:

Imagine a population of n people with variable z
for individual wealth.

Define N(x) = cz~7 as the distribution of wealth x.
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Back to understanding the 80/20 rule:

Imagine a population of n people with variable z
for individual wealth.

Define N(x) = cz~7 as the distribution of wealth x.

Must have [* dz N(z) = n.
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Back to understanding the 80/20 rule:

Imagine a population of n people with variable z
for individual wealth.

Define N(x) = cz~7 as the distribution of wealth x.

Must have [* dz N(z) = n.

Total wealth Win the system:
W [ oda-p Ny

Lmin
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Back to understanding the 80/20 rule:

Imagine a population of n people with variable z
for individual wealth.

Define N(x) = cz~7 as the distribution of wealth x.

Must have [* dz N(z) = n.

Total wealth Win the system:
W [ oda-p Ny

Imagine that the bottom 1006, percent of the
population holds 100 6.4 Percent of the wealth.
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Back to understanding the 80/20 rule:

Imagine a population of n people with variable z
for individual wealth.

Define N(x) = cz~7 as the distribution of wealth x.
Must have [* dz N(z) = n.

Total wealth Win the system:

W:fzoo dz zN(z).

Imagine that the bottom 1006, percent of the
population holds 100 6.4 Percent of the wealth.

Find v depends on 0., and fye,itn as

i i

(1_90)

Ir’;p B (1)
s (170wealth)

In
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Back to understanding the 80/20 rule:

Imagine a population of n people with variable z
for individual wealth.

Define N(x) = cz~7 as the distribution of wealth x.
Must have [* dz N(z) = n.

Total wealth Win the system:

szzoo dz zN(z).

Imagine that the bottom 1006, percent of the
population holds 100 6.4 Percent of the wealth.

Find v depends on 0., and fye,itn as

i i

(1_90)

Ir:p B (1)
s (170wealth)

In

1

(179pop)

Pleasant detail: z,,,,, does not matter.
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Back to understanding the 80/20 rule:

Imagine a population of n people with variable z
for individual wealth.

Define N(x) = cz~7 as the distribution of wealth x.
Must have [* dz N(z) = n.

Total wealth Win the system:

W = fzoo dz zN(z).

Imagine that the bottom 1006, percent of the
population holds 100 6.4 Percent of the wealth.

Find v depends on 0., and fye,itn as

1
(1_9pop) 1
e )—In e (D

(179p0p (170wealth)

In

Pleasant detail: z,,,,, does not matter.
Insert assignment question (£
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80/20, v, and the Gini coefficent G g s

Distributions
50 of 78
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0
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The top 1% owns 52.3%, the top 0.1% 38.4%, the top 0.01% 27.9%, the top
10=7% 5.6%, ...
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v~ 18.8.
100 Gp0p 100 Oyyeaith [ 100(1 — 6pop) [ 100(1 — Oyeaith) |

20 18.99 80 81.01
51 49 49 51
80 78.11 20 21.89
90 88.62 10 11.38
99 98.71 1 1.29

100 — 1071 99.85 107t 0.15

100 — 102 99.98 102 0.02

100 — 1073 100.00 1073 0.00
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~IRDr.6:
1000505 100 O eqitn | P00(1 —6500) [ 1000 =0t} |
20 3.05 80 96.95
50 9.16 50 90.84
80 20 20 80
90 27.33 10 72.67
99 47.19 1 52.81
100 — 1071 61.62 101 38.38
100 — 10~2 72.11 102 27.89
100 — 1073 79.73 10-3 20.27
100 — 10~% 85.27 104 14.73
100 —107° 89.30 10~° 10.70
100 — 106 92.22 10°6 7.78
100 — 1077 94.35 1077 5.65
100 — 108 95.89 10-8 4.11
100 — 1079 97.02 109 2.98
100 — 10710 97.83 10-10 D17
100 — 1011 98.42 10~ 11 1.58
100 — 1012 98.85 10-12 1.15
100 — 10713 99.17 10~13 0.83
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v =~ 2.002.
100 60p 100 O eqitn | P00(1 —6500) [ 1000 =0t} |

20 0.05 80 99.95
50 0.15 50 99.85
80 0.35 20 99.65
100 — 10t 0.50 10! 99.50

99 1 1 99
100 — 1071 1.50 101 98.50
100 — 1072 1.99 1072 98.01
100 — 1073 2.48 10-3 97.52
100 — 10~% 2.97 104 97.03
100 —107° 3.46 10~° 96.54
100 — 106 3.94 10°6 96.06
100 — 1077 4.42 1077 95.58
100 — 108 4,90 10-8 95.10
100 — 1079 5.38 109 94.62
100 — 10710 5.85 10-10 94.15
100 — 1011 6.32 10~ 11 93.68
100 — 1012 6.79 10-12 93.21
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Zipfian rank-frequency plots
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e Kingsley Zipf

Noted various rank distributions
have power-law tails, often with exponent -1
(word frequency, city sizes, ...)

Zipf's 1949 Magnum Opus (£

We'll study Zipf's law in depth ...
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Zipfian rank-frequency plots

Given a collection of entities, rank them by size,
largest to smallest.

x, = the size of the rth ranked entity.
r = 1 corresponds to the largest size.

Example: z; could be the frequency of occurrence
of the most common word in a text.
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NP, (z) = the number of objects with size at least =
where N = total number of objects.

If an object has size z,, then NP, (z,) is its rank r.

So

R g e e v e i

i

The PoCSverse
Power-Law Size
Distributions
66 of 78

Our Intuition
Definition
Examples
Wild vs. Mild
CCDFs

Zipf's law
Zipf < CCDF

References



https://pdodds.w3.uvm.edu/teaching/courses/2024-2025pocsverse

NP, (z) = the number of objects with size at least =
where N = total number of objects.

If an object has size z,, then NP, (z,) is its rank r.

So

R g e e v e i

i

x 2y HE since P @rew

The PoCSverse
Power-Law Size
Distributions
66 of 78

Our Intuition
Definition
Examples
Wild vs. Mild
CCDFs

Zipf's law
Zipf < CCDF

References



https://pdodds.w3.uvm.edu/teaching/courses/2024-2025pocsverse

NP, (z) = the number of objects with size at least =
where N = total number of objects.

If an object has size z,, then NP, (z,) is its rank r.

So

R g e e v e i
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x 2y HE since P @rew

We therefore have 1 = —(y — 1)(—a) or:
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NP, (z) = the number of objects with size at least =
where N = total number of objects.

If an object has size z,, then NP, (z,) is its rank r.

So

R g e e v e i

i

x 2y HE since P @rew

We therefore have 1 = —(y — 1)(—a) or:

1
'\/71

A rank distribution exponent of a = 1 corresponds to a

size distribution exponent v = 2.
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“Zipf's Law in the Popularity Distribution of

Blasius and Tonjes,
Phys. Rev. Lett., 103, 218701, 2009. ©*/

<> Examined all games of varying game depth d in a set of
chess databases.
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“Zipf's Law in the Popularity Distribution of

Blasius and Tonjes,
Phys. Rev. Lett., 103, 218701, 2009. !

Examined all games of varying game depth d in a set of
chess databases.

n = popularity = how many times a specific game path
appears in databases.
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=" | “Zipf's Law in the Popularity Distribution of

Blasius and Tonjes,
Phys. Rev. Lett., 103, 218701, 2009. !

Examined all games of varying game depth d in a set of
chess databases.

n = popularity = how many times a specific game path
appears in databases.

S(n;d) = number of depth d games with popularity n.
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“Zipf's Law in the Popularity Distribution of

Blasius and Tonjes,
Phys. Rev. Lett., 103, 218701, 2009. !

Examined all games of varying game depth d in a set of
chess databases.

n = popularity = how many times a specific game path
appears in databases.

S(n;d) = number of depth d games with popularity n.

Show “the frequencies of opening moves are
distributed according to a power law with an exponent
that increases linearly with the game depth, whereas
the pooled distribution of all opening weights follows
Zipf's law with universal exponent.”
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“Zipf's Law in the Popularity Distribution of

Blasius and Tonjes,
Phys. Rev. Lett., 103, 218701, 2009. !

Examined all games of varying game depth d in a set of
chess databases.

n = popularity = how many times a specific game path
appears in databases.

S(n;d) = number of depth d games with popularity n.

Show “the frequencies of opening moves are
distributed according to a power law with an exponent
that increases linearly with the game depth, whereas
the pooled distribution of all opening weights follows
Zipf's law with universal exponent.”

Propose hierarchical fragmentation model that
produces self-similar game trees.
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FIG. 1 (color online). (a) Schematic representation of the
weighted game tree of chess based on the SCIDBASE [6] for the
first three half moves. Each node indicates a state of the game.
Possible game continuations are shown as solid lines together
with the branching ratios r,. Dotted lines symbolize other game
continuations, which are not shown. (b) Alternative representa-
tion hasizing the i ion of the set of
games, here indicated for games following a 1.d4 opening until
the fourth half move d = 4. Each node o is represented by a box
of a size proportional to its frequency 7,,. In the subsequent half
move these games split into subsets (indicated vertically below)
according to the possible game continuations. Highlighted in (a)
and (b) is a popular opening sequence 1.d4 Nf6 2.c4 e6 (Indian
defense).
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FIG. 2 (color online). (a) Histogram of weight frequencies
S(n) of openings up to d = 40 in the Scid database and with
logarithmic binning. A straight line fit (not shown) yields an
exponent of a = 2.05 with a goodness of fit R? > 0.9992. For
comparison, the Zipf distribution Eq. (8) with x = 1 is indicated
as a solid line. Inset: number C(n) = ¥ N_ | S(m) of openings
with a popularity m > n. C(n) follows a power law with ex-
ponent a = 1.04 (R? = 0.994). (b) Number S,(n) of openings of
depth d with a given popularity n for d = 16 and histograms
with logarithmic binning for d = 4, d = 16, and d = 22. Solid
lines are ion lines to the logari ly binned data
(R? > 0.99 for d < 35). Inset: slope a, of the regression line
as a function of d and the analytical estimation Eq. (6) using
N = 1.4 X 10° and 8 = 0 (solid line).
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Don Bradman'’s batting average (£

= 166% next best.
That's pretty solid.
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= 166% next best.
<% That's pretty solid.

<% Later in the course: Understanding success—
is the Mona Lisa like Don Bradman?

The PoCSverse
Power-Law Size
Distributions
70 of 78

Our Intuition
Definition
Examples
Wild vs. Mild
CCDFs

Zipf's law
Zipf < CCDF

References



https://pdodds.w3.uvm.edu/teaching/courses/2024-2025pocsverse
http://en.wikipedia.org/wiki/Donald_Bradman
http://en.wikipedia.org/wiki/Batting_average

The PoCSverse
Power-Law Size
Distributions
71 of 78

Our Intuition

Definition
Examples
Wild vs. Mild
CCDFs
Zipf's law
Zipf < CCDF

References

youtube &'

was “Something like the tide”



https://pdodds.w3.uvm.edu/teaching/courses/2024-2025pocsverse
https://pdodds.w3.uvm.edu/videos/2014-12-13Don_Bradman_in_How_I_Play_Cricket-9o6vTXgYdqA.mp4
https://pdodds.w3.uvm.edu/videos/2014-12-13Don_Bradman_in_How_I_Play_Cricket-9o6vTXgYdqA.mp4
https://www.youtube.com/watch?v=9o6vTXgYdqA
https://en.wikipedia.org/wiki/Paul_Kelly_(Australian_musician)
https://www.youtube.com/watch?v=FeG8hqQw1U8

The PoCSverse
Power-Law Size
Distributions
72 0f 78

Our Intuition
Definition
Examples
Wild vs. Mild
CCDFs

Zipf's law
Zipf < CCDF

References



https://pdodds.w3.uvm.edu/teaching/courses/2024-2025pocsverse
https://pdodds.w3.uvm.edu/videos/2018-06-20Hand_Feeding_and_Playing_With_A_Friendly_Platypus-a6QHzIJO5a8.mp4
https://pdodds.w3.uvm.edu/videos/2018-06-20Hand_Feeding_and_Playing_With_A_Friendly_Platypus-a6QHzIJO5a8.mp4
https://www.youtube.com/watch?v=a6QHzIJO5a8

References |

[1]

[2]

[3]

[4]

P. Bak, K. Christensen, L. Danon, and T. Scanlon.
Unified scaling law for earthquakes.

Phys. Rev. Lett., 88:178501, 2002. pdf('

A.-L. Barabasi and R. Albert.
Emergence of scaling in random networks.
Science, 286:509-511, 1999. pdf(¥'

B. Blasius and R. Ténjes.

Zipf's law in the popularity distribution of chess
openings.

Phys. Rev. Lett., 103:218701, 2009. pdf(4'

K. Christensen, L. Danon, T. Scanlon, and P. Bak.
Unified scaling law for earthquakes.

Proc. Natl. Acad. Sci., 99:2509-2513, 2002. pdf(Z'

The PoCSverse
Power-Law Size
Distributions
73 0f 78

Our Intuition
Definition
Examples
Wild vs. Mild
CCDFs

Zipf's law
Zipf < CCDF

References



https://pdodds.w3.uvm.edu/teaching/courses/2024-2025pocsverse
http://pdodds.w3.uvm.edu/research/papers/others/2002/bak2002a.pdf
http://pdodds.w3.uvm.edu/research/papers/others/1999/barabasi1999a.pdf
http://pdodds.w3.uvm.edu/research/papers/others/2009/blasius2009a.pdf
http://pdodds.w3.uvm.edu/research/papers/others/2002/christensen2002a.pdf

References Il

[5]

[6]

[7]

A. Clauset, C. R. Shalizi, and M. E. . Newman.
Power-law distributions in empirical data.
SIAM Review, 51:661-703, 2009. pdf(£'

D. J. de Solla Price.
Networks of scientific papers.
Science, 149:510-515, 1965. pdf(%'

K. Gothard, D. R. Dewhurst, J. A. Minot, J. L.
Adams, C. M. 5-Danforth, and P. S. Dodds.
The incel lexicon: Deciphering the emergent
cryptolect of a global misogynistic community,
2021.

Available online at
https://arxiv.org/abs/2105.12006. pdf (&'

The PoCSverse
Power-Law Size
Distributions
74 of 78

Our Intuition
Definition
Examples
Wild vs. Mild
CCDFs

Zipf's law
Zipf < CCDF

References



https://pdodds.w3.uvm.edu/teaching/courses/2024-2025pocsverse
http://pdodds.w3.uvm.edu/research/papers/others/2009/clauset2009b.pdf
http://pdodds.w3.uvm.edu/research/papers/others/1965/price1965a.pdf
https://arxiv.org/abs/2105.12006
http://pdodds.w3.uvm.edu/research/papers/others/2021/gothard2021a.pdf

References llI

[8]

[9]

P. Grassberger.

Critical behaviour of the Drossel-Schwabl forest
fire model.

New Journal of Physics, 4:17.1-17.15, 2002. pdf ('

B. Gutenberg and C. F. Richter.

Earthquake magnitude, intensity, energy, and
acceleration.

Bull. Seism. Soc. Am., 499:105-145, 1942. pdf(

[10] ). Holtsmark.

[11]

Uber die verbreiterung von spektrallinien.
Ann. Phys., 58:577-630, 1919. pdf(Z

R. Munroe.
Thing Explainer: Complicated Stuff in Simple

Words.
Houghton Mifflin Harcourt, 2015.

The PoCSverse
Power-Law Size
Distributions
75 0f 78

Our Intuition
Definition
Examples
Wild vs. Mild
CCDFs

Zipf's law
Zipf < CCDF

References



https://pdodds.w3.uvm.edu/teaching/courses/2024-2025pocsverse
http://pdodds.w3.uvm.edu/research/papers/others/2002/grassberger2002a.pdf
http://pdodds.w3.uvm.edu/research/papers/others/1942/gutenberg1942a.pdf
http://pdodds.w3.uvm.edu/research/papers/others/1919/holtsmark1919a.pdf

References IV

[12]

[13]

[14]

M. E. J. Newman.
Power laws, Pareto distributions and Zipf's law.
Contemporary Physics, 46:323-351, 2005. pdf(4'

M. I. Norton and D. Ariely.

Building a better America—One wealth quintile at
a time.

Perspectives on Psychological Science, 6:9-12,
2011. pdf&

D..DiSERFIce:

A general theory of bibliometric and other
cumulative advantage processes.

Journal of the American Society for Information
Science, pages 292-306, 1976. pdf(%'

The PoCSverse
Power-Law Size
Distributions
76 of 78

Our Intuition
Definition
Examples
Wild vs. Mild
CCDFs

Zipf's law
Zipf < CCDF

References



https://pdodds.w3.uvm.edu/teaching/courses/2024-2025pocsverse
http://pdodds.w3.uvm.edu/research/papers/others/2005/newman2005b.pdf
http://pdodds.w3.uvm.edu/research/papers/others/2011/norton2011a.pdf
http://pdodds.w3.uvm.edu/research/papers/others/1976/price1976a.pdf

References V

[15]

[16]

[17]

[18]

L. F. Richardson.

Variation of the frequency of fatal quarrels with
magnitude.

J. Amer, Stat. Assoc., 43:523-546, 1949.
H. A. Simon.

On a class of skew distribution functions.
Biometrika, 42:425-440, 1955. pdf (&

N. N. Taleb.

The Black Swan.

Random House, New York, 2007.

G. U. Yule.

A mathematical theory of evolution, based on the
conclusions of Dr . C. Willis, F.R.S.
Phil. Trans. B, 213:21-87, 1925. pdf(#'

The PoCSverse
Power-Law Size
Distributions
77 of 78

Our Intuition
Definition
Examples
Wild vs. Mild
CCDFs

Zipf's law
Zipf < CCDF

References



https://pdodds.w3.uvm.edu/teaching/courses/2024-2025pocsverse
http://pdodds.w3.uvm.edu/research/papers/others/1955/simon1955a.pdf
http://pdodds.w3.uvm.edu/research/papers/others/1925/yule1925a.pdf

References VI

[19] Y.-X. Zhu, J. Huang, Z.-K. Zhang, Q.-M. Zhang,

[20]

T. Zhou, and Y.-Y. Ahn.

Geography and similarity of regional cuisines in
China.

PLoS ONE, 8:e79161, 2013. Q(ij);'

G. K. Zipf.
Human Behaviour and the Principle of
Least-Effort.

Addison-Wesley, Cambridge, MA, 1949.

The PoCSverse
Power-Law Size
Distributions
78 of 78

Our Intuition
Definition
Examples
Wild vs. Mild
CCDFs

Zipf's law
Zipf < CCDF

References



https://pdodds.w3.uvm.edu/teaching/courses/2024-2025pocsverse
http://pdodds.w3.uvm.edu/research/papers/others/2013/zhu2013a.pdf

	Our Intuition
	Definition
	Examples
	Wild vs. Mild
	CCDFs
	Zipf's law
	Zipf is equivalent to CCDF
	References

