System Robustness

Last updated: 2023/08/22, 11:48:23 EDT

Principles of Complex Systems, Vols. 1, 2, & 3D CSYS/MATH 6701, 6713, & a pretend number, 2023-2024 | @pocsvox

Prof. Peter Sheridan Dodds | @peterdodds

Computational Story Lab | Vermont Complex Systems Center Santa Fe Institute | University of Vermont

The PoCSverse System Robustness 1 of 43

Robustness

Narrative causality Random forests

Self-Organized Criticality COLD theory Network robustness

These slides are brought to you by:

The PoCSverse System Robustness 2 of 43

Robustness

Narrative causality Random forests Self-Organized Criticality COLD theory Network robustness

These slides are also brought to you by:

Special Guest Executive Producer

☑ On Instagram at pratchett_the_cat

The PoCSverse System Robustness 3 of 43

Robustness HOT theory

Narrative causality
Random forests
Self-Organized Criticality
COLD theory
Network robustness

Outline

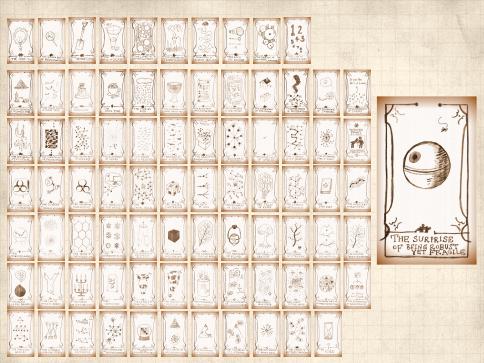
Robustness

HOT theory
Narrative causality
Random forests
Self-Organized Criticality
COLD theory
Network robustness

References

The PoCSverse System Robustness 4 of 43

Robustness HOT theory

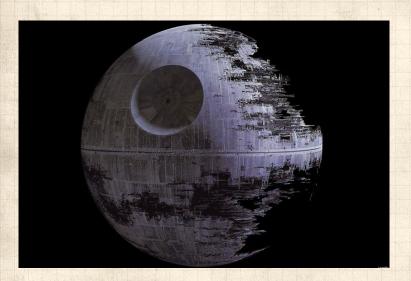

Narrative causality
Random forests
Self-Organized Criticality

COLD theory

Network robustness

Network robusti

- Many complex systems are prone to cascading catastrophic failure: exciting!!!
 - Blackouts
 - Disease outbreaks
 - Wildfires
 - Earthquakes
 - Organisms, individuals and societies
 - Ecosystems
 - **Cities**
 - Myths: Achilles.
- But complex systems also show persistent robustness (not as exciting but important...)
- Robustness and Failure may be a power-law story...


The PoCSverse System Robustness 7 of 43

Robustness
HOT theory
Narrative causality
Random forests
Self-Organized Criticality

COLD theory Network robustness

Our emblem of Robust-Yet-Fragile:

The PoCSverse System Robustness 8 of 43

Robustness
HOT theory
Narrative causality
Random forests
Self-Organized Criticality
COLD theory
Network robustness

"Trouble ..."

The PoCSverse System Robustness 9 of 43

Robustness
HOT theory
Narrative causality
Random forests
Self-Organized Criticality

COLD theory
Network robustness
References

- System robustness may result from
 - 1. Evolutionary processes
 - 2. Engineering/Design
- 🚵 Idea: Explore systems optimized to perform under uncertain conditions.
- The handle: 'Highly Optimized Tolerance' (HOT) [4, 5, 6, 10]
- The catchphrase: Robust yet Fragile
- 🚵 The people: Jean Carlson and John Doyle 🗹
- Great abstracts of the world #73: "There aren't any." [7]

The PoCSverse System Robustness 10 of 43

Robustness HOT theory Narrative causality

Self-Organized Criticality COLD theory Network robustness

Features of HOT systems: [5, 6]

- High performance and robustness
- Designed/evolved to handle known stochastic environmental variability
- Fragile in the face of unpredicted environmental signals
- Highly specialized, low entropy configurations
- Power-law distributions appear (of course...)

The PoCSverse System Robustness 11 of 43

Robustness
HOT theory
Narrative causality
Random forests
Self-Organized Criticality
COLD theory

HOT combines things we've seen:

- Variable transformation
- Constrained optimization
- Need power law transformation between variables: $(Y = X^{-\alpha})$
- Recall PLIPLO is bad...
- MIWO is good: Mild In, Wild Out

The PoCSverse System Robustness 12 of 43

Robustness

HOT theory

Narrative causality

Random forests

Self-Organized Criticality

COLD theory

Forest fire example: [5]

- \clubsuit Square $N \times N$ grid
- & Sites contain a tree with probability ρ = density
- \clubsuit Sites are empty with probability $1-\rho$
- Fires spread from tree to tree (nearest neighbor only)
- Connected clusters of trees burn completely
- Empty sites block fire
- Best case scenario: Build firebreaks to maximize average # trees left intact given one spark

The PoCSverse System Robustness 13 of 43

Robustness
HOT theory
Narrative causality
Random forests
Self-Organized Criticality
COLD theory
Network robustness

Forest fire example: [5]

- Build a forest by adding one tree at a time
- \clubsuit Test D ways of adding one tree
- \clubsuit Average over P_{ij} = spark probability

Measure average area of forest left untouched

- \Longrightarrow Yield = $Y = \rho \langle c \rangle$

The PoCSverse System Robustness 14 of 43

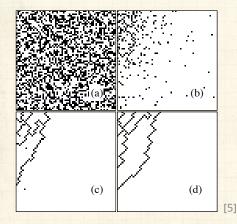
Robustness
HOT theory
Narrative causality
Random forests
Self-Organized Criticality
COLD theory

Specifics:

$$P_{ij} = P_{i;a_x,b_x} P_{j;a_y,b_y}$$

where

$$P_{i;a,b} \propto e^{-[(i+a)/b]^2}$$


- $\red { }$ In the original work, $b_y > b_x$

The PoCSverse System Robustness 15 of 43

Robustness
HOT theory
Narrative causality
Random forests
Self-Organized Criticality
COLD theory
Network robustness

HOT Forests

$$N = 64$$

- (a) D = 1
- (b) D = 2
- (c) D=N
- (d) $D = N^2$

 P_{ij} has a Gaussian decay

Optimized forests do well on average (robustness)

But rare extreme events occur (fragility)

The PoCSverse System Robustness 16 of 43

Robustness HOT theory Narrative causality

Random forests Self-Organized Criticality COLD theory Network robustness

HOT Forests

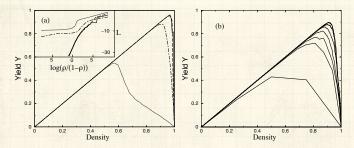


FIG. 2. Yield vs density $Y(\rho)$: (a) for design parameters D=1 (dotted curve), 2 (dot-dashed), N (long dashed), and N^2 (solid) with N=64, and (b) for D=2 and $N=2,2^2,\ldots,2^7$ running from the bottom to top curve. The results have been averaged over 100 runs. The inset to (a) illustrates corresponding loss functions $L=\log[\langle f \rangle/(1-\langle f \rangle)]$, on a scale which more clearly differentiates between the curves.

The PoCSverse System Robustness 17 of 43

Robustness
HOT theory
Narrative causality
Random forests
Self-Organized Criticality
COLD theory
Network robustness

HOT Forests:

Y = 'the average density of trees left unburned in a configuration after a single spark hits.' [5]

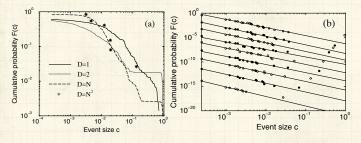


FIG. 3. Cumulative distributions of events F(c): (a) at peak yield for D=1, 2, N, and N^2 with N=64, and (b) for $D=N^2$, and N=64 at equal density increments of 0.1, ranging at $\rho=0.1$ (bottom curve) to $\rho=0.9$ (top curve).

The PoCSverse System Robustness 18 of 43

Robustness
HOT theory
Narrative causality
Random forests
Self-Organized Criticality
COLD theory
Network robustness

Narrative causality:

The PoCSverse System Robustness 20 of 43

Robustness
HOT theory
Narrative causality

Narrative causality
Random forests

Self-Organized Criticality COLD theory Network robustness

Random Forests

D=1: Random forests = Percolation [11]

- Randomly add trees.
- & Below critical density $\rho_{\rm c}$, no fires take off.
- Above critical density $\rho_{\rm c}$, percolating cluster of trees burns.
- Forest is random and featureless.

The PoCSverse System Robustness 22 of 43

Robustness
HOT theory
Narrative causality

Random forests
Self-Organized Criticality

COLD theory

Network robustness

HOT forests nutshell:

- Highly structured.
- Claim power law distribution of tree cluster sizes for a broad range of ρ , including below ρ_c (but model's dynamic growth path is odd).
- $\red{\$}$ No specialness of ho_c .
- Forest states are tolerant.
- Uncertainty is okay if well characterized.
- \Re If P_{ij} is characterized poorly or changes too fast, failure becomes highly likely.
- Growth is key to toy model which is both algorithmic and physical.
- A HOT theory is more general than just this toy model.

The PoCSverse System Robustness 23 of 43

Robustness HOT theory Narrative causality

Random forests

COLD theory

HOT forests—Real data:

"Complexity and Robustness," Carlson & Dolye [6]

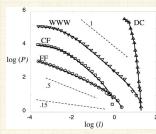
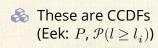



Fig. 1. Log-log (base 10) comparison of DC, WWW, Cf, and FF data (symbol) with RR models (cold lines) (of p = 0, 9, 9, 1, 8); or a = 1/p == 1, 1, 1, 1, 20 K; respectively) and the SCCF model (a = 0.15, dashed). Reference lines (a = 0.5, dashed). Reference lines

PLR = probability-lossresource.

Minimize cost subject to resource (barrier) constraints: $C = \sum_{i} p_{i} l_{i}$

$$C = \sum_{i} p_{i} t_{i}$$

given

$$l_i = f(r_i)$$
 and $\sum r_i \leq R$.

- DC = Data Compression.
- Horror: log. Screaming: "The base! What is the base!? You monsters!"

The PoCSverse System Robustness 24 of 43

Robustness HOT theory

> Narrative causality Random forests

Self-Organized Criticality COLD theory

Network rob

HOT theory:

The abstract story, using figurative forest fires:

- $\ensuremath{\mathfrak{S}}$ Given some measure of failure size y_i and correlated resource size x_i with relationship $y_i=x_i^{-\alpha}$, $i=1,\dots,N_{\rm sites}.$
- Minimize cost:

$$C = \sum_{i=1}^{N_{\rm sites}} \Pr(y_i) y_i$$

Subject to $\sum_{i=1}^{N_{\text{sites}}} x_i = \text{constant.}$

The PoCSverse System Robustness 25 of 43

Robustness HOT theory

Narrative causality Random forests

Self-Organized Criticality COLD theory

Network robustness

1. Cost: Expected size of fire:

$$C_{ ext{fire}} \propto \sum_{i=1}^{N_{ ext{sites}}} p_i a_i.$$

 a_i = area of ith site's region, and p_i = avg. prob. of fire at ith site over some time frame.

2. Constraint: building and maintaining firewalls. Per unit area, and over same time frame:

$$C_{ ext{firewalls}} \propto \sum_{i=1}^{N_{ ext{sites}}} a_i^{1/2} a_i^{-1}.$$

- We are assuming isometry.
- ightharpoonup In d dimensions, 1/2 is replaced by (d-1)/d

$$\Pr(a_i) \propto a_i^{-\gamma}.$$

The PoCSverse System Robustness 26 of 43

Robustness HOT theory

Narrative causality Random forests

Self-Organized Criticality
COLD theory

Network robustness

Continuum version:

1. Cost function:

$$\langle C \rangle = \int C(\vec{x}) p(\vec{x}) \mathrm{d}\vec{x}$$

where C is some cost to be evaluated at each point in space \vec{x} (e.g., $V(\vec{x})^{\alpha}$), and $p(\vec{x})$ is the probability an Ewok jabs position \vec{x} with a sharpened stick (or equivalent).

2. Constraint:

$$\int R(\vec{x}) d\vec{x} = c$$

where c is a constant.

Claim/observation is that typically [4]

$$V(\vec{x}) \sim R^{-\beta}(\vec{x})$$

 \Re For spatial systems with barriers: $\beta = d$.

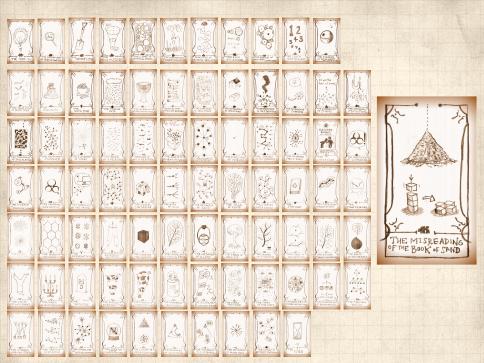
The PoCSverse System Robustness 27 of 43

Robustness
HOT theory
Narrative causality

Random forests
Self-Organized Criticality
COLD theory
Network robustness

The HOT model in the wild E

The PoCSverse System Robustness 28 of 43


Robustness HOT theory

Narrative causality

Random forests Self-Organized Criticality COLD theory

Network robustness

SOC theory

SOC = Self-Organized Criticality

- Idea: natural dissipative systems exist at 'critical states':
- Analogy: Ising model with temperature somehow self-tuning;
- Power-law distributions of sizes and frequencies arise 'for free';
- 🚵 Introduced in 1987 by Bak, Tang, and Weisenfeld [3, 2, 8]: "Self-organized criticality - an explanation of 1/f noise" (PRL, 1987);
- Problem: Critical state is a very specific point;
- Self-tuning not always possible;
- Much criticism and arguing...

The PoCSverse System Robustness 31 of 43

Robustness Narrative causality

Self-Organized Criticality

COLD theory

"How Nature Works: the Science of Self-Organized Criticality" **3** C by Per Bak (1997). [2]

Avalanches of Sand and Rice ...

The PoCSverse System Robustness 32 of 43

Robustness HOT theory

Narrative causality

Random forests

Self-Organized Criticality COLD theory

Network robustness

"Complexity and robustness"

Carlson and Doyle, Proc. Natl. Acad. Sci., **99**, 2538–2545, 2002. [6]

HOT versus SOC

- Both produce power laws
- Optimization versus self-tuning
- HOT systems viable over a wide range of high densities
- SOC systems have one special density
- HOT systems produce specialized structures
- SOC systems produce generic structures

The PoCSverse System Robustness 33 of 43

Robustness HOT theory

Narrative causality

Self-Organized Criticality COLD theory Network robustness

HOT theory—Summary of designed tolerance [6]

Table 1. Characteristics of SOC, HOT, and data

	Property	soc	HOT and Data
1	Internal	Generic,	Structured,
	configuration	homogeneous,	heterogeneous,
		self-similar	self-dissimilar
2	Robustness	Generic	Robust, yet
			fragile
3	Density and yield	Low	High
4	Max event size	Infinitesimal	Large
5	Large event shape	Fractal	Compact
6	Mechanism for	Critical internal	Robust
	power laws	fluctuations	performance
7	Exponent α	Small	Large
8	lpha vs. dimension d	$\alpha \approx (d-1)/10$	$\alpha \approx 1/d$
9	DDOFs	Small (1)	Large (∞)
10	Increase model	No change	New structures,
	resolution		new sensitivities
11	Response to	Homogeneous	Variable
	forcing		

The PoCSverse System Robustness 34 of 43

Robustness HOT theory

Narrative causality Random forests

Self-Organized Criticality
COLD theory

Network robustness

COLD forests

Avoidance of large-scale failures

- Constrained Optimization with Limited Deviations [9]
- Weight cost of larges losses more strongly
- Increases average cluster size of burned trees...
- 🚵 ... but reduces chances of catastrophe
- Power law distribution of fire sizes is truncated

The PoCSverse System Robustness 36 of 43

Robustness HOT theory Narrative causality

Random forests Self-Organized Criticality COLD theory

letwork robustnes

Cutoffs

Observed:

Power law distributions often have an exponential cutoff

$$P(x) \sim x^{-\gamma} e^{-x/x_c}$$

where x_c is the approximate cutoff scale.

May be Weibull distributions:

$$P(x) \sim x^{-\gamma} e^{-ax^{-\gamma+1}}$$

The PoCSverse System Robustness 37 of 43

Robustness HOT theory Narrative causality

Random forests Self-Organized Criticality COLD theory Network robustness

We'll return to this later on:

- Network robustness.
- Albert et al., Nature, 2000:
 "Error and attack tolerance of complex networks" [1]
- General contagion processes acting on complex networks. [13, 12]
- Similar robust-yet-fragile stories ...

The PoCSverse System Robustness 39 of 43

Robustness HOT theory Narrative causality Random forests

> Self-Organized Criticality COLD theory Network robustness

References

References I

- [1] R. Albert, H. Jeong, and A.-L. Barabási. Error and attack tolerance of complex networks. Nature, 406:378–382, 2000. pdf
- [2] P. Bak.

 How Nature Works: the Science of Self-Organized

 Criticality.

 Springer-Verlag, New York, 1997.
- [3] P. Bak, C. Tang, and K. Wiesenfeld. Self-organized criticality - an explanation of 1/f noise. Phys. Rev. Lett., 59(4):381–384, 1987. pdf

The PoCSverse System Robustness 40 of 43

Robustness
HOT theory
Narrative causality
Random forests
Self-Organized Criticality
COLD theory

References II

[5] J. M. Carlson and J. Doyle. Highly Optimized Tolerance: Robustness and design in complex systems. Phys. Rev. Lett., 84(11):2529–2532, 2000. pdf

[6] J. M. Carlson and J. Doyle. Complexity and robustness. Proc. Natl. Acad. Sci., 99:2538–2545, 2002. pdf

[7] J. Doyle.
Guaranteed margins for LQG regulators.
IEEE Transactions on Automatic Control,
23:756–757, 1978. pdf

✓

The PoCSverse System Robustness 41 of 43

Robustness
HOT theory
Narrative causality
Random forests
Self-Organized Criticality
COLD theory

References III

- [8] H. J. Jensen.

 Self-Organized Criticality: Emergent Complex
 Behavior in Physical and Biological Systems.

 Cambridge Lecture Notes in Physics. Cambridge
 University Press, Cambridge, UK, 1998.
- [9] M. E. J. Newman, M. Girvan, and J. D. Farmer. Optimal design, robustness, and risk aversion. Phys. Rev. Lett., 89:028301, 2002.
- [10] D. Sornette.

 <u>Critical Phenomena in Natural Sciences.</u>

 <u>Springer-Verlag, Berlin, 1st edition, 2003.</u>
- [11] D. Stauffer and A. Aharony. Introduction to Percolation Theory. Taylor & Francis, Washington, D.C., Second edition, 1992.

The PoCSverse System Robustness 42 of 43

Robustness
HOT theory
Narrative causality
Random forests
Self-Organized Criticality
COLD theory

References IV

[12] D. J. Watts and P. S. Dodds. Influentials, networks, and public opinion formation.

Journal of Consumer Research, 34:441–458, 2007. pdf

[13] D. J. Watts, P. S. Dodds, and M. E. J. Newman. Identity and search in social networks.

Science, 296:1302–1305, 2002. pdf

The PoCSverse System Robustness 43 of 43

Robustness
HOT theory
Narrative causality
Random forests
Self-Organized Criticality
COLD theory

