Mechanisms for Generating Power-Law Size Distributions, Part 2

Last updated: 2023/08/22, 11:48:21 EDT

Principles of Complex Systems, Vols. 1, 2, & 3D CSYS/MATH 6701, 6713, & a pretend number, 2023-2024 | @pocsvox

Prof. Peter Sheridan Dodds | @peterdodds

Computational Story Lab | Vermont Complex Systems Center Santa Fe Institute | University of Vermont

000

Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 License

The PoCSverse **General Example** Power-Law Mechanisms, Pt. 2

1 of 17

Variable

transformation

References

The PoCSverse

transformation

References

The PoCSverse

Variable transformation

5 of 17

Basics Holtsma

References

Power-Law Mechanisms, Pt. 2

Example

Exponential distribution

Given $P_x(x) = \frac{1}{\lambda} e^{-x/\lambda}$ and $y = cx^{-\alpha}$, then

Mechanisms, Pt. 2

Power-Law

2 of 17

Basics

Variable

 \bigotimes Assume relationship between x and y is 1-1.

Power-law relationship between variables: $y = cx^{-\alpha}, \alpha > 0$

 \bigotimes Look at y large and x small

 $\mathsf{d} u = \mathsf{d} \left(c x^{-\alpha} \right)$

$$= c(-\alpha)x^{-\alpha-1}\mathsf{d}x$$

invert:
$$dx = \frac{-1}{c\alpha} x^{\alpha+1} dy$$

$$dx = \frac{-1}{c\alpha} \left(\frac{y}{c}\right)^{-(\alpha+1)/\alpha} dy$$

$$\mathsf{d}x = rac{-c^{1/lpha}}{lpha} y^{-1-1/lpha} \mathsf{d}y$$

Now make transformation:

$$P_y(y)\mathsf{d} y = P_x(x)\mathsf{d} x$$

$$P_y(y) \mathrm{d} y = P_x \overbrace{\left(\left(\frac{y}{c} \right)^{-1/\alpha} \right)}^{(x)} \overbrace{\frac{\mathrm{d} x}{\alpha} y^{-1-1/\alpha} \mathrm{d} y}^{\mathrm{d} x}$$

& 1 \Re If $P_x(x) \to x^\beta$ as $x \to 0$ then $P_{y}(y) \propto y^{-1-1/\alpha-\beta/\alpha}$ as $y \to \infty$.

Variable Transformation

Variable transformation

Holtsmark's Distribution

Outline

Basics

PLIPLO

References

Understand power laws as arising from

- 1. Elementary distributions (e.g., exponentials).
- 2. Variables connected by power relationships.
- Random variable X with known distribution P_r
- Second random variable *Y* with y = f(x).

 $\bigotimes P_{Y}(y) dy =$ $\sum_{x \mid f(x) = y} P_X(x) \mathsf{d}x$ $\sum_{y|f(x)=y} P_X(f^{-1}(y)) \frac{\mathrm{d}y}{|f'(f^{-1}(y))|}$ line assier to do by hand...

Gravity Power-Law Mechanisms, Pt. 2 6 of 17 Variable

The PoCSverse

transformation

Basics Holtsma

References

The PoCSverse

transformation

Basics Holtsmark's Distributio PLIPLO

References

7 of 17

Variable

Power-Law Mechanisms, Pt. 2

- Select a random point in the universe \vec{x} .
- A Measure the force of gravity $F(\vec{x})$.
- Observe that $P_F(F) \sim F^{-5/2}.$
- A Distribution named after Holtsmark who was thinking about electrostatics and plasma^[1].
- Again, the humans naming things after humans, poorly.¹

The PoCSverse Power-Law Mechanisms, Pt. 2 10 of 17 Variable transformation Basics Holtsmark's Distribution

References

The PoCSverse

transformation

References

Holtsmark's Distribution

Power-Law Mechanisms, Pt. 2

11 of 17

Variable

III

¹Stigler's Law of Eponymy

Matter is concentrated in stars:^[2]

\clubsuit F is distributed unevenly

 \Re Probability of being a distance r from a single star at $\vec{x} = \vec{0}$:

$$P_r(r) {\rm d} r \propto r^2 {\rm d}$$

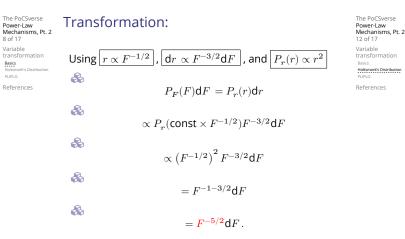
- Assume stars are distributed randomly in space (oops?)
- & Assume only one star has significant effect at \vec{x} .
- \lambda Law of gravity:

 $F\propto r^{-2}$

🚳 invert:

 $r \propto F^{-\frac{1}{2}}$

 \clubsuit Connect differentials: $dr \propto dF^{-\frac{1}{2}} \propto F^{-\frac{3}{2}}dF$



 $P(y) \propto y^{-1-1/\alpha} + O\left(y^{-1-2/\alpha}\right)$

Exponentials arise from randomness (easy) ...

& More later when we cover robustness.

f
$$P_x(x)$$
 o non-zero constant as $x \to 0$ then $P_y(y) \propto y^{-1-1/\alpha}$ as $y \to \infty$.

Gravity:

$P_F(F) = F^{-5/2} \mathrm{d} F$

8

$\gamma = 5/2$

- 🚳 Mean is finite.
- & Variance = ∞ .
- 🚳 A wild distribution.
- & Upshot: Random sampling of space usually safe but can end badly...

13 of 17

Variable

transformation

Holtsmark's Distribution

References

PLIPLO = Power law in, power law out

- 🗞 Explain a power law as resulting from another unexplained power law.
- Set another homunculus argument ☑...
- 🗞 Don't do this!!! (slap, slap)
- MIWO = Mild in, Wild out is the stuff.
- ln general: We need mechanisms!

The PoCSverse Power-Law Mechanisms, Pt. 2 16 of 17 Variable transformation Basics PLIPLO References

References I

The PoCSverse Power-Law Mechanisms, Pt. 2 17 of 17 Variable transformation Basics Holtsmark's Distribution References

- [1] J. Holtsmark. Über die verbreiterung von spektrallinien. Ann. Phys., 58:577–630, 1919. pdf 🗹
- [2] D. Sornette.

Critical Phenomena in Natural Sciences.

Springer-Verlag, Berlin, 1st edition, 2003.

□ Todo: Build Dalek army.

