Lognormals and friends

Last updated: 2023/08/22, 11:48:23 EDT

Principles of Complex Systems, Vols. 1, 2, & 3D CSYS/MATH 6701, 6713, & a pretend number, 2023–2024| @pocsvox

Prof. Peter Sheridan Dodds | @peterdodds

Computational Story Lab | Vermont Complex Systems Center Santa Fe Institute | University of Vermont

Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 License.

The PoCSverse Lognormals and friends 1 of 26

Lognormals

Empirical Confusability Random Multiplicative Growth Model

andom Growth with ariable Lifespan

These slides are brought to you by:

Sealie & Lambie Productions

The PoCSverse Lognormals and friends 2 of 26

Lognormals

Empirical Confusability Random Multiplicative Growth Model

Random Growth with Variable Lifespan

These slides are also brought to you by:

Special Guest Executive Producer

On Instagram at pratchett_the_cat

The PoCSverse Lognormals and friends 3 of 26

Lognormals

Empirical Confusability Random Multiplicative Growth Model

Random Growth with Variable Lifespan

Outline

The PoCSverse Lognormals and friends 4 of 26

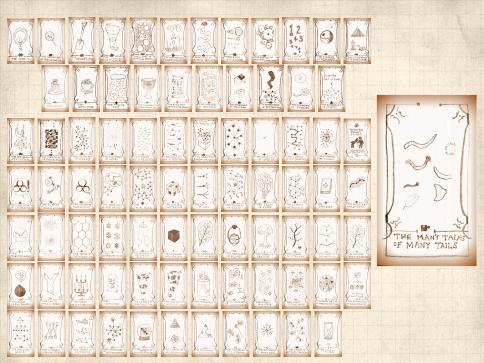
Lognormals

Empirical Confusability Random Multiplicative Growth Model

Random Growth with Variable Lifespan

References

Lognormals Empirical Confusability Random Multiplicative Growth Model Random Growth with Variable Lifespan



Alternative distributions

There are other 'heavy-tailed' distributions:1. The Log-normal distribution ☑

$$P(x) = \frac{1}{x\sqrt{2\pi}\sigma} \exp\left(-\frac{(\ln x - \mu)^2}{2\sigma^2}\right)$$

2. Weibull distributions

$$P(x) dx = rac{k}{\lambda} \left(rac{x}{\lambda}
ight)^{\mu - 1} e^{-(x/\lambda)^{\mu}} dx$$

CCDF = stretched exponential C.
Also: Gamma distribution C, Erlang distribution C, and more.

The PoCSverse Lognormals and friends 7 of 26

Lognormals

Empirical Confusability Random Multiplicative Growth Model

Random Growth with /ariable Lifespan

lognormals

The lognormal distribution:

$$P(x) = \frac{1}{x\sqrt{2\pi}\sigma} \exp\left(-\frac{(\ln x - \mu)^2}{2\sigma^2}\right)$$

- lnx is distributed according to a normal distribution with mean μ and variance σ .
- Appears in economics and biology where growth increments are distributed normally.

The PoCSverse Lognormals and friends 8 of 26

Lognormals

Empirical Confusability Random Multiplicative Growth Model

Random Growth with Variable Lifespan

lognormals

Standard form reveals the mean μ and variance σ^2 of the underlying normal distribution:

$$P(x) = \frac{1}{x\sqrt{2\pi}\sigma} \exp\left(-\frac{(\ln x - \mu)^2}{2\sigma^2}\right)$$

🗞 For lognormals:

(

 $\mu_{\rm lognormal} = e^{\mu + \frac{1}{2}\sigma^2}, \qquad {\rm median}_{\rm lognormal} = e^{\mu},$

$$\sigma_{\rm lognormal} = (e^{\sigma^2}-1)e^{2\mu+\sigma^2}, \qquad {\rm r}$$

$$\mathsf{mode}_{\mathsf{lognormal}} = e^{\mu - \sigma^2}$$

All moments of lognormals are finite.

The PoCSverse Lognormals and friends 9 of 26

Lognormals

Empirical Confusability Random Multiplicative Growth Model

Random Growth with /ariable Lifespan

Derivation from a normal distribution Take *Y* as distributed normally:

2

$$P(y)dy = \frac{1}{\sqrt{2\pi\sigma}} \exp\left(-\frac{(y-\mu)^2}{2\sigma^2}\right) dy$$

Set $Y = \ln X$: Transform according to P(x)dx = P(y)dy: $\frac{dy}{dx} = 1/x \Rightarrow dy = dx/x$

$$\Rightarrow P(x)dx = \frac{1}{x\sqrt{2\pi\sigma}} \exp\left(-\frac{(\ln x - \mu)^2}{2\sigma^2}\right) dx$$

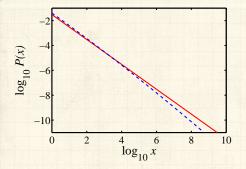
The PoCSverse Lognormals and friends 10 of 26

Lognormals

Empirical Confusability Random Multiplicative Growth Model

Random Growth with Variable Lifespan

Confusion between lognormals and pure power laws



Near agreement over four orders of magnitude! The PoCSverse Lognormals and friends 11 of 26

Lognormals

Empirical Confusability Random Multiplicative Growth Model

Random Growth with Variable Lifespan

References

Solution For lognormal (blue), $\mu = 0$ and $\sigma = 10$. For power law (red), $\gamma = 1$ and c = 0.03.

Confusion

What's happening:

$$\ln P(x) = \ln \left\{ \frac{1}{x\sqrt{2\pi}\sigma} \exp\left(-\frac{(\ln x - \mu)^2}{2\sigma^2}\right) \right\}$$

$$= -\ln x - \ln \sqrt{2\pi}\sigma - \frac{(\ln x - \mu)^2}{2\sigma^2}$$

$$= -\frac{1}{2\sigma^2}(\ln x)^2 + \left(\frac{\mu}{\sigma^2} - 1\right)\ln x - \ln\sqrt{2\pi}\sigma - \frac{\mu^2}{2\sigma^2}.$$

If the first term is relatively small,

$$\ln P(x) \sim -\left(1 - \frac{\mu}{\sigma^2}\right)\ln x + \text{const.} \Rightarrow \gamma = 1 - \frac{\mu}{\sigma^2}$$

Pinciples of Complex Systems Bipocsvox

The PoCSverse Lognormals and friends 12 of 26

Lognormals

Empirical Confusability Random Multiplicative Growth Model

Random Growth with Variable Lifespan

Confusion

If \$\mu < 0\$, \$\gamma > 1\$ which is totally cool.
If \$\mu > 0\$, \$\gamma < 1\$, not so much.
If \$\sigma^2 > 1\$ and \$\mu\$,

 $\ln P(x) \sim -\ln x + \text{const.}$

- Solution Expect -1 scaling to hold until $(\ln x)^2$ term becomes significant compared to $(\ln x)$:
 - $-\frac{1}{2\sigma^2}(\ln x)^2 \simeq 0.05 \left(\frac{\mu}{\sigma^2} 1\right) \ln x$
 - $\Rightarrow \log_{10} x \lesssim 0.05 \times 2(\sigma^2 \mu) \log_{10} e \simeq 0.05 (\sigma^2 \mu)$
- $\mathfrak{s} \Rightarrow \mathsf{lf} \mathsf{you} \mathsf{find} \mathsf{a} -1 \mathsf{exponent},$ you may have a lognormal distribution...

The PoCSverse Lognormals and friends 13 of 26

Lognormals

Empirical Confusability Random Multiplicative Growth Model

Random Growth with Variable Lifespan

Generating lognormals:

3

Random multiplicative growth:

 $x_{n+1} = rx_n$

where r > 0 is a random growth variable (Shrinkage is allowed) (Shrinkage, growth is by addition:

 $\ln x_{n+1} = \ln r + \ln x_n$

 The PoCSverse Lognormals and friends 15 of 26

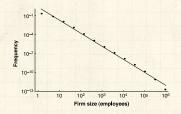
Lognormals

Empirical Confusability

Random Multiplicative Growth Model Random Growth with

Lognormals or power laws?

- Gibrat ^[2] (1931) uses preceding argument to explain lognormal distribution of firm sizes ($\gamma \simeq 1$).
- But Robert Axtell^[1] (2001) shows a power law fits the data very well with $\gamma = 2$, not $\gamma = 1$ (!)
- Problem of data censusing (missing small firms).



 $\begin{array}{l} {\rm Freq} \propto ({\rm size})^{-\gamma} \\ \gamma \simeq 2 \end{array}$

One piece in Gibrat's model seems okay empirically: Growth rate *r* appears to be independent of firm size.^[1].

The PoCSverse Lognormals and friends 16 of 26

Lognormals

Random Multiplicative

Growth Model Random Growth with Variable Lifespan

An explanation

Axtel cites Malcai et al.'s (1999) argument ^[5] for why power laws appear with exponent $\gamma \simeq 2$ The set up: N entities with size $x_i(t)$ Generally:

 $x_i(t+1) = r x_i(t)$

The PoCSverse Lognormals and friends 17 of 26

Lognormals

Empirical Confusability

Random Multiplicative Growth Model Random Growth with Variable Lifespan

References

where r is drawn from some happy distribution
Same as for lognormal but one extra piece.
Each x_i cannot drop too low with respect to the other sizes:

 $x_i(t+1) = \max(rx_i(t), c\left< x_i \right>)$

Some math later...

3

2

2

Insert assignment question

Find
$$P(x) \sim x^{-\gamma}$$

 \clubsuit where γ is implicitly given by

$$N = \frac{(\gamma - 2)}{(\gamma - 1)} \left[\frac{(c/N)^{\gamma - 1} - 1}{(c/N)^{\gamma - 1} - (c/N)} \right]$$

N = total number of firms.

Now, if
$$c/N \ll 1$$
 and $\gamma > 2$ $N = \frac{(\gamma - 2)}{(\gamma - 1)} \left[\frac{-1}{-(c/N)} \right]$

Which gives
$$\gamma \sim 1 + \frac{1}{1-c}$$

 \clubsuit Groovy... $c \text{ small} \Rightarrow \gamma \simeq 2$

The PoCSverse Lognormals and friends 18 of 26

Lognormals

Empirical Confusability

Random Multiplicative Growth Model Random Growth with

The second tweak

Ages of firms/people/... may not be the same

- \clubsuit Allow the number of updates for each size \boldsymbol{x}_i to vary
- So Example: $P(t)dt = ae^{-at}dt$ where t = age.
- Reack to no bottom limit: each x_i follows a lognormal

🚳 Sizes are distributed as [6]

$$P(x) = \int_{t=0}^{\infty} a e^{-at} \frac{1}{x\sqrt{2\pi t}} \exp\left(-\frac{(\ln x - \mu)^2}{2t}\right) \mathrm{d}t$$

(Assume for this example that $\sigma \sim t$ and $\mu = \ln m$) Now averaging different lognormal distributions. The PoCSverse Lognormals and friends 20 of 26

Lognormals Empirical Confusability Random Multiplicative Growth Model

Random Growth with Variable Lifespan

Averaging lognormals

R

The PoCSverse Lognormals and friends 21 of 26

Lognormals

Random Multiplicative Growth Model

Random Growth with Variable Lifespan

References

$$P(x) = \int_{t=0}^{\infty} a e^{-at} \frac{1}{x\sqrt{2\pi t}} \exp\left(-\frac{(\ln \frac{x}{m})^2}{2t}\right) \mathrm{d}t$$

Insert fabulous calculation (team is spared).
 Some enjoyable suffering leads to:

$$P(x) \propto x^{-1} e^{-\sqrt{2\lambda(\ln \frac{x}{m})^2}}$$

The second tweak

2

a.

$$P(x) \propto x^{-1} e^{-\sqrt{2\lambda(\ln \frac{x}{m})^2}}$$

The PoCSverse Lognormals and friends 22 of 26

Lognormals Empirical Confusability Random Multiplicative Growth Model

Random Growth with Variable Lifespan

References

$$P(x) \propto \begin{cases} x^{-1+\sqrt{2\lambda}} & \text{if } \frac{x}{m} < 1\\ x^{-1-\sqrt{2\lambda}} & \text{if } \frac{x}{m} > 1 \end{cases}$$

S 'Break' in scaling (not uncommon)

- 🗞 Double-Pareto distribution 🗹
- First noticed by Montroll and Shlesinger^[7, 8]
- Later: Huberman and Adamic^[3, 4]: Number of pages per website

Summary of these exciting developments:

The PoCSverse Lognormals and friends 23 of 26

Lognormals Empirical Confusability Random Multiplicative Growth Model

Random Growth with Variable Lifespan

- Lognormals and power laws can be awfully similar
- Random Multiplicative Growth leads to lognormal distributions
- Enforcing a minimum size leads to a power law tail
- With no minimum size but a distribution of lifetimes, the double Pareto distribution appears
- 🗞 Take-home message: Be careful out there...

References I

[1] R. Axtell. Zipf distribution of U.S. firm sizes. Science, 293(5536):1818–1820, 2001. pdf 7

[2] R. Gibrat. Les inégalités économiques. Librairie du Recueil Sirey, Paris, France, 1931.

[3] B. A. Huberman and L. A. Adamic. Evolutionary dynamics of the World Wide Web. Technical report, Xerox Palo Alto Research Center, 1999.

[4] B. A. Huberman and L. A. Adamic. The nature of markets in the World Wide Web. <u>Quarterly Journal of Economic Commerce</u>, 1:5–12, 2000.

The PoCSverse Lognormals and friends 24 of 26

Lognormals Empirical Confusability Random Multiplicative Growth Model

References II

[5] O. Malcai, O. Biham, and S. Solomon. Power-law distributions and lévy-stable intermittent fluctuations in stochastic systems of many autocatalytic elements. Phys. Rev. E, 60(2):1299–1303, 1999. pdf

[6] M. Mitzenmacher. A brief history of generative models for power law and lognormal distributions. Internet Mathematics, 1:226–251, 2003. pdf

[7] E. W. Montroll and M. W. Shlesinger. On 1/f noise and other distributions with long tails. Proc. Natl. Acad. Sci., 79:3380–3383, 1982. pdf The PoCSverse Lognormals and friends 25 of 26

Lognormals Empirical Confusability Random Multiplicative Growth Model Random Growth with

References III

The PoCSverse Lognormals and friends 26 of 26

Lognormals

Empirical Confusability Random Multiplicative Growth Model

Random Growth with Variable Lifespan

References

 [8] E. W. Montroll and M. W. Shlesinger. Maximum entropy formalism, fractals, scaling phenomena, and 1/*f* noise: a tale of tails.
 J. Stat. Phys., 32:209–230, 1983.

