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Lognormals
Empirical Confusability
Random Multiplicative Growth Model
Random Growth with Variable Lifespan
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Alternative distributions

There are other ‘heavy-tailed’ distributions:
1. The Log-normal distribution&

P(z) =

1 (Inz — ,u)g)
ex —
V2o P ( 202
2. Weibull distributions (%"

k jo\H1

_t(r —(@/X)"
P(x)dx (/\) e dz
CCDF = stretched exponential (5.
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The lognormal distribution:

1 _(Inxf,u)Q)
xmg“"p( 202

P(x) =

&% Inz is distributed according to a normal
distribution with mean p and variance o.

<& Appears in economics and biology where growth
increments are distributed normally.

lognormals

& Standard form reveals the mean x and variance o2
of the underlying normal distribution:

1 (Inz — p)?
oar P (‘ 202 )

P(x) =

& For lognormals:

1,2 .
— pht50 — ol
lu’lognorma\ =e 2 ) medlanlognormal =er,

2

2 2
— o __ 2pu+o — ou—O
Ulognormal - (6 1)6 ’ mOdelognormal =e€ .

& All moments of lognormals are finite.

Derivation from a normal distribution
Take Y as distributed normally:

& 2
1 —
Pldy = ——exp (45 ) ay
SetY = InX:

&% Transform according to P(x)dz = P(y)dy:
= d
¥ _ -
afl/xédy =dz /z

&

= P(z)dz =

1 (Inz — p)?
x\/ﬂanp (f 552 dx
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Confusion between lognormals and pure
power laws

log, , P(x)

of magnitude!

4 6 8 10
Iog10 X

&% For lognormal (blue), x =0 and o = 10.
&% For power law (red), y = 1 and ¢ = 0.03.

Confusion
What's happening:

InP(z) =1In {w/%mexp (7W>}

2

Inz —
= —Inz — InV270 — M

202

1 o u?
—_ 2 _ I 2ro —
=—53 (Inz)* + (Uz 1) Inz — Inv27o 257"

If the first term is relatively small,

Near agreement
over four orders

|nP($)~—(1—%)|nx+const. S|y=1-1

Confusion

If u < 0,v> 1which is totally cool.
If >0, v < 1, not so much.

LRI

If o2 > 1and y,

‘ InP(z) ~ —Inz + const. ‘

<& Expect -1 scaling to hold until (Inz)? term becomes
significant compared to (Inz):
L (Inz)? =~ 0.05 (& — 1) In

T 202

= log, = 50.05 x 2(c? — w)log, e =~ 0.05(c% — )

&> = Ifyou find a -1 exponent,
you may have a lognormal distribution...
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Random multiplicative growth:

References
Tpp1 =TT,

where r > 0 is a random growth variable
(Shrinkage is allowed)
In log space, growth is by addition:

Inz, ., =Inr+Inz,

= Inz,, is normally distributed
= z,, is lognormally distributed
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Lognormals or power laws?

Gibrat?! (1931) uses preceding argument to explain
lognormal distribution of firm sizes (v ~ 1).

Lognormals

But Robert Axtell [ (2001) shows a power law fits the
data very well with v = 2, not v = 1 (1)

References

Problem of data censusing (missing small firms).

Freq o (size)™”
y~2

T 10 1 100 100 105 10°
Firm size (employees)

One piece in Gibrat's model seems okay empirically:

Growth rate r appears to be independent of firm
ize.[1]

size. .
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An explanation

Axtel cites Malcai et al.’s (1999) argument ! for
why power laws appear with exponent y ~ 2

The set up: N entities with size z,(t)
Generally:

References

z,(t+1) =ra,;(t)
where r is drawn from some happy distribution
Same as for lognormal but one extra piece.

Each z; cannot drop too low with respect to the
other sizes:

z;(t+1) = max(rz;(t), ¢ (z;))

Some math later...
Insert assignment question &'

Find P(z) ~2™7

where ~ is implicitly given by

(=9 (N o
=0 }

N = total number of firms.

(¢/N)*=+ —(¢/N)

Now, if ¢/N « Landy>2 N = (1*2) L(;l]

Which gives v~ 1+

1—
Groovy... csmall = y ~2

The second tweak

Ages of firms/people/... may not be the same
Allow the number of updates for each size z, to
vary
Example: P(t)dt = ae~**dt where t = age.

Back to no bottom limit: each z; follows a
lognormal

Sizes are distributed as [°!

(Inz — p)?
()

(Assume for this example that o ~ ¢t and u = Inm)
Now averaging different lognormal distributions.

i 1
P(x) = ae~ ! ex
(@) /t,o V27t

Averaging lognormals

— =~ —at 1 7('“%)2
P(z) = /t:() ae Tﬂ'texp on dt

Insert fabulous calculation (team is spared).
Some enjoyable suffering leads to:

P(a) x a-1e VAP
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The second tweak

P(z)xz e V 2A(In5)?

Depends on sign of InZ, i.e., whether £ > 1 or

= m
<.
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P(z) 1Ex e o
a if 2 >1

‘Break’ in scaling (not uncommon)
Double-Pareto distribution 4

First noticed by Montroll and Shlesinger [/ &

Later: Huberman and Adamic > “: Number of
pages per website

The PoCSverse
Lognormals and
friends

18 of 24
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Lognormals and power laws can be awfully similar
Random Multiplicative Growth leads to lognormal
distributions

Enforcing a minimum size leads to a power law tail
With no minimum size but a distribution of
lifetimes, the double Pareto distribution appears
Take-home message: Be careful out there...
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