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CSYS/MATH 6701, 6713, & a pretend number

University of Vermont, Fall 2023
Assignment 30

”The Darkest Timeline” 

Due: Never
https://pdodds.w3.uvm.edu/teaching/courses/2023-2024pocsverse/assignments/30/
Some useful reminders:
Deliverator: Prof. Peter Sheridan Dodds (contact through Teams)
Assistant Deliverator: Chris O’Neil (contact through Teams)
Office: The Ether
Office hours: See Teams calendar
Course website: https://pdodds.w3.uvm.edu/teaching/courses/2023-2024pocsverse
Overleaf: LaTeX templates and settings for all assignments are available at
https://www.overleaf.com/read/tsxfwwmwdgxj.

All parts are worth 3 points unless marked otherwise. Please show all your workingses clearly
and list the names of others with whom you conspired collaborated.

For coding, we recommend you improve your skills with Python, R, and/or Julia. The (evil)
Deliverator uses (evil) Matlab.

Graduate students are requested to use LATEX (or related TEX variant). If you are new to LATEX,
please endeavor to submit at least n questions per assignment in LATEX, where n is the
assignment number.

Assignment submission:

Via Brightspace or other preferred death vortex.

The questions you don’t have to do!

Some are open ended madnesses.

1. (3 + 3 points) Zipfarama via Optimization:
Complete the Mandelbrotian derivation of Zipf’s law by minimizing the function

Ψ(p1, p2, . . . , pn) = F (p1, p2, . . . , pn) + λG(p1, p2, . . . , pn)

where the ‘cost over information’ function is

F (p1, p2, . . . , pn) =
C

H
=

∑n
i=1 pi ln(i+ a)

−g
∑n

i=1 pi ln pi
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and the constraint function is

G(p1, p2, . . . , pn) =
n∑

i=1

pi − 1 (= 0)

to find
pj = e−1−λH2/gC(j + a)−H/gC .

Then use the constraint equation,
∑n

j=1 pj = 1 to show that

pj = (j + a)−α.

where α = H/gC.
3 points: When finding λ, find an expression connecting λ, g, C, and H.
The Perishing Monks who have returned say the way is sneaky. Before collapsing,
one monk mumbled something about substituting the form you find for ln pi into
H’s definition (but do not replace pi).
Note: We have now allowed the cost factor to be (j + a) rather than (j + 1).

2. Carrying on from the previous problem:
For n → ∞, use some computation tool (e.g., Matlab, an abacus, but not a clever
friend who’s really into computers) to determine that α ≃ 1.73 for a = 1. (Recall:
we expect α < 1 for γ > 2)

3. Do not do! Solution provided. For finite n, find an approximate estimate of a in
terms of n that yields α = 1.
(Hint: use an integral approximation for the relevant sum.)
What happens to a as n → ∞?
Solution:
For finite n and a burning desire that α = 1, we can approximate the above sum
with an integral

1 ≃
∫ n

x=1

(x+ a)−1.

Barging ahead:
1 ≃ ln (x+ a)|n1

= [ln (n+ a)− ln (1 + a)]

= ln (n+ a)

(1 + a)
.
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Next, we isolate a:

e ≃ (n+ a)

(1 + a)

=
(1 + a)

(1 + a)
+

(n− 1)

(1 + a)

= 1 +
(n− 1)

(1 + a)

Some twists and turns give:

a ≃ n− 1

e− 1
− 1 =

n− e

e− 1
∼ 1

e− 1
n.

So we see that a grows linearly with n and that that α = 1 is an impossibility in
the n = ∞ limit.
Simon’s model also has the α = 1 case in a peculiar limit (no new arrivals). While
Mandelbrot’s model is perhaps the least realistic in the mechanism detail, the
broader story of optimization remains plausible. There is much subsequent work
over the next fifty years that attempts to improve upon both Mandelbrot and
Simon.

4. The 1-d theoretical percolation problem:
Consider an infinite 1-d lattice forest with a tree present at any site with
probability p.

(a) Find the distribution of forest sizes as a function of p. Do this by moving
along the 1-d world and figuring out the probability that any forest you enter
will extend for a total length ℓ.

(b) Find pc, the critical probability for which a giant component exists.
Hint: One way to find critical points is to determine when certain average
quantities explode. Compute ⟨l⟩ and find p such that this expression goes
boom (if it does).

5. Show analytically that the critical probability for site percolation on a triangular
lattice is pc = 1/2.
Hint—Real-space renormalization gets it done.:
http://www.youtube.com/watch?v=JlkbU5U7QqU

6. (3 + 3)
Coding, it’s what’s for breakfast:
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(a) Percolation in two dimensions (2-d) on a simple square lattice provides a
classic, nutritious example of a phase transition.
Your mission, whether or not you choose to accept it, is to code up and
analyse the L by L square lattice percolation model for varying L.
Take L = 20, 50, 100, 200, 500, and 1000.
(Go higher if you feel L = 1000 is for mere mortals.)
(Go lower if your code explodes.)
Let’s continue with the tree obsession. A site has a tree with probability p,
and a sheep grazing on what’s left of a tree with probability 1− p.
Forests are defined as any connected component of trees bordered by sheep,
where connections are possible with a site’s four nearest neighbors on a
lattice.
Each square lattice is to be considered as a landscape on which forests and
sheep co-exist.
Do not bagelize (or doughnutize) the landscape (no periodic boundary
conditions—boundaries are boundaries).
(Note: this set up is called site percolation. Bond percolation is the alternate
case when all links between neighboring sites exist with probability p.)
Steps:

i. For each L, run Ntests=100 tests for occupation probability p moving
from 0 to 1 in increments of 10−2. (As for L, you may use a smaller or
larger increment depending on how things go.)

ii. Determine the fractional size of the largest connected forest for each of
the Ntests, and find the average of these, Savg.

iii. On a single figure, for each L, plot the average Savg as a function of p.
(b) Comment on how Savg(p;N) changes as a function of L and estimate the

critical probability pc (the percolation threshold).

For the few Matlabbers, a helpful reuse of code (intended for black and white
image analysis): You can use Matlab’s bwconncomp to find the sizes of
components. Very nice.

7. (3 + 3)

(a) Using your model from the previous question and your estimate of pc, plot
the distribution of forest sizes (meaning cluster sizes) for p ≃ pc for the
largest L your code and psychological makeup can withstand. (You can
average the distribution over separate simulations.)
Comment on what kind of distribution you find.
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(b) Repeat the above for p = pc/2 and p = pc + (1− pc)/2, i.e., well below and
well above pc.
Produce plots for both cases, and again, comment on what you find.

8. Show that the Gini coefficient G for our idealized power-law size distribution of
wealth is:

G =

{
1 if 1 < γ ≤ 2,
1

1+2(γ−2)
if γ > 2.

(1)

Having developed a sense of what values of γ mean, and because of the simplicity
of the relationship between G and γ, we can convert a real-world wealth
distribution’s value of G to γ for the equivalent idealized power-law size
distribution:

γ ≤ 2 if G = 1,

γ = 1
2

(
1
G
+ 3
)

if G < 1.
(2)

For example, what does a Gini coefficient of 1/2 mean for an idealized power law?
Eq. 2 gives γ = 5/2, which we recognized as coming from the Bad Place of finite
mean and infinite variance.

9. (3 + 3 + 3 + 3 + 3)
We take a look at the 80/20 rule, 1 per centers, and similar concepts.
Take x to be the wealth held by an individual in a population of n people, and the
number of individuals with wealth between x and x+ dx to be approximately
N(x)dx.
Given a power-law size frequency distribution N(x) = cx−γ where
xmin ≪ x ≪ ∞, determine the value of γ for which the so-called 80/20 rule holds.
In other words, find γ for which the bottom 4/5 of the population holds 1/5 of
the overall wealth, and the top 1/5 holds the remaining 4/5.
Note that inherent in our construction of the wealth frequency distribution is that
the population is ordered by increasing wealth.
Assume the mean is finite, i.e., γ > 2.

(a) Determine the total wealth W in the system given
∫∞
xmin

dxN(x) = n.
(b) Imagine that the bottom 100 θpop percent of the population holds 100 θwealth

percent of the wealth.
Show γ depends on θpop and θwealth as

γ = 1 +
ln 1

(1−θpop)

ln 1
(1−θpop)

− ln 1
(1−θwealth)

. (3)
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(c) Given the above, is every pairing of θpop and θwealth possible?
(d) Find γ for the 80/20 requirement (θpop = 4/5 and θwealth = 1/5).
(e) For the “80/20” γ you find, determine the fraction of wealth θwealth that the

bottom fraction θpop of the population possesses as a function of θpop and
plot the result.

10. (3 + 3 + 3)
Highly Optimized Tolerance:
This question is based on Carlson and Doyle’s 1999 paper “Highly optimized
tolerance: A mechanism for power laws in design systems” [1]. In class, we made
our way through a discrete version of a toy HOT model of forest fires. This paper
revolves around the equivalent continuous model’s derivation. You do not have to
perform the derivation but rather carry out some manipulations of probability
distributions using their main formula.
Our interest is in Table I on p. 1415:

We will assume that the local event size is inversely re-
lated to the local density or cost of the resource, so that
A(x)!R"!(x), where typically ! is positive. This relation-
ship arises naturally in systems with spatial geometry "e.g.,
in the forest fire analogy#, where in d dimensions we can
think of R(x) as being (d"1)-dimensional separating barri-
ers. In that case A(x)$R"d(x). In some systems the rela-
tionship between A(x) and R(x) is difficult to define
uniquely, and in some cases reduces to a value judgement.
Here our spatially motivated assumption that A(x)
!R"!(x) is important for obtaining power law distributions.
If we assume an exponential relationship between the size of
an event and its cost %e.g., A$ln(R)&, we obtain a sharp
cutoff in the distribution of events. In essence, this is because
it becomes extremely inexpensive to restrict large events be-
cause the cost of resources decreases faster than the size of
the event to any power. Alternately, one could define a cost
function for cases in which there is a large social or ethical
premium "e.g., loss of life# associated with large events. This
could lead to a cutoff in the distribution due to a rapid rise in
the total allocation of resources to prevent large events. In
this case, the heavy tails would occur in the cost C and not in
the event size A.
To obtain the HOT state we simply minimize the ex-

pected cost %Eq. "1#& subject to the constraint %Eq. "2#&. Sub-
stituting the relationship A(x)!R"!(x) into Eq. "1#, we ob-
tain

E"A'#!!
X
p"x#R"'!"x#dx. "3#

Combining this with Eq. "2#, we minimize E(A') using the
variational principle by solving

(!
X
%p"x#R"'!"x#")R"x#&dx!0. "4#

Thus the optimal relationship between the local probability
and constrained resource is given by

p"x#R"'!"1"x#!const. "5#

From this we obtain

p"x#$R'!#1"x#$A""'#1/!#"x#$A"*"x#, "6#

where *!'#1/! . This relation should be viewed as the
local rule which sets the best placements of the resource. As
expected, greater resources are devoted to regions of high
probability.
As function of x, Eq. "6# shows that p(x) and A(x) scale

as a power law. However, we want to obtain the distribution
P(A) as a function of the area A rather than the local coor-
dinate x. It is convenient to focus on cumulative distribution,
Pcum(A), which is the sum of P(A) for regions of size
greater than or equal to A. We express the tails of Pcum(A) as

Pcum"A #!!
A"x#$A

p"x#dx!!
p"x#%A"*

p"x#dx, "7#

where the integral is evaluated over the subset of x in which
the local value A(x) is greater than the specified value A.

Under what conditions does this relationship lead to
heavy tails? Certainly not all p(x) lead to power laws in
P(A) %equivalently, Pcum(A), which has power law tails if
P(A) has power law tails, with one power higher in the
exponent&. For example, if p(x) is concentrated within a fi-
nite region, then the resource would optimally be concen-
trated within that region, and the distribution P(A) would a
priori have zero weight for events greater than the area as-
sociated with the mass concentration of p(x). Here the most
extreme case is a point mass at a particular location, p(x)
!((x"x*), which could be enclosed by a high density of
the resource, so that all activity is confined to x*. Alter-
nately, if p(x) is spatially uniform, then R(x) and A(x)
would be uniformly distributed, and P(A) would be a point
mass at a fixed area determined by the resource constraint
and the system size.
While counterexamples such as those we have just de-

scribed can be constructed, a broad class of distributions
p(x) leads to heavy tails in P(A). The case for d!1 with
monotonic p(x) and restricting X to x$0 is particularly
simple "and forms the basis for the more general case#. In
this special case, the change of variables from p(x) to P(A)
is straightforward, and we obtain

Pcum"A #!!
p"1"A"*#

+

p"x#dx!pcum„p"1"A"*#… , "8#

where pcum(x) is the tail of the cumulative distribution for
the probability of hits and p"1 is the inverse function of p, so
that p"1(A"*) is the value of x for which p(x)!A"*.
We can use Eq. "8# to directly compute the tail of

Pcum(A) for standard p(x), such as power laws, exponen-
tials, and Gaussians. Table I summarizes the results, where
we look only at tails in the distributions of x and A, and drop
constants. We obtain a power distribution for Pcum(A) in
each case, with a logarithmic correction for the Gaussian.
For higher dimensions, suppose that the tails of p(x) can

be bounded above and below by

pl" "x"#,p"x#,pu" "x"#, "9#

where "x" denotes the magnitude of x. The specific form of
Eq. "9# effectively reduces the change of variables to quasi-
one-dimensional computations. With this assumption, Eq. "7#
can be bounded below by

TABLE I. In the HOT state, power law distributions of the
region sizes Pcum(A) are obtained for a broad class of probability
distributions of the hits p(x), including power law, exponential, and
Gaussian distributions as shown here.

p(x) pcum(x) Pcum(A)

x"(q#1) x"q A"*(1"1/q)

e"x e"x A"*

e"x2 x"1e"x2 A"*% log(A)&"1/2

PRE 60 1415HIGHLY OPTIMIZED TOLERANCE: A MECHANISM . . .

and Equation 8 on the same page:

P≥(A) =

∫ ∞

p−1(A−γ)

p(x)dx = p≥
(
p−1

(
A−γ

))
,

where γ = α + 1/β and we’ll write P≥ for Pcum.
Please note that P≥(A) for x−(q+1) is not correct. Find the right one!
Here, A(x) is the area connected to the point x (think connected patch of trees
for forest fires). The cost of a ‘failure’ (e.g., lightning) beginning at x scales as
A(x)α which in turn occurs with probability p(x). The function p−1 is the inverse
function of p.
Resources associated with point x are denoted as R(x) and area is assumed to
scale with resource as A(x) ∼ R−β(x).
Finally, p≥ is the complementary cumulative distribution function for p.
As per the table, determine p≥(x) and P≥(A) for the following (3 pts each):

(a) p(x) = cx−(q+1),
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(b) p(x) = ce−x, and
(c) p(x) = ce−x2

.

Note that these forms are for the tails of p only, and you should incorporate a
constant of proportionality c, which is not shown in the paper.

11. The discrete version of HOT theory:
From lectures, we had the following.
Cost: Expected size of ‘fire’ in a d-dimensional lattice:

Cfire ∝
Nsites∑
i=1

piai

where ai = area of ith site’s region, and pi = avg. prob. of fire at site i over a
given time period.
The constraint for building and maintaining (d− 1)-dimensional firewalls in
d-dimensions is

Cfirewalls ∝
Nsites∑
i=1

a
(d−1)/d
i a−1

i ,

where we are assuming isometry.
Using Lagrange Multipliers, and, optionally, safety goggles, rubber gloves, a pair of
tongs, and a maniacal laugh, determine that:

pi ∝ a−γ
i = a

−(1+1/d)
i .

12. (3 + 3 + 3 + 3)
A courageous coding festival:
Code up the discrete HOT model in 2-d. Let’s see if we find any of these
super-duper power laws everyone keeps talking about. We’ll follow the same
approach as the N = L×L 2-d forest discussed in lectures.
Main goal: extract yield curves as a function of the design D parameter as
described below.
Suggested simulations elements:

• Take L = 32 as a start. Once your code is running, see if L = 64, 128, or
more might be possible. (The original sets of papers used all three of these
values.) Use a value of L that’s sufficiently large to produced useful statistics
but not prohibitively time consuming for simulations.

• Start with no trees.
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• Probability of a spark at the (i, j)th site: P (i, j) ∝ e−i/ℓe−j/ℓ where (i, j) is
tree position with the indices starting in the top left corner (i, j = 1 to L).
(You will need to normalize this properly.) The quantity ℓ is the
characteristic scale for this distribution. Try out ℓ = L/10.

• Consider a design problem of D = 1, 2, L, and L2. (If L and L2 are too
much, you can drop them. Perhaps sneak out to D = 3.) Recall that the
design problem is to test D randomly chosen placements of the next tree
against the spark distribution.

• For each test tree, compute the average forest fire size over the full spark
distribution: ∑

i,j

P (i, j)S(i, j),

where S(i, j) is the size of the forest component at (i, j). Select the tree
location with the highest average yield and plant a tree there.

• Add trees until the 2-d forest is full, measuring average yield as a function of
trees added.

• Only trees within the cluster surrounding the ignited tree burn (trees are
connected through four nearest neighbors).

(a) Plot the forest at (approximate) peak yield.
(b) Plot the yield curves for each value of D, and identify (approximately) the

peak yield and the density for which peak yield occurs for each value of D.
(c) Plot Zipf (or size) distributions of tree component sizes S at peak yield.

Note: You will have to rebuild forests and stop at the peak yield value of D
to find these distributions. By recording the sequence of optimal tree
planting, this can be done without running the simulation again.

(d) Extra level: Plot Zipf (or size) distributions for D = L2 for varying tree
densities ρ = 0.10, 0.20, . . . , 0.90. This will be an effort to reproduce Fig. 3b
in [2].

Hint: Working on un-treed locations will make choosing the next location easier.

13. Plot time series for the rank of the following baby names in the US over all years
in the census data.
Do so for raw ranks and log10 ranks.

• Shirley.
• Desmond.
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• Madison.
• Aiden.
• A name of your choice.

Note that if you plotted relative frequency rather than rank, you would need to
know (or estimate) the overall number of babies born. Ranks are both easy simple
to work with and easy to understand.

14. The complex geographies of fairness, greed, belief.
Let’s start connecting people to places.
Now: Source census population data as a function of location with corresponding
map shape files.
Goal: We will want to be able to connect density of people in regions with density
of specific facilities.
So the shape files should be as usefully fine in scale as possible. For the census,
we have block, block groups, and tracts.
Please do this collectively by discussing and sharing links/data in the assignments
channel on Teams.
Depending on the software you use, much of this data may be well curated.

15. From lectures on Supply Networks:
Show that for large V and 0 < ϵ < 1/2

minVnet ∝
∫
Ωd,D(V )

ρ ||x⃗||1−2ϵ dx⃗ ∼ ρV 1+γmax(1−2ϵ)

Reminders: we defined Li = c−1
i V γi where γ1 + γ2 + . . .+ γd = 1,

γ1 = γmax ≥ γ2 ≥ . . . ≥ γd., and c =
∏

i ci ≤ 1 is a shape factor.
Assume the first k lengths scale in the same way with γ1 = . . . = γk = γmax, and
write ||x⃗|| = (x2

1 + x2
2 + . . .+ x2

d)
1/2.

16. (3 + 3 points) Supply networks and allometry:
This question’s calculation is a specific, exactly-solvable case of the general result
that you may attack (with optional relish and other condiments) in a nearby
question.
Consider a set of rectangular areas with side lengths L1 and L2 such that
L1 ∝ Aγ1 and L2 ∝ Aγ2 where A is area and γ1 + γ2 = 1. Assume γ1 > γ2 and
that ϵ = 0.
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Now imagine that material has to be distributed from a central source in each of
these areas to sinks distributed with density ρ(A), and that these sinks draw the
same amount of material per unit time independent of L1 and L2.

(a) Find an exact form for how the volume of the most efficient distribution
network scales with overall area A = L1L2. (Hint: you will have to set up a
double integration over the rectangle.)

(b) If network volume must remain a constant fraction of overall area, determine
the maximal scaling of sink density ρ with A.

Extra hints:

• Integrate over triangles as follows.
• You need to only perform calculations for one triangle.

x2

1

2

1

1

2

2 2

1

x1

dx1dx2

x2 =
L2

L1

x1

−

L1

2

L2

2

−

L2

2

L1

2

17. Open:
Derive a scaling law for the number of side branches that doesn’t use stream
ordering.
How many parameters do we need? 3?

18. Come up with a microscopic description of branching river networks that builds
from the outlet of the basin rather than the smallest streams.
For bodies, move from aorta to capillaries.

19. (3 + 3 + 3)
Estimating the rare:
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Google’s raw data is for word frequency k ≥ 200 so let’s deal with that issue now.
From Assignment 2, we had for word frequency in the range 200 ≤ k ≤ 107, a fit
for the CCDF of

N≥k ∼ 3.46× 108k−0.661,

ignoring errors.

(a) Using the above fit, create a complete hypothetical Nk by expanding Nk

back for k = 1 to k = 199, and plot the result in double-log space (meaning
log-log space).

(b) Compute the mean and variance of this reconstructed distribution.
(c) Estimate:

i. The hypothetical total number and fraction of unique words in Google’s
data set (think at the species or type level now),

ii. The hypothetical fraction of words that appear once out of all words
(think of words as organisms or tokens here),

iii. And what fraction of total words are left out of the Google data set by
providing only those with counts k ≥ 200 (back to words as organisms
or tokens).

20. Simulate the small-world model and reproduce Fig. 2 from the 1998
Watts-Strogatz paper showing how clustering and average shortest path behave
with rewiring probability p [3].
Please find and use any suitable code online, and feel free to share with each other
via Slack.
Use N = 1000 nodes and k = 10 for average degree, and vary p from 0.0001 to 1,
evenly spaced on a logarithmic scale (there are only 14 values used in the paper).
Here’s the figure you’re aiming for:

Nature © Macmillan Publishers Ltd 1998
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removed from a clustered neighbourhood to make a short cut has, at
most, a linear effect on C; hence C(p) remains practically unchanged
for small p even though L(p) drops rapidly. The important implica-
tion here is that at the local level (as reflected by C(p)), the transition
to a small world is almost undetectable. To check the robustness of
these results, we have tested many different types of initial regular
graphs, as well as different algorithms for random rewiring, and all
give qualitatively similar results. The only requirement is that the
rewired edges must typically connect vertices that would otherwise
be much farther apart than Lrandom.

The idealized construction above reveals the key role of short
cuts. It suggests that the small-world phenomenon might be
common in sparse networks with many vertices, as even a tiny
fraction of short cuts would suffice. To test this idea, we have
computed L and C for the collaboration graph of actors in feature
films (generated from data available at http://us.imdb.com), the
electrical power grid of the western United States, and the neural
network of the nematode worm C. elegans17. All three graphs are of
scientific interest. The graph of film actors is a surrogate for a social
network18, with the advantage of being much more easily specified.
It is also akin to the graph of mathematical collaborations centred,
traditionally, on P. Erdös (partial data available at http://
www.acs.oakland.edu/!grossman/erdoshp.html). The graph of
the power grid is relevant to the efficiency and robustness of
power networks19. And C. elegans is the sole example of a completely
mapped neural network.

Table 1 shows that all three graphs are small-world networks.
These examples were not hand-picked; they were chosen because of
their inherent interest and because complete wiring diagrams were
available. Thus the small-world phenomenon is not merely a
curiosity of social networks13,14 nor an artefact of an idealized

model—it is probably generic for many large, sparse networks
found in nature.

We now investigate the functional significance of small-world
connectivity for dynamical systems. Our test case is a deliberately
simplified model for the spread of an infectious disease. The
population structure is modelled by the family of graphs described
in Fig. 1. At time t ¼ 0, a single infective individual is introduced
into an otherwise healthy population. Infective individuals are
removed permanently (by immunity or death) after a period of
sickness that lasts one unit of dimensionless time. During this time,
each infective individual can infect each of its healthy neighbours
with probability r. On subsequent time steps, the disease spreads
along the edges of the graph until it either infects the entire
population, or it dies out, having infected some fraction of the
population in the process.

p = 0 p = 1 
Increasing randomness

Regular Small-world Random

Figure 1 Random rewiring procedure for interpolating between a regular ring

lattice and a random network, without altering the number of vertices or edges in

the graph. We start with a ring of n vertices, each connected to its k nearest

neighbours by undirected edges. (For clarity, n ¼ 20 and k ¼ 4 in the schematic

examples shown here, but much larger n and k are used in the rest of this Letter.)

We choose a vertex and the edge that connects it to its nearest neighbour in a

clockwise sense. With probability p, we reconnect this edge to a vertex chosen

uniformly at random over the entire ring, with duplicate edges forbidden; other-

wise we leave the edge in place. We repeat this process by moving clockwise

around the ring, considering each vertex in turn until one lap is completed. Next,

we consider the edges that connect vertices to their second-nearest neighbours

clockwise. As before, we randomly rewire each of these edges with probability p,

and continue this process, circulating around the ring and proceeding outward to

more distant neighbours after each lap, until each edge in the original lattice has

been considered once. (As there are nk/2 edges in the entire graph, the rewiring

process stops after k/2 laps.) Three realizations of this process are shown, for

different values of p. For p ¼ 0, the original ring is unchanged; as p increases, the

graph becomes increasingly disordered until for p ¼ 1, all edges are rewired

randomly. One of our main results is that for intermediate values of p, the graph is

a small-world network: highly clustered like a regular graph, yet with small

characteristic path length, like a random graph. (See Fig. 2.)

Table 1 Empirical examples of small-world networks

Lactual Lrandom Cactual Crandom
.............................................................................................................................................................................
Film actors 3.65 2.99 0.79 0.00027
Power grid 18.7 12.4 0.080 0.005
C. elegans 2.65 2.25 0.28 0.05
.............................................................................................................................................................................
Characteristic path length L and clustering coefficient C for three real networks, compared
to random graphs with the same number of vertices (n) and average number of edges per
vertex (k). (Actors: n ¼ 225;226, k ¼ 61. Power grid: n ¼ 4;941, k ¼ 2:67. C. elegans: n ¼ 282,
k ¼ 14.) The graphs are defined as follows. Two actors are joined by an edge if they have
acted in a film together. We restrict attention to the giant connected component16 of this
graph, which includes !90% of all actors listed in the Internet Movie Database (available at
http://us.imdb.com), as of April 1997. For the power grid, vertices represent generators,
transformers and substations, and edges represent high-voltage transmission lines
between them. For C. elegans, an edge joins two neurons if they are connected by either
a synapse or a gap junction. We treat all edges as undirected and unweighted, and all
vertices as identical, recognizing that these are crude approximations. All three networks
show the small-world phenomenon: L ! Lrandom but C q Crandom.

0

0.2

0.4

0.6

0.8

1

0.0001 0.001 0.01 0.1 1

p

L(p) / L(0)

C(p) / C(0)

Figure 2 Characteristic path length L(p) and clustering coefficient C(p) for the

family of randomly rewired graphs described in Fig. 1. Here L is defined as the

number of edges in the shortest path between two vertices, averaged over all

pairs of vertices. The clustering coefficient C(p) is defined as follows. Suppose

that a vertex v has kv neighbours; then at most kvðkv " 1Þ=2 edges can exist

between them (this occurs when every neighbour of v is connected to everyother

neighbour of v). Let Cv denote the fraction of these allowable edges that actually

exist. Define C as the average of Cv over all v. For friendship networks, these

statistics have intuitive meanings: L is the average number of friendships in the

shortest chain connecting two people; Cv reflects the extent to which friends of v

are also friends of each other; and thus C measures the cliquishness of a typical

friendship circle. The data shown in the figure are averages over 20 random

realizations of the rewiring process described in Fig.1, and have been normalized

by the values L(0), C(0) for a regular lattice. All the graphs have n ¼ 1;000 vertices

and an average degree of k ¼ 10 edges per vertex. We note that a logarithmic

horizontal scale has been used to resolve the rapid drop in L(p), corresponding to

the onset of the small-world phenomenon. During this drop, C(p) remains almost

constant at its value for the regular lattice, indicating that the transition to a small

world is almost undetectable at the local level.
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21. (3 + 3 + 3 + 3 + 3 + 3 pts) Generalized entropy and diversity:
For a probability distribution of i = 1, . . . , n entities with the ith entity having
probability of being observed pi, Shannon’s entropy is defined as [4]:
H = −

∑n
i=1 pi ln pi. There are other kinds of entropies and we’ll explore some

aspects of them here.
Let’s use the setting of words in a text (another meaningful framing is abundance
of species in an ecology). So we have word i appearing with probability pi and
there are n words.
Now, a useful quantity associated with any kind of entropy is diversity, D [5].
Given a text T with entropy H, we define D to be the number of words in another
hypothetical text T ′ which (1) has the same entropy, and (2) where all words
appear with equal frequency 1/D. In text T ′, we have pi = 1/D for i = 1, . . . , D.
Diversity is thus a number, and behaves in number-like ways that are more
intuitive to grasp than entropy. (Entropy is still the primary thing here.)
Determine the diversity D in terms of the probabilities {pi} for the following:

(a) Simpson concentration:

S =
n∑

i=1

p2i .

(b) Gini index:

G ≡ 1− S = 1−
n∑

i=1

p2i .

Please note any connections between diversity for the Simpson and Gini
indices.

(c) Shannon’s entropy:

H = −
n∑

i=1

pi ln pi.

(d) Renyi entropy:

H(R)
q =

1

q − 1

(
− ln

n∑
i=1

pqi

)
,

where q ̸= 1.
(e) The generalized Tsallis entropy:

H(T)
q =

1

q − 1

(
1−

n∑
i=1

pqi

)
,

where q ̸= 1.
Please note any connections between diversity for Renyi and Tsallis.
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(f) Show that in the limit q → 1, the diversity for the Tsallis entropy matches up
with that of Shannon’s entropy.

22. Determine the average value of samples with value k ≥ min kmax to find how the
expected value of kmax (i.e., ⟨kmax⟩) scales with N .

23. (3 + 3)
Allotaxonometry.
Rank-turbulence divergence (RTD) is defined as:

DR
α (R1 ∥R2) =

∑
τ∈R1,2;α

δDR
α,τ (R1 ∥R2)

=
1

N1,2;α

α + 1

α

∑
τ∈R1,2;α

∣∣∣∣ 1

[rτ,1]
α − 1

[rτ,2]
α

∣∣∣∣1/(α+1)

. (4)

Find the limits of RTD for:

(a) α → 0.
(b) α → ∞.

Leave 1
N1,2;α

as a constant.

24. For finite cutoffs a and b with a ≪ b, which cutoff dominates the expression for
the nth moment as a function of γ and n?
Note: both cutoffs may be involved to some degree.

25. (a) A parent has two children, not twins, and one is a girl born on a Tuesday.
What’s the probability that both children are girls?
See if you can produce both a calculation of probabilities and a visual
explanation with shapes (e.g., discs and pie pieces).
Once you have the answer, can you improve our intuition here? Why does
adding the more detailed piece of information of the Tuesday birth change
the probability from 1/3?
(Assume 50/50 birth probabilities.)

(b) Same as the previous question but we now know that one is a girl born on
December 31. Again, what’s the probability that both are girls?

26. Computational Pareidolia.
A peculiar class project.
As a team, figure out how to gather, curate, and analyze pictures of the front of
cars as they have evolved over time.
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Upper limit of insanity: All cars ever sold in the US (types) combined with sales
(tokens).

(a) Photos should be from the front.
(b) Ideally, we have photos
(c) Figure out how to assess the emotional content expressed by a car’s ‘face’.
(d) May be purely computational, may need to use people’s assessments. We

can use Mechanical Turk for example.
(e) Suggest setting up a single Github repository for the work.

Some articles:

• The faces thing:
https://www.smithsonianmag.com/smart-news/for-experts-cars-really-do-
have-faces-57005307/.

• Sinisterness:
https://www.latimes.com/business/autos/la-hy-sinister-faces-pg-
photogallery.html.

• Brain imaging: “High-resolution imaging of expertise reveals reliable object
selectivity in the fusiform face area related to perceptual performance”
https://www.pnas.org/content/early/2012/09/27/1116333109.abstract.

27. “Any good idea can be stated in fifty words or less.”—Stanisław Ulam.1

Things have sped up since Ulam made his claim.
The top of the narrative hierarchy:
Read through Anderson’s seminal paper “More is different” [6] and generate three
descriptions of complexification with exactly the following lengths:

(a) 1–3 words,
(b) 4–6 words,
(c) and 7–12 words.

The 1–3 words one: Try to improve on “More is different”.

28. For class discussion, read “Will a large complex system be stable?” by Robert
May [7].
Put together three comments and/or questions.

1At the very least, Ulam’s claim is self-consistent.
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29. (3 + 3 + 3 + 3) This question is all about pure finite and infinite random networks
We’ll define a finite random network as follows. Take N labelled nodes and add
links between each pair of nodes with probability p.

(a) i. For a random node i, determine the probability distribution for its
number of friends k, Pk(p,N).

ii. What kind of distribution is this?
iii. What does this distribution tend toward in the limit of large N , if p is

fixed?
(No need to do calculations here; just invoke the right Rule of the
Universe.)

(b) Using Pk(p,N), determine the average degree. Does your answer seem right
intuitively?

(c) Show that in the limit of N → ∞ but with mean held constant, we obtain a
Poisson degree distribution.
Hint: to keep the mean constant, you will need to change p.

(d) i. Compute the clustering coefficients C1 and C2 for standard finite
random networks (N nodes).

ii. Explain how your answers make sense.
iii. What happens in the limit of an infinite random network with finite

mean?

30. (3 + 3)
Determine the clustering coefficient for toy model small-world networks [3] as a
function of the rewiring probability p. Find C1, the average local clustering
coefficient:

C1(p) =

⟨∑
j1j2∈Ni

aj1j2

ki(ki − 1)/2

⟩
i

=
1

N

N∑
i=1

∑
j1j2∈Ni

aj1j2

ki(ki − 1)/2

where N is the number of nodes, aij = 1 if nodes i and j are connected, and Ni

indicates the neighborhood of i.
As per the original model, assume a ring network with each node connected to a
fixed, even number m local neighbors (m/2 on each side). Take the number of
nodes to be N ≫ m.
Start by finding C1(0) and argue for a (1− p)3 correction factor to find an
approximation of C1(p).
Hint 1: you can think of finding C1 as averaging over the possibilities for a single
node.
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Hint 2: assume that the degree of individual nodes does not change with rewiring
but rather stays fixed at m. In other words, take the average degree of individuals
as the degree of a randomly selected individual.
For what value of p is C1(p)/C1(0) ≃ 1/2?
Does this seem reasonable given your simulation?
(3 points for set up, 3 for solving.)

31. (3 + 3):
Consider a modified version of the Barabàsi-Albert (BA) model [8] where two
possible mechanisms are now in play. As in the original model, start with m0

nodes at time t = 0. Let’s make these initial guys connected such that each has
degree 1. The two mechanisms are:

M1: With probability p, a new node of degree 1 is added to the network. At time
t+ 1, a node connects to an existing node j with probability

P (connect to node j) =
kj∑N(t)
i=1 ki

(5)

where kj is the degree of node j and N(t) is the number of nodes in the
system at time t.

M2: With probability q = 1− p, a randomly chosen node adds a new edge,
connecting to node j with the same preferential attachment probability as
above.

Note that in the limit q = 0, we retrieve the original BA model (with the
difference that we are adding one link at a time rather than m here).
In the long time limit t → ∞, what is the expected form of the degree distribution
Pk?
Do we move out of the original model’s universality class?
Different analytic approaches are possible including a modification of the BA
paper, or a Simon-like one (see also Krapivsky and Redner [9]).
Hint: You can attempt to solve the problem exactly and you’ll find an integrating
factor story.
Another hint, moment of mercy: Approximate the differential equation by
considering large t (this will simplify the denominators).
(3 points for set up, 3 for solving.)
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32. (3 + 3)
Using Gleeson and Calahane’s iterative equations below, derive the contagion
condition for a vanishing seed by taking the limit ϕ0 → 0 and t → ∞. In lectures,
we derived the discrete evolution equations for the fraction of infected nodes ϕt

and the fraction of infected edges θt as follows:

ϕt+1 = ϕ0 + (1− ϕ0)
∞∑
k=0

Pk

k∑
j=0

(
k

j

)
θ j
t (1− θt)

k−jBkj,

θt+1 = G(θt;ϕ0) = ϕ0 + (1− ϕ0)
∞∑
k=1

kPk

⟨k⟩

k−1∑
j=0

(
k − 1

j

)
θ j
t (1− θt)

k−1−jBkj,

where θ0 = ϕ0, and Bkj is the probability that a degree k node becomes active
when j of its neighbors are active.
Recall that by contagion condition, we mean the requirements of a random
network for macroscopic spreading to occur.
To connect the paper’s model and notation to those of our lectures, given a
specific response function F and a threshold model, the Bkj are given by
Bkj = F (j/k).
Allow Bk0 to be arbitrary (i.e., not necessarily 0 as for simple threshold functions).
We really only need to understand how θt behaves. Write the corresponding
equation as θt+1 = G(θt;ϕ0) and determine when

(a) G(0; 0) > 0 (spreading is for free).
(b) G(0; 0) = 0 and G′(0;ϕ0) > 1 meaning ϕ = 0 is a unstable fixed point.

Here’s a graphical hint for the three cases you need to consider as θ0 → 0:
Success: Sucesss: Fail:

33. (3 + 3 + 3) Optional:
Solve Krapivsky-Redner’s model for the pure linear attachment kernel Ak = k.
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Starting point:
nk =

1

2
(k − 1)nk−1 −

1

2
knk + δk1

with n0 = 0.

(a) Determine n1.
(b) Find a recursion relation for nk in terms of nk−1.
(c) Now find

nk =
4

k(k + 1)(k + 2)

for all k and hence determine γ.

34. (3 + 3) Optional:
From lectures:

(a) Starting from the recursion relation

nk =
Ak−1

µ+ Ak

nk−1,

and n1 = µ/(µ+ A1), show that the expression for nk for the
Krapivsky-Redner model with an asymptotically linear attachment kernel Ak

is:
µ

Ak

k∏
j=1

1

1 + µ
Aj

.

(b) Now show that if Ak → k for k → ∞ (or for large k), we obtain
nk → k−µ−1.

35. (3 + 3 + 3)
From lectures, complete the analysis for the Krapivsky-Redner model with
attachment kernel:

A1 = α and Ak = k for k ≥ 2.

Find the scaling exponent γ = µ+ 1 by finding µ. From lectures, we assumed a
linear growth in the sum of the attachment kernel weights µt =

∑∞
k=1 Nk(t)Ak,

with µ = 2 for the standard kernel Ak = k.
We arrived at this expression for µ which you can use as your starting point:

1 =
∞∑
k=1

k∏
j=1

1

1 + µ
Aj
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(a) Show that the above expression leads to

µ

α
=

∞∑
k=2

Γ(k + 1)Γ(2 + µ)

Γ(k + µ+ 1)

Hint: you’ll want to separate out the j = 1 case for which Aj = α.
(b) Now use result that [9]

∞∑
k=2

Γ(a+ k)

Γ(b+ k)
=

Γ(a+ 2)

(b− a− 1)Γ(b+ 1)

to find the connection
µ(µ− 1) = 2α,

and show this leads to
µ =

1 +
√
1 + 8α

2
.

(c) Interpret how varying α affects the exponent γ, explaining why α < 1 and
α > 1 lead to the particular values of γ that they do.

36. Yes, even more on power law size distributions. It’s good for you.
For the probability distribution P (x) = cx−γ, 0 < a ≤ x ≤ b, compute the mean
absolute displacement (MAD), which is given by ⟨|X − ⟨X⟩|⟩ where ⟨·⟩ represents
expected value. As always, simplify your expression as much as possible.
MAD is a more reasonable estimate for the width of a distribution, but we like
variance σ2 because the calculations are much prettier. Really.

37. In the limit of b → ∞, show that MAD asymptotically behave as:

⟨|X − ⟨X⟩|⟩ = 2(γ − 2)(γ−3)

(γ − 1)(γ−2)
a.

How does this compare with the behavior of the variance? (See the last question
of Assignment todo???.)

38. Simon’s model II:
A missing piece from the lectures: Obtain γ in terms of ρ by expanding Eq. ?? in
terms of 1/k. In the end, you will need to express nk/nk−1 as (1− 1/k)θ; from
here, you will be able to identify γ. Taylor expansions and Procrustean truncations
will be in order.
This (dirty) method avoids finding the exact form for nk.
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39. A spectacularly optional extra.
Warning:

• Only attempt if using registered safety equipment including welding goggles
and a lead apron.

• Make sure to back up your brain in at least two geographically distant places
beforehand (e.g., on different planets).

Dangerous feature:

• If you make it out, you will be very happy.

In lectures on lognormals and other heavy-tailed distributions, we came across a
super fun and interesting integral when considering organization size distributions
arising from growth processes with variable lifespans.
Show that

P (x) =

∫ ∞

t=0

λe−λt 1

x
√
2πt

exp
(
−
(ln x

m
)2

2t

)
dt

leads to:
P (x) ∝ x−1e−

√
2λ(ln x

m
)2 ,

and therefore, surprisingly, two different scaling regimes. Enjoyable suffering may
be involved. Really enjoyable suffering. But many monks have found a way so you
should follow their path laid out below.
Hints and steps:

• Make the substitution t = u2 to find an integral of the form (excluding a
constant of proportionality)

I1(a, b) =

∫ ∞

0

exp
(
−au2 − b/u2

)
du

where in our case a = λ and b = (ln x
m
)2/2.

• Substitute au2 = t2 into the above to find

I1(a, b) =
1√
a

∫ ∞

0

exp
(
−t2 − ab/t2

)
dt

• Now work on this integral:

I2(r) =

∫ ∞

0

exp
(
−t2 − r/t2

)
dt

where r = ab.
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• Differentiate I2 with respect to r to create a simple differential equation for
I2. You will need to use the substitution u =

√
r/t and your differential

equation should be of the (very simple) form

dI2(r)
dr = −(something)I2(r).

• Solve the differential equation you find. To find the constant of integration,
you can evaluate I2(0) separately:

I2(0) =

∫ ∞

0

exp(−t2)dt,

where our friend Γ(frac12) comes into play.

A collection of questions from earlier seasons of PoCS, Vol 2 (also variously known as
CoNKs, CocoNuTs, and Complex Networks).

This is all a big soup and some questions may be poorly constructed or repeated.

• The first series of questions will explore real networks by performing some key
measurements introduced in Principles of Complex Systems, Vol. 1.

• For general coherence with other humans, you are encouraged to use Python. Also
very good: Unix command line tools, R, Julia, Matlab. But you can of course use
whatever system you like.

• Data is available in two compressed formats:

– Matlab + text (tgz): https://pdodds.w3.uvm.edu/teaching/courses/2023-
2024pocsverse/data/303complexnetworks-data-package.tgz

– Matlab + text (zip): https://pdodds.w3.uvm.edu/teaching/courses/2023-
2024pocsverse/data/303complexnetworks-data-package.zip

and can also be found on the course website (helpfully) under data.

• The main Matlab file containing everything is networkdata_combined.mat.

• For directed networks, the ijth entry of the adjacency matrix represents the
weight of the link from node i to node j. Adjacency matrices for undirected
networks are symmetric.

• For all questions below, treat each network as undirected unless otherwise
instructed.
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• For this assignment, convert all weights on links to 1, if the network is weighted.

• You do not have to use Matlab for your basic analyses. Python would be a
preferred route for many.

• The supplied text versions may be of use for visualization using gml.

• The Matlab command spy will give you a quick plot of a sparse adjacency matrix.

• Real data sets used here are taken from Mark Newman’s compilation (and
linked-to sites) at http://www-personal.umich.edu/~mejn/netdata/.

1. Record in a table the following basic characteristics:

• N , the number of nodes;
• m, the total number of links;
• Whether the network is undirected or directed based on the symmetry of the

adjacency matrix;
• ⟨k⟩, the average degree (⟨kin⟩ and ⟨kout⟩ if the network is directed);
• The maximum degree kmax (for both out-degree and in-degree if the network

is directed);
• The minimum degree kmin (for both out-degree and in-degree if the network

is directed).

2. (3+3)

(a) Plot the degree distribution Pk as a function of k. In the case that Pk versus
k is uninformative, also produce plots that are clarifying. For example,
log10 Pk versus log10 k.
(Note: Always use base 10.)

(b) See if you can characterize the distributions you find (e.g., exponential,
power law, etc.).

3. Measure the clustering coefficient C2 where

C2 =
3× #triangles

#triples .

For directed networks, transform them into undirected ones first.
One approach is to compute C2 as

C2 =
3× 1

6
TrA3

1
2

(∑
ij[A

2]ij − TrA2
) .

Note: avoiding computing A3 is important and can be done.
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4. For each of our main six networks, compute and present distributions of the
shortest path length between all pairs of nodes. Notation: di,j is the shortest
distance between i and j.
Also compute the average shortest path length, ⟨d⟩.

5. Generate ensembles of random networks of the same ‘size’ as the six networks.
Process 1 random network and then scale up as computing power/time/sanity
permits. 1000 random networks would be good.
Size here means having the same number of nodes and the same number of edges.
As for the real networks, compute the shortest path lengths for these random
networks and present frequency distributions.

6. Determine how well/poorly random networks produce the shortest path
distributions of real world networks.
Using whatever tests you like, show how well both the average shortest path
length and the full distributions compare between the real network and their
random counterparts.

7. Given N labelled nodes and allowing for all possible number of edges m, what’s
the total number of undirected, unweighted networks we can construct?
How does this number scale with N?

8. Given N labelled nodes and a variable number of m edges, for what value of m do
we obtain the largest diversity of networks? And for this m, how does the number
of networks scale with N?

9. We’ve seen that large random networks have essentially no clustering, meaning
that locally, random networks are pure branching networks. Nevertheless, a finite,
non-zero number of triangles will be present.
For pure random networks, with connection probability p = ⟨k⟩/(N − 1), what is
the expected total number of triangles as N → ∞?

10. Repeat the preceding calculation for cycles of length 4 and 5 (triangles are cycles
of length 3).

11. Show that the second moment of the Poisson distribution is

⟨k2⟩ = ⟨k⟩2 + ⟨k⟩.

and hence that the variance is σ2 = ⟨k⟩.
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12. We’ve figured out in class that for large enough N (and ⟨k⟩ fixed), a random
network always has a Poisson degree distribution:

P (k;λ) =
λk

k!
e−λ

where λ = ⟨k⟩. And as we’ve discussed, we don’t find these networks in the real
world (they don’t arise due to simple mechanisms). Let’s investigate this oddness
a little further.
Compute the expected size of the largest degree in an infinite random network
given ⟨k⟩ and as a function of increasing sample size N . In other words, in
selecting (with replacement) N degrees from a pure Poisson distribution with
mean ⟨k⟩, what’s the expected minimum value of the largest degree min kmax?
A good way to compute kmax is to equate it to the value for which we expect 1/N
of our random selections to exceed. (We had a question in 300 along these lines
for power-law size distributions.)
Hint—Of course we’ll be using Stirling’s Approximation.:
http://www.youtube.com/watch?v=uK5yakuX59M

13. Generating functions and giant components: In this question, you will use
generating functions to obtain a number of results we found in class for standard
random networks.

(a) For an infinite standard random network (Erdös-Rényi/ER network) with
average degree ⟨k⟩, compute the generating function FP for the degree
distribution Pk.
(Recall the degree distribution is Poisson: Pk = e−⟨k⟩⟨k⟩ k/k!, k ≥ 0.)

(b) Show that F ′
P (1) = ⟨k⟩ (as it should).

(c) Using the joyous properties of generating functions, show that the second
moment of the degree distribution is ⟨k2⟩ = ⟨k⟩2 + ⟨k⟩.

14. (a) Continuing on from Q1 for infinite standard random networks, find the
generating function FR(x) for the {Rk}, where Rk is the probability that a
node arrived at by following a random direction on a randomly chosen edge
has k outgoing edges.

(b) Now, using FR(x) determine the average number of outgoing edges from a
randomly-arrived-at-along-a-random-edge node.

(c) Given your findings above and the condition for a giant component existing
in terms of generating functions, what is the condition on ⟨k⟩ for a standard
random network to have a giant component?
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15. (a) Find the generating function for the degree distribution Pk of a finite random
network with N nodes and an edge probability of p.

(b) Show that the generating function for the finite ER network tends to the
generating function for the infinite one. Do this by taking the limit N → ∞
and p → 0 such that p(N − 1) = ⟨k⟩ remains constant.

16. (a) Prove that if random variables U and V are distributed over the non-negative
integers then the generating function for the random variable W = U + V is

FW (x) = FU(x)FV (x).

Denote the specific distributions by Pr(U = i) = Ui, Pr(V = i) = Vi, and
Pr(W = i) = Wi.

(b) Using the your result in part (a), argue that if

W =
U∑

j=1

V (j)

where V (j) d
= V then

FW (x) = FU(FV (x)).

Hint: write down the generating function of probability distribution of∑k
j=1 V

(j) in terms of FV (x).

17. (a) Again, given

W =
U∑
i=1

V (i) with each V (i) d
= V

where we know that
FW (x) = FU (FV (x)) ,

determine the mean of W in terms of the means of U and V .
(b) For W = U + V , similarly find the mean of W in terms of U and V via

generating functions. Your answer should make rather good sense.

18. Consider the family of generalized random networks with

Pk = aδk1 + (1− a)δk3

where 0 ≤ a ≤ 1.
General note: We worked through the a = 1/2 case in class so those notes should
be rather helpful.
Determine the following (3 points each for a–d):
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(a) i. The distribution of other friends for a node arrived along a randomly
chosen direction of a randomly chosen edge, Rk.

ii. The generating function FP (x).
iii. The generating function FR(x), both directly from Rk and via

FR(x) = F ′
P (x)/F

′
P (1).

(b) For which values of a a giant component exists, noting the critical value ac if
any phase transition is present.

(c) i. The generating function Fρ(x). Note: Do not expand the form you find.
ii. The probability that a random edge leads to a subcomponent of finite

size, Fρ(1).
(d) i. The generating function Fπ(x).

ii. The fractional size of the largest component S1 = 1− Fπ(1) as a
function of a.

19. By expanding Fρ(x) as a formal power series, find the probabilities that a random
edge leads to components of finite size 1, 2, 3, 4, and 5, all as a function of a.

20. Using Python’s NetworkX (or similar package in any language), simulate random
networks with N = 104 nodes and determine the fractional size of the giant
component as a function of a.
Plot the simulation’s output against your theoretical curve determined in the first
question.

21. (3 + 3 + 3 + 3)
Generalize the theory for the previous questions and solve for the same quantities
and features in Q1a–Q1d for random networks with:

Pk = aδk1 + (1− a)δkk′

for fixed k′ ≥ 2 with 0 ≤ a ≤ 1.
Modifications:
You will be able to do Q1a and Q1b exactly.
Important: Please minimally set up and then solve Q1c and Q1d numerically
(only) for k′ = 3, . . . , 10.
Put everything on the same plot.

(a) i. The distribution of other friends for a node arrived along a randomly
chosen direction of a randomly chosen edge, Rk.

ii. The generating function FP (x).
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iii. The generating function FR(x), both directly from Rk and via
FR(x) = F ′

P (x)/F
′
P (1).

(b) For which values of a a giant component exists, noting the critical value ac if
any phase transition is present.

(c) i. The generating function Fρ(x). Note: Do not expand the form you find.
ii. The probability that a random edge leads to a subcomponent of finite

size, Fρ(1).
(d) i. The generating function Fπ(x).

ii. The fractional size of the largest component S1 = 1− Fπ(1) as a
function of a.

22. Plan: Work through some random bipartite calculations reproducing a few results
from the classic Newman et al. paper [10]. Our stories are their stars, and our
tropes are their movies.
Please note that we use a different convention for defining certain distributions,
not just notation. It’s a bit confusing. Okay, it’s very confusing.
Here’s a key to help:

Feature: Our notation: Newman et al. [10]:
First node type, symbol stories,  movies, 0

Second node type, symbol tropes,  actors, 1
Number of type 1 nodes N M
Number of type 2 nodes N N

Average affiliations of type 1 nodes ⟨k⟩ ν

Average affiliations of type 2 nodes ⟨k⟩ µ

Affiliation distribution for type 1 nodes P
()
k qk

Affiliation distribution for type 1 nodes P
()
k pk

P Generating function for type 1 nodes FP () g0
P generating function for type 2 nodes FP () f0
R generating function for type 1 nodes FP () g1
R generating function for type 2 nodes FP () f1

Induced P generating function for type 1 nodes F
P

()
ind

F0

Induced P generating function for type 2 nodes F
P

()
ind

G0

Induced R generating function for type 1 nodes F
R

()
ind

F1

Induced R generating function for type 2 nodes F
R

()
ind

G1
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Note: You can of course use something simple like a and b instead of the film and
lightbulb glyphs. Nevertheless, for notation happiness, feel free to use font
awesome and the following structures:

\usepackage{fontawesome}

%% random biparite networks

\newcommand{\rbone}{\textnormal{\faFilm}}
\newcommand{\rbtwo}{\textnormal{\faLightbulbO}}

\newcommand{\rboneng}{N_{\rbone}}
\newcommand{\rbtwong}{N_{\rbtwo}}

\newcommand{\Prboneind}{P^{(\rbone)}_{\textnormal{ind},k}}
\newcommand{\Prbtwoind}{P^{(\rbtwo)}_{\textnormal{ind},k}}

\newcommand{\Rrboneind}{R^{(\rbone)}_{\textnormal{ind},k}}
\newcommand{\Rrbtwoind}{R^{(\rbtwo)}_{\textnormal{ind},k}}

\newcommand{\Prboneindplain}{P^{(\rbone)}_{\textnormal{ind}}}
\newcommand{\Prbtwoindplain}{P^{(\rbtwo)}_{\textnormal{ind}}}

\newcommand{\Rrboneindplain}{R^{(\rbone)}_{\textnormal{ind}}}
\newcommand{\Rrbtwoindplain}{R^{(\rbtwo)}_{\textnormal{ind}}}

Show that the triple-triangle clustering coefficient for the induced networks
produced by an arbitrary random bipartite affiliation graph are

C
()
2 =

N

N

F ′′′
P ()(1)

F ′′
P

()
ind

(1)

and
C

()
2 =

N

N

F ′′′
P ()(1)

F ′′
P

()
ind
(1)

23. (6 + 6 + 6) Consider the following bipartite affiliation graph degree distributions.

(a) Fixed degree and fixed degree: k and k, both at least 1.
(b) Poisson (mean ⟨k⟩) and fixed degree (k):
(c) Poisson and Poisson with mean degrees ⟨k⟩ and ⟨k⟩.
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For each case, determine these generating functions: FP ()(x), FP ()(x),
FR()(x), FR()(x), F

P
()
ind

(x), F
R

()
ind

(x), F
P

()
ind
(x), and F

R
()
ind
(x).

24. For the three bipartite graphs given above, determine the condition for a giant
component in both induced networks, i.e.,

⟨k⟩R,,ind ≡ ⟨k⟩R,,ind > 1

where
⟨k⟩R,,ind = ⟨k⟩R,,ind =

F ′′
P ()(1)

F ′
P ()(1)

F ′′
P ()(1)

F ′
P ()(1)

=
⟨k(k − 1)⟩

⟨k⟩
⟨k(k − 1)⟩

⟨k⟩
.

25. Using whatever network package you like, construct random bipartite affiliation
networks to reproduce Fig. 7 from [10]:

rz!
!z

z! e
"(e"!"1)#

k!1

z ! zk" $"e"!%k, &89'

where the coefficients ( k
z) are the Stirling numbers of the

second kind $47%

! zk" !#
r!1

k
&"1 'k"r

r!&k"r '! r
z. &90'

D. Simulation results

Random bipartite graphs can be generated using an algo-
rithm similar to the one described in Sec. III B for directed
graphs. After making sure that the required degree distribu-
tions for both actor and movie vertices have means consis-
tent with the required total numbers of actors and movies
according to Eq. &66', we generate vertex degrees for each
actor and movie at random and calculate their sum. If these
sums are unequal, we discard the degree of one actor and one
movie, chosen at random, and replace them with new de-
grees drawn from the relevant distributions. We repeat this
process until the total actor and movie degrees are equal.
Then we join vertices up in pairs.
In Fig. 7 we show the results of such a simulation for a

bipartite random graph with Poisson degree distribution. &In
fact, for the particular case of the Poisson distribution, the
graph can be generated simply by joining up actors and mov-
ies at random, without regard for individual vertex degrees.'
The figure shows the distribution of the number of co-stars
of each actor, along with the analytic solution, Eqs. &89' and
&90'. Once more, numerical and analytic results are in good
agreement.

V. APPLICATIONS TO REAL-WORLD NETWORKS

In this section we construct random graph models of two
types of real-world networks, namely, collaboration graphs
and the world-wide web, using the results of Secs. III and IV

to incorporate realistic degree distributions into the models.
As we will show, the results are in reasonably good agree-
ment with empirical data, although there are some interesting
discrepancies also, perhaps indicating the presence of social
phenomena that are not incorporated in the random graph.

A. Collaboration networks

In this section we construct random bipartite graph mod-
els of the known collaboration networks of company direc-
tors $29–31%, movie actors $15%, and scientists $36%. As we
will see, the random graph works well as a model of these
networks, giving good order-of-magnitude estimates of all
quantities investigated, and in some cases giving results of
startling accuracy.
Our first example is the collaboration network of the

members of the boards of directors of the Fortune 1000 com-
panies &the 1000 US companies with the highest revenues'.
The data come from the 1999 Fortune 1000 $29–31% and in
fact include only 914 of the 1000, since data on the boards of
the remaining 86 were not available. The data form a bipar-
tite graph in which one type of vertex represents the boards
of directors, and the other type the members of those boards,
with edges connecting boards to their members. In Fig. 8 we
show the frequency distribution of the numbers of boards on
which each member sits, and the numbers of members of
each board. As we see, the former distribution is close to
exponential, with the majority of directors sitting on only
one board, while the latter is strongly peaked around ten,
indicating that most boards have about ten members.
Using these distributions, we can define generating func-

tions f 0(x) and g0(x) as in Eq. &23', and hence find the
generating functions G0(x) and G1(x) for the distributions
of numbers of co-workers of the directors. We have used
these generating functions and Eqs. &72' and &81' to calculate
the expected clustering coefficient C and the average number
of co-workers z in the one-mode projection of board direc-
tors on a random bipartite graph with the same vertex degree
distributions as the original dataset. In Table I we show the
results of these calculations, along with the same quantities

FIG. 7. The frequency distribution of numbers of co-stars of an
actor in a bipartite graph with "!1.5 and !!15. The points are
simulation results for M!10 000 and N!100 000. The line is the
exact solution, Eqs. &89' and &90'. The error bars on the numerical
results are smaller than the points.

FIG. 8. Frequency distributions for the boards of directors of the
Fortune 1000. Left panel: the numbers of boards on which each
director sits. Right panel: the numbers of directors on each board.

RANDOM GRAPHS WITH ARBITRARY DEGREE . . . PHYSICAL REVIEW E 64 026118

026118-13

Consider this to be P
()
ind,k, the probability a trope shares appears alongside k other

tropes in stories.
Parameters: N = 104, N = 105, ⟨k⟩ = 15, and ⟨k⟩ = 1.5.
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26. Plot the induced distribution P
()
ind,k, the probability a story is connected to k other

stories through shared tropes.

27. (optional)
Derive equation 89 in [10] for the degree distribution:

P
()
ind,k =

(⟨k⟩)k

k!
e⟨k⟩(e−⟨k⟩−1)

k∑
i=1

{
k

i

}[
⟨k⟩ e−⟨k⟩

]i
,

where {
k

i

}
=

i∑
j=1

(−1)i−j

j!(i− j)!
jk

is the Stirling number of the second kind.

28. (optional) Add the theoretical curve obtained above to the plot you generated
before that.

29. Data snaring and wrangling:
Find two (2) interesting, large network data sets online. The networks may be
weighted or not, directed or undirected.
Transform each network’s representation into row, column, and weight vectors as
per the first assignment. The row vector contains the node at the start of an
edge, the column vector the ends, and the weights, well, the weight of the edge.
Include a one line description for each network along with a link to the data source.
This time round, if you haven’t already, please give NetworkX a shot too.
Please submit your data via email with the subject heading
“CocoNuTS: Network submission for ”The Darkest Timeline” ”.
In the next assignment, we’ll examine all submitted networks. Possibly.
For questions 30–35:
Consider the simple spreading mechanism on generalized random networks for
which each link has a probability β ≤ 1 of successfully transmitting a disease.
We assume that this transmission probability is tested only once: either a link will
or will not be able to send an infection one way or the other (this is a bond
percolation problem). We’ll call these edges ‘active.’
Denote the degree distribution of the network as Pk and the corresponding
generating function as FP . In class, we wrote down the probability that a node
has k active edges as

P̃k = βk

∞∑
i=k

(
i

k

)
(1− β)i−kPi.
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30. Given a random network with degree distribution Pk, find FP̃ , the generating
function for P̃k, in terms of FP .

31. Find the generating function for R̃k, the analogous version of Rk, the probability
that a random friend has k other friends.

32. For standard random (ER) networks, use your results from the preceding questions
to find the critical value of ⟨k⟩ above which global spreading occurs.

33. Find an expression connecting the three quantities β, the average degree ⟨k⟩, and
the size of the giant component S̃1.

34. What is the slope of the S̃1 curve near the critical point for ER networks?

35. Using whichever method you find most exciting, plot how S̃1 depends on ⟨k⟩ for
β = 1, β = 0.8, and β = 0.5.

36. Using either generating function methods (original) or the physical approach
(better) from slides on contagion, reproduce the following pieces from Watts’s
2002 paper [11] on global cascades on random networks:

(a) The cascade windows diagram in Fig. 1.
(b) The vulnerable and triggering component curves in Fig. 2b.

Note 1: Only the vulnerable component was determined theoretically in [11]. The
slides go further and determine the triggering component’s size.
Note 2: This question is all theory but you will need to solve the second and third
problems numerically.

37. Using Gleeson and Calahane’s iterative equations below, derive the contagion
condition for a vanishing seed by taking the limit ϕ0 → 0 and t → ∞.

ϕt+1 = ϕ0 + (1− ϕ0)
∞∑
k=0

Pk

k∑
j=0

(
k

j

)
θ j
t (1− θt)

k−jBkj,

θt+1 = ϕ0 + (1− ϕ0)
∞∑
k=1

kPk

⟨k⟩

k−1∑
j=0

(
k − 1

j

)
θ j
t (1− θt)

k−1−jBkj,

where θ0 = ϕ0, and Bkj is the probability that a degree k node becomes active
when j of its neighbors are active.
Recall that by contagion condition, we mean the requirements of a random
network for macroscopic spreading to occur.
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To connect the paper’s model and notation to those of our lectures, given a
specific response function F and a threshold model, the Bkj are given by
Bkj = F (j/k).
Allow Bk0 to be arbitrary (i.e., not necessarily 0 as for simple threshold functions).
Here’s a graphical hint for the three cases you need to consider as θ0 → 0:
Success: Sucesss: Fail:

38. Derive equation 4 in Gleeson and Cahalane (2007) [12]:

Cℓ =
∞∑

k=ℓ+1

ℓ∑
j=0

(
k − 1

ℓ

)(
ℓ

j

)
(−1)ℓ+j kPk

⟨k⟩
F

(
j

k

)
.

39. (9 pts)

(a) Derive equation 6 in Gleeson and Cahalane (2007), which is a second order
approximation to the cascade condition for vanishing seeds.
Here’s an example of how this must work:

(b) Hence reproduce the dashed analytic curve shown in Figure 1 of their paper.
(c) Explain why there are jumps in the cascade window outline that do not occur

at reciprocals of the integers.

40. (6 pts)

(a) By numerically finding the fixed points of θt+1 = G(θt; 0), reproduce Figure
3 in Gleeson and Cahalane (2007):
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Figure 2!a" shows ! on Poisson random graphs with
thresholds drawn from a Gaussian distribution of mean R and
standard deviation "=0.2. Unlike the assumption in #13$ that
F!0"=0, a Gaussian distribution necessarily implies the pres-
ence of negative-valued thresholds among the population, so
F!0"#0. Negative-threshold agents act as a natural seed,
since they activate regardless of the states of their neighbors.
The presence of these innovators #13$ allows us to set !0
=0 in this case. The extended cascade condition !6" again
gives a good approximation to the discontinuous ! transition
at high z values. Figure 2!b" focuses on the low-z transition
and highlights the existence of a discontinuous transition in z
for certain threshold distributions. This is qualitatively dif-
ferent from the previously-studied case #13$ where only con-
tinuous low-z transitions were found.

Bifurcation analysis of Eq. !2" elucidates this result. In
Fig. 3 we plot the roots of the fixed-point equations G!q"
−q=0 !recall that !0=0 here; extension to nonzero !0 is
straightforward" as functions of z, for different values of the
mean threshold R. Thick solid and dashed lines denote stable
and unstable fixed points respectively #24$. The PAP means
the value of q$ achieved at a given z is that of the lowest
stable branch above q=!0. The occurrence of triple roots as
R is increased causes the smooth low-z transition seen in Fig.
3!a" to become discontinuous #as shown by the thin solid line
in Fig. 3!b"$, as previously seen in the numerical simulations
of Fig. 2!b". The discontinuous low-z transition occurs for
R#Rc, where the critical coordinates !Rc ,zc" and the value
q=qc where the triple root appears are found by numerical

root finding for the system of three equations q=!0
+ !1−!0"G!q", !1−!0"G!!q"=1, and G"!q"=0. For "=0.2
this yields !Rc ,zc"= !0.3543,3.136"; this point is marked with
an arrow in Fig. 2!a". We remark that the discontinuous tran-
sition from q$%1 to q$%0 #which induces a similar transi-
tion in ! through Eq. !1"$ occurs due to a saddle-node bifur-
cation #24$. This behavior is quite generic, occurring for a
wide variety of parameters, with the exception of the special
case studied by Watts. For !0=0 and F!0"=0 as in #13$, the
coefficient C0 is zero and the fixed-point equation always has
a root at q=0, with transcritical bifurcations on the q=0 line
giving rise to the observed transitions. However, any nonzero
seed size replaces the transcritical bifurcations with saddle-
node bifurcations as described above. We have confirmed the
accuracy of these results #and Eq. !1"$ against numerical
simulations on other configuration model network topologies
#1$, including power-law degree distributions !with exponen-
tial cutoff": pk%k−& exp!−k /'" #17$.

We turn now to the derivation of Eqs. !1"–!3". Our ana-
lytical approach is based on methods introduced by Dhar et
al. to study the zero-temperature random-field Ising model
on Bethe lattices #22$. The RFIM is a spin-based model of
magnetic materials, and its zero-temperature limit has been
extensively studied as a model for systems exhibiting hyster-
esis and Barkhausen noise #21$. A Bethe lattice of coordina-
tion number z !for integer z" is an infinite tree where every
node has exactly z neighbors. Dhar et al. derive analytical
results valid on Bethe lattices, but their numerical simula-
tions show that the theory also applies very accurately to
random graphs where every node has exactly z neighbors,
provided that short-distance loops are rare. To analyze Watts’
model we extend the approach of #22$ in two ways. First, we
consider treelike random graphs with arbitrary degree distri-
butions, rather than the Bethe lattices of #22$. Second, we
account for the PAP, which is the essential difference be-
tween Watts’ update rule and standard RFIM dynamics. This
difference between the update rules is crucial to our deriva-
tion of the !0 dependence of the activated fraction !.

We begin by replacing the given random graph !with de-
gree distribution pk" by a tree structure. The top level of the
tree is a single node with degree k, and this is connected to
its k neighbors at the next lower level of the tree. Each of
these nodes is in turn connected to ki−1 neighbors at the next
lower level, where ki is the degree of node i. The degree
distribution of the nodes in the tree is given by p̃k= !k /z"pk,
which is the distribution for the number of nearest neighbors
in a connected graph #1,25$. To find the final density ! of
active nodes, we label the levels of the tree from n=0 at the
bottom, with the top node at an infinitely high level !n
→$". Define qn as the conditional probability that a node on
level n is active, conditioned on its parent !on level n+1"
being inactive. Consider updating a node on level n+1, as-
suming that the nodes on all lower levels have already been
updated. With probability p̃k the chosen node has k neigh-
bors: one of these is its parent !on level n+2", and the re-
maining k−1 are its children !on level n". Since a fraction !0
of nodes were initially set to be active, there is a probability
!0 that we have chosen one of these nodes. In this case the
state of the node remains unchanged. On the other hand, with
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FIG. 3. !Color online" Bifurcation diagrams as described in text
for dependence of q$ on z for "=0.2 and !0=0 at R= !a" 0.35, !b"
0.371, and !c" 0.375.
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(b) Also plot G(θt; 0) for an average threshold ϕ∗(= R) of 0.371 for
⟨k⟩(= z) = 1, 2, 3, . . . , 10.
Add the cobweb diagram for a ϕ0 = 0 seed.
Do this by creating a recursive plotting script in matlab, for example.
You can use the following Matlab scripts/data as a basis, and most of the
work is done. You’ll need to improve the plots with some labels, and
interpret them properly. The first function calls the other two.
https://pdodds.w3.uvm.edu//share/matlab/Gfunction.m
https://pdodds.w3.uvm.edu//share/matlab/gleeson_{f}ig3_{0}2.mat
https://pdodds.w3.uvm.edu//share/matlab/cobweb3.m

(c) Discuss how the stable points move with ⟨k⟩.

Note: ϕ∗ = 0.371 matches plot (b) in Figure 3 of [12].

41. We’ve figured out in class that for large enough N (and ⟨k⟩ fixed), a random
network always has a Poisson degree distribution:

P (k;λ) =
λk

k!
e−λ

where λ = ⟨k⟩. And as we’ve discussed, we don’t find these networks in the real
world (they don’t arise due to simple mechanisms). Let’s investigate this oddness
a little further.
Compute the expected size of the largest degree in an infinite random network
given ⟨k⟩ and as a function of increasing sample size N . In other words, in
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selecting (with replacement) N degrees from a pure Poisson distribution with
mean ⟨k⟩, what’s the expected minimum value of the largest degree min kmax?
A good way to compute kmax is to equate it to the value for which we expect 1/N
of our random selections to exceed. (We had a question in 300 along these lines
for power-law size distributions.)
Hint—Of course we’ll be using Stirling’s Approximation.:
http://www.youtube.com/watch?v=uK5yakuX59M

42. In 1-d, consider a population density ρ(x) = cx−γ for x ≥ 1 and γ > 2 (note that
c = γ − 1).
Find the ideal distribution for N sources where N is large.
Hint: draw yourself a clear picture of what’s going on.
Hint: guess the form of the locations of the centers and work from there.
Also: Feel free to do some numerics to see how things work.

43. Repeat the above treatment for ρ(x) = λe−λx for x ≥ 0.

44. Yes, even more on power law size distributions. It’s good for you.
For the probability distribution P (x) = cx−γ, 0 < a ≤ x ≤ b, compute the mean
absolute displacement (MAD), which is given by ⟨|X − ⟨X⟩|⟩ where ⟨·⟩ represents
expected value. As always, simplify your expression as much as possible.
MAD is a more reasonable estimate for the width of a distribution, but we like
variance σ2 because the calculations are much prettier. Really.

45. In the limit of b → ∞, show that MAD asymptotically behave as:

⟨|X − ⟨X⟩|⟩ = 2(γ − 2)(γ−3)

(γ − 1)(γ−2)
a.

How does this compare with the behavior of the variance? (See the last question
of Assignment todo???.)

46. Using the CCDF and standard linear regression, measure the exponent γ − 1 as a
function of the upper limit of the scaling window, with a fixed lower limit of
kmin = 200.
Please plot γ as a function of kmax, including 95% confidence intervals.
Note that the break in scaling should mess things up but we’re interested here in
how stable the estimate of γ is up until the break point.
Comment on the stability of γ over variable window sizes.
Pro Tip: your upper limit values should be distributed evenly in log space.
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47. (3 + 3 + 3)
Estimating the rare:
Google’s raw data is for word frequency k ≥ 200 so let’s deal with that issue now.
From Assignment 2, we had for word frequency in the range 200 ≤ k ≤ 107, a fit
for the CCDF of

N≥k ∼ 3.46× 108k−0.661,

ignoring errors.

(a) Using the above fit, create a complete hypothetical Nk by expanding Nk

back for k = 1 to k = 199, and plot the result in double-log space (meaning
log-log space).

(b) Compute the mean and variance of this reconstructed distribution.
(c) Estimate:

i. the hypothetical fraction of words that appear once out of all words
(think of words as organisms here),

ii. the hypothetical total number and fraction of unique words in Google’s
data set (think at the species level now),

iii. and what fraction of total words are left out of the Google data set by
providing only those with counts k ≥ 200 (back to words as organisms).

48. Starting from here: http://mskcc.convio.net/pdf/cycle_{f}or_{s}urvival/cfs_
{c}ancer_{f}act_{s}heet1.pdf, explore the “rare are legion” aspect of
heavy-tailed distributions for cancer.

49. Explain the scaling of RPM for engines.

50. Zombies!
(Optional. But taking practical precautions for your survival in the event of a
global zombie attack is not optional.)
Network version of the SZR model:
Based on the work of Munz et al. [13], we will model Zombie attacks on
generalized random networks (the paper is here).
There are three states: S, susceptible, Z, zombie, and, R, removed.

35

http://mskcc.convio.net/pdf/cycle_{f}or_{s}urvival/cfs_{c}ancer_{f}act_{s}heet1.pdf
http://mskcc.convio.net/pdf/cycle_{f}or_{s}urvival/cfs_{c}ancer_{f}act_{s}heet1.pdf
http://www.uvm.edu/~pdodds/research/papers/others/2009/munz2009a.pdf


For the random mixing model studied by Munz et al., the differential equations are
dS
dt = θ − βSZ − δS,

dZ
dt = βSZ + ζR− αSZ,

and dR
dt = δS + αSZ − ζR,

where

θ is the birth rate of new susceptibles;
β is the rate at which susceptibles who bump into zombies become zombies
δ is the background, non-zombie related death rate for susceptibles;
ζ is the rate at which the dead (removed) are resurrected as zombies;
and α is the rate at which susceptibles defeat zombies (through traditional
methods shown in movies).

For our purposes, consider a random network with degree distribution Pk

containing completely susceptible individuals and discrete time updates. We’ll now
think of the parameters above as probabilities, and ignore birth and death
processes (θ = δ = 0).
We’ll further assume that if a susceptible takes out a zombie, the latter cannot
resurrect. So this means there’s a fourth category, let’s call it D for definitely
dead.
Assume that in each time step, all edges convey interactions, meaning each
individual interacts with each of their neighbors.
Under what conditions (Pk and spreading parameters) will local zombification be
guaranteed to take off (i.e., grow exponentially, at least in the short term), given
one randomly chosen individual becomes the first zombie?
(The long term dynamics will likely be complicated so we will focus on the initial
dynamics.)
See http://www.wired.com/wiredscience/2009/08/zombies/ for more
information/enjoyment.

51. (12 pts) Consider a family of undirected random networks with degree distribution

Pk = cδk1 + (1− c)δk3,

where δij is the Kronecker delta function, and where c is a constant to be
determined below. Also allow nodes to be correlated according to the following
node-node mixing probabilities.
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Conditional probability version, P (k |k′ ):

P (1 | 1) = 1

2
(1 + r),

P (3 | 1) = 1

2
(1− r),

P (1 | 3) = 1

2
(1− r),

and P (3 | 3) = 1

2
(1 + r).

where −1 ≤ r ≤ 1 is the family’s tunable parameter.
Newman’s correlation probability version:

E = [eij] =

[
e00 e02
e20 e22

]
=

1

4

[
(1 + r) (1− r)

(1− r) (1 + r)

]
where eij is the probability that a randomly chosen edge connects a node of degree
i+ 1 an a node of degree j + 1, and only the non-zero values of E are shown.
For the following questions, you can use either formulation.

(a) Determine c so that purely disassortative networks are achievable if r is
tuned to -1.

(b) Determine which networks in this family have a giant component. In other
words, find the values of r for which a giant component exists.
Note which value (or values) of r mark a phase transition.

(c) Analytically determine the size of the giant component as a function of r.
(d) Determine the size of the largest component containing only degree 3 nodes

as a function of r.
Hint: allow degree 3 nodes to be always vulnerable (β3i = 1 for i = 0, 1, 2,
and 3) and degree 1 nodes to be never vulnerable (β1i = 0 for i = 0 and 1).

52. Spreading on assortative networks: Starting from

θj,t+1 = Gj(θ⃗t) = ϕ0 + (1− ϕ0)×

∞∑
k=1

ej−1,k−1

Rj−1

k−1∑
i=0

(
k − 1

i

)
θ i
k,t(1− θk,t)

k−1−iBki.

show the matrix for which we must have the largest eigenvalue greater than 1 for
spreading to occur is

∂Gj (⃗0)

∂θk,t
=

ej−1,k−1

Rj−1

(k − 1)(βk1 − βk0).
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53. Show that for uncorrelated networks, i.e, when ejk = RjRk, the above condition
collapses to the standard condition

∞∑
k=1

(k − 1)
kPk

⟨k⟩
(βk1 − βk0) > 1.

54. (3 + 3 + 3) Optional:
Solve Krapivsky-Redner’s model for the pure linear attachment kernel Ak = k.
Starting point:

nk =
1

2
(k − 1)nk−1 −

1

2
knk + δk1

with n0 = 0.

(a) Determine n1.
(b) Find a recursion relation for nk in terms of nk−1.
(c) Now find

nk =
4

k(k + 1)(k + 2)

for all k and hence determine γ.

55. (3 + 3) Optional:
From lectures:

(a) Starting from the recursion relation

nk =
Ak−1

µ+ Ak

nk−1,

and n1 = µ/(µ+ A1), show that the expression for nk for the
Krapivsky-Redner model with an asymptotically linear attachment kernel Ak

is:
µ

Ak

k∏
j=1

1

1 + µ
Aj

.

(b) Now show that if Ak → k for k → ∞ (or for large k), we obtain
nk → k−µ−1.

56. (3 + 3 + 3) Optional:
From lectures, complete the analysis for the Krapivsky-Redner model with
attachment kernel:

A1 = α and Ak = k for k ≥ 2.
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Find the scaling exponent γ = µ+ 1 by finding µ. From lectures, we assumed a
linear growth in the sum of the attachment kernel weights µt =

∑∞
k=1 Nk(t)Ak,

with µ = 2 for the standard kernel Ak = k.
We arrived at this expression for µ which you can use as your starting point:

1 =
∞∑
k=1

k∏
j=1

1

1 + µ
Aj

(a) Show that the above expression leads to

µ

α
=

∞∑
k=2

Γ(k + 1)Γ(2 + µ)

Γ(k + µ+ 1)

Hint: you’ll want to separate out the j = 1 case for which Aj = α.
(b) Now use result that [9]

∞∑
k=2

Γ(a+ k)

Γ(b+ k)
=

Γ(a+ 2)

(b− a− 1)Γ(b+ 1)

to find the connection
µ(µ− 1) = 2α,

and show this leads to
µ =

1 +
√
1 + 8α

2
.

(c) Interpret how varying α affects the exponent γ, explaining why α < 1 and
α > 1 lead to the particular values of γ that they do.

57. (10 pts) What is the clustering coefficient C for a standard random network with
degree distribution Pk? Compute C for the following two cases:
(a) N is finite and links between nodes exist with probability p.
(b) The random network is infinite with mean degree ⟨k⟩ = z.

Use the definition C =
3#triangles

#triples , or equivalently, that C is the probability that
if a is connected to b and c, then b and c are connected.
(c) What’s the interpretation for the local structure of infinite random networks
given your answer to (b)?

58. (25 pts) Generating functions and giant components. In this question, you will use
generating functions to obtain a number of results we found in class for standard
random networks.
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(a) For an infinite standard random network with average degree ⟨k⟩ = z,
compute the generating function for the degree distribution Pk.
(Recall the degree distribution is Poisson: Pk = e−zz k/k!, k ≥ 0.)
(b) Using your answer to (a) and the joyous properties of generating functions,
show that ⟨k⟩ = z and that the degree variance is ⟨k2⟩ = z2 + z.
(c) Find the generating function for the {q̃k}, where qk is the probability that a
node arrived at by following a random direction on a randomly chosen edge has k

outgoing edges.
(d) Using your result for (c), determine the average number of outgoing edges
from a randomly-arrived-at-along-a-random-edge node.
(e) Based on (d), what is the condition on z for a standard random network to
have a giant component?
(Hint: you need to find for what values of z, a randomly chosen neighbor will, on
average, have at least one other neighbor.)

59. (15 pts) In Krapivsky and Redner’s treatment of growing random network for
linear attachment kernels, they assumed

∑∞
k=1 nkAk = µt and found that µ must

be such that

1 =
∞∑
k=1

k∏
j=1

(
1 +

µ

Aj

)−1

.

(a) Show that when the attachment kernel is purely linear, Aj = j, and when
µ = 2, the above equation above is satisfied.
(b) Bonus question territory: Krapivsky and Redner also looked at the specific
attachment kernel A1 = α and Ak = k for k > 1, where α > 0. They determined
that the resulting degree distribution has a power-law tale obeying k−γ where
γ = (3 +

√
1 + 8α)/2.

Using this modified linear attachment kernel, show that µ(µ− 1) = 2α.

60. (20 pts)
Aspects of Kleinberg’s search problem in one dimension:
Consider N nodes connected in a 1-d line graph (i.e., a sequence of N nodes lying
on a line, with adjacent nodes connected), labelled i = 1 to N .
Take our starting node to be at one end of the line, say i = 1, and the target node
to be at the other end, i = N .
Let node i = 1 have exactly one long distance link (i.e., a shortcut link).
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In attempting to construct a searchable network, we add a link from our start
node i = 1 to another node j = 2, . . . , N with probability cr−α, where c is a
constant of proportionality and r = j − i is the distance between i and j.
(Normally, we add links to all nodes but for this question, we’re only interested in
what happens with the first step from i = 1.)

(a) Compute the constant of proportionality c (Hint: the sum over the
probabilities of attaching to all other nodes must be unity; use an integral
approximation again.)

(b) Show that for α = 1, the chance of the link from node i = 1 reaching a node
at position j ≥ N/2 is on the order of 1/ lnN . (This effectively means that
by moving along the line starting at i, we should find a shortcut to the other
half of the line within a factor of lnN steps. This is pretty good.)

(c) For α > 1, show that the probability of i having a shortcut to the other half
of the line decays as an inverse power of N . (This means that our shortcut is
likely too close to i and won’t help us jump to the other half of the line.)

(d) If α < 1, our shortcut will link to the other half of the line with a finite,
constant probability, independent of N for large N . So what’s the drawback
here?

61. More of a note:

• Newman[14]:
C3 =

6× #triangles
#ordered pairs

• Now count each triple twice
• Same as C2 but interpretation is different
• Probability that a friend of i’s friend is also i’s friend.

• C1 = probability that two friends of a randomly chosen node are connected
• C2 = probability that two nodes are connected given they have a friend in

common.
• C3(= C2) = probability that a node’s friend of a friend is also a friend of

that node.

• For sparse networks, C1 tends to discount highly connected nodes.
• While C1 is a measure of clustering, it doesn’t quite as simple interpretation

as C2.
• Some variability in which measure is used in the literature.
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• Not always clear which one is being used...

62. Generating functions and giant components: In this question, you will use
generating functions to obtain a number of results we found in class for standard
random networks.

(a) For an infinite standard random network (Erdös-Rényi/ER network) with
average degree ⟨k⟩, compute the generating function FP for the degree
distribution Pk.
(Recall the degree distribution is Poisson: Pk = e−⟨k⟩⟨k⟩ k/k!, k ≥ 0.)

(b) Show that F ′
P (1) = ⟨k⟩ (as it should).

(c) Using the joyous properties of generating functions, show that the second
moment of the degree distribution is ⟨k2⟩ = ⟨k⟩2 + ⟨k⟩.

(d) Find the generating function for the degree distribution Pk of a finite random
network with N nodes and an edge probability of p.

(e) Show that the generating function for the finite ER network tends to the
generating function for the infinite one. Do this by taking the limit N → ∞
and p → 0 such that p(N − 1) = ⟨k⟩ remains constant.

63. (a) Continuing on from Q1 for infinite standard random networks, find the
generating function FR(x) for the {Rk}, where Rk is the probability that a
node arrived at by following a random direction on a randomly chosen edge
has k outgoing edges.

(b) Now determine the average number of outgoing edges from a
randomly-arrived-at-along-a-random-edge node.

(c) Given your findings above, what is the condition on ⟨k⟩ for a standard
random network to have a giant component?
(Hint: you need to find for what values of ⟨k⟩, a randomly chosen neighbor
will, on average, have at least one other neighbor.)

64. Consider the simple spreading mechanism on generalized random networks for
which each link has a probability β ≤ 1 of successfully transmitting a disease.
We assume that this transmission probability is tested only once: either a link will
or will not be able to send an infection one way or the other (this is a bond
percolation problem). We’ll call these edges ‘active.’
Denote the degree distribution of the network as Pk and the corresponding
generating function as FP . In class, we wrote down the probability that a node
has k active edges as

P ′
k = βk

∞∑
i=k

(
i

k

)
(1− β)i−kPi.
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(a) Given a random network with degree distribution Pk, find FP ′ , the
generating function for P ′

k, in terms of FP .
(b) Find the generating function for R′

k, the analogous version of Rk, the
probability that a random friend has k other friends.

65. (a) For standard random networks, use your results for Q3 to find an expression
connecting β, the average degree ⟨k⟩, and the size of the giant component
S ′
1.

(b) What is slope of the S ′
1 curve near the critical point for ER networks?

(c) Using whichever method you find most exciting, plot how S ′
1 depends on ⟨k⟩

for β = 1, β = 0.8, and β = 0.5.

66. Consider a network with a degree distribution that obeys a power law and is
otherwise random.
Assume that the network is drawn from an ensemble of networks which have N

nodes whose degrees are drawn from the probability distribution Pk = ck−γ where
k ≥ 1 and 2 < γ < 3.

(a) Estimate min kmax, the approximate minimum of the largest degree in the
network, finding how it depends on N . (Hint: we expect on the order of 1 of
the N nodes to have a degree of min kmax or greater.)

(b) Determine the average degree of nodes with degree k ≥ min kmax to find
how the expected value of kmax scales with N .

Repeats:

I. Supply networks and allometry:

Consider a set of rectangular areas with side lengths L1 and L2 such that L1 ∝ Aγ1

L2 ∝ Aγ2 where A is area and γ1 + γ2 = 1. Assume γ1 > γ2.

Now imagine that material has to be distributed from a central source in each of these
areas to sinks distributed with density ρ(A), and that these sinks draw the same amount
of material per unit time independent of L1 and L2.

1. Find an exact form for how the volume of the most efficient distribution network
scales with overall area A = L1L2. (Hint: you will have to set up a double
integration over the rectangle.)

2. If network volume must remain a constant fraction of overall area, determine the
maximal scaling of sink density ρ with A.
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II. Size-density law:

In two dimensions, the size-density law for distributed source density D(x⃗) given a sink
density ρ(x⃗) states that D ∝ ρ2/3. We showed in class that an approximate argument
that minimizes the average distance between sinks and nearest sources gives the 2/3
exponent.

1. Repeat this argument for the d-dimensional case and find the general form of the
exponent β in D ∝ ρβ.

• We will explore real networks throughout the course performing some key
measurements introduced in Principles of Complex Systems.

• you are encouraged to use Python (along with, for example, NetworkX or
graph-tools).

• Data is available in two compressed formats:

– Matlab + text (tgz): https://pdodds.w3.uvm.edu/teaching/courses/2023-
2024pocsverse/data/303complexnetworks-data-package.tgz

– Matlab + text (zip): https://pdodds.w3.uvm.edu/teaching/courses/2023-
2024pocsverse/data/303complexnetworks-data-package.zip

and can also be found on the course website (helpfully) under data.

• The main Matlab file containing everything is networkdata_combined.mat.

• For directed networks, the ijth entry of the adjacency matrix represents the
weight of the link from node i to node j. Adjacency matrices for undirected
networks are symmetric.

• For all questions below, treat each network as undirected unless otherwise
instructed.

• For this assignment, convert all weights on links to 1, if the network is weighted.

• You do not have to use Matlab for your basic analyses. Python would be a
preferred route for many.

• The supplied text versions may be of use for visualization using gml.

• The Matlab command spy will give you a quick plot of a sparse adjacency matrix.

• Real data sets used here are taken from Mark Newman’s compilation (and
linked-to sites) at http://www-personal.umich.edu/~mejn/netdata/.
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1. Record in a table the following basic characteristics:

• N , the number of nodes;
• m, the total number of links;
• Whether the network is undirected or directed based on the symmetry of the

adjacency matrix;
• ⟨k⟩, the average degree (⟨kin⟩ and ⟨kout⟩ if the network is directed);
• The maximum degree kmax (for both out-degree and in-degree if the network

is directed);
• The minimum degree kmin (for both out-degree and in-degree if the network

is directed).

2. (3+3)

(a) Plot the degree distribution Pk as a function of k. In the case that Pk versus
k is uninformative, also produce plots that are clarifying. For example,
log10 Pk versus log10 k.
(Note: Always use base 10.)

(b) See if you can characterize the distributions you find (e.g., exponential,
power law, etc.).

3. Measure the clustering coefficient C2 where

C2 =
3× #triangles

#triples .

For directed networks, transform them into undirected ones first.
One approach is to compute C2 as

C2 =
3× 1

6
TrA3

1
2

(∑
ij[A

2]ij − TrA2
) .

Note: avoiding computing A3 is important and can be done.

• We will explore real networks throughout the course performing some key
measurements introduced in Principles of Complex Systems.

• you are encouraged to use Python (along with, for example, NetworkX or
graph-tools).

• Data is available in two compressed formats:
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– Matlab + text (tgz): https://pdodds.w3.uvm.edu/teaching/courses/2023-
2024pocsverse/data/303complexnetworks-data-package.tgz

– Matlab + text (zip): https://pdodds.w3.uvm.edu/teaching/courses/2023-
2024pocsverse/data/303complexnetworks-data-package.zip

and can also be found on the course website (helpfully) under data.

• The main Matlab file containing everything is networkdata_combined.mat.

• For directed networks, the ijth entry of the adjacency matrix represents the
weight of the link from node i to node j. Adjacency matrices for undirected
networks are symmetric.

• For all questions below, treat each network as undirected unless otherwise
instructed.

• For this assignment, convert all weights on links to 1, if the network is weighted.

• You do not have to use Matlab for your basic analyses. Python would be a
preferred route for many.

• The supplied text versions may be of use for visualization using gml.

• The Matlab command spy will give you a quick plot of a sparse adjacency matrix.

• Real data sets used here are taken from Mark Newman’s compilation (and
linked-to sites) at http://www-personal.umich.edu/~mejn/netdata/.

1. Okay, let’s get back to the 6 networks we explored in the first assignment.
Questions 2 through 4 will focus on them.
Measure the degree-degree assortativity. This is the standard Pearson correlation
coefficient and the focus is on links, and then the nodes at the end of each link.
For undirected networks, we need to think about how we choose the ordering of
an edge’s two degrees when we perform the correlation. Which degree goes first?
Or should we include both orderings? How about randomly choosing the ordering?
Does it matter?
For directed networks, various correlations are possible (in-in, in-out, etc.). For
this question, measure the correlation of the in-degree of the source node and the
out-degree of the destination node for each link.

2. Produce plots of the adjacency matrices.
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3. Using a network visualization tool of your choice, produce plots of the networks (if
possible, depending on size).
For the smaller ones, please label the nodes numerically.

4. (3 + 3)
Consider a modified version of the Barabàsi-Albert (BA) model [8] where two
possible mechanisms are now in play. As in the original model, start with m0

nodes at time t = 0. Let’s make these initial guys connected such that each has
degree 1. The two mechanisms are:

M1: With probability p, a new node of degree 1 is added to the network. At time
t+ 1, a node connects to an existing node j with probability

P (connect to node j) =
kj∑N(t)
i=1 ki

(6)

where kj is the degree of node j and N(t) is the number of nodes in the
system at time t.

M2: With probability q = 1− p, a randomly chosen node adds a new edge,
connecting to node j with the same preferential attachment probability as
above.

Note that in the limit q = 0, we retrieve the original BA model (with the
difference that we are adding one link at a time rather than m here).
In the long time limit t → ∞, what is the expected form of the degree distribution
Pk?
Do we move out of the original model’s universality class?
Different analytic approaches are possible including a modification of the BA
paper, or a Simon-like one (see also Krapivsky and Redner [9]).
Hint: You can attempt to solve the problem exactly and you’ll find an integrating
factor story.
Another hint, moment of mercy: Approximate the differential equation by
considering large t (this will simplify the denominators).
(3 points for set up, 3 for solving.)

5. Optional:
Watch “Remedial Chaos Theory.”
Community, S3E04.
https://en.wikipedia.org/wiki/Remedial_Chaos_Theory
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