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Site (papers, examples, code):
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Foundational papers:
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A. Rank-turbulence histogram: B. Identical systems:

C. Randomized systems:

D. Disjoint systems:

FIG. 1. A. An example allotaxonomic ‘rank-rank histogram’ comparing word usage ranks on two days of
Twitter, 2016/11/09 and 2017/08/13. These dates are the day after the 2016 US presidential election and the day after
the Charlottesville Unite the Right rally. Words are extracted first as 1-grams from tweets identified as English [39] and then
filtered to match simple latin characters (see Sec. V A). We orient all histograms so that the comparison is left-right removing a
potential misperception of causality. In general, we compare ranked lists of types for two systems Ω1 and Ω2 by first generating
a merged list of types covering both systems. We then bin logarithmic rank-rank pairs (log10 rτ,1, log10 rτ,2) across all types
and uniformly in logarithmic space. For bin counts, we use the perceptually uniform colormap magma [40], and place a scale in
the bottom left corner. We automatically label words at the fringes of the histogram. Bins on either side of the central vertical
line represent words that are used more often on the corresponding date. For example, ‘Charlottesville’ was ranked 67,220 on
2016/11/09 and 113 on 2017/08/13, while ‘Nazis’ moved from r=9,149 to 129. Words are given alternating shades of gray
for improved readability. The discrete, separated lines of boxes nearest to each bottom axis comprise words that appear on
Twitter on only that side’s date: ‘exclusive types’. Moving up the histogram, the two distinct lines above the ‘exclusive-type
lines’ correspond to words that appear once and twice in the other system. The three horizontal bars in the lower right show
system balances. The top bar indicates the balance of total counts of words for each day: 59.9% versus 40.1%. The middle bar
shows the percentage of the lexicon for the two days combined that appear on each day: 63.2% versus 61.6%. And the bottom
bar shows the percentage of words on each day that are exclusive: 60.8% and 59.8%. B–D. The three rank-rank histograms on
the right show the special, benchmark cases of: B. A Zipf ranking for compared with itself (vertical line; Ω1); C. A ranked list
versus a random shuffling of component types (Ω1); and D. Two Zipf rankings for systems with no shared component types: a
‘vee’ structure (we used Ω1 and Ω2, modifying words to prevent matches). For the cells in the main histograms in this paper,
we use cell side lengths of 1/15 of an order of magnitude; we use 1/5 for plots B–D.

“Allotaxonometry and rank-turbulence
divergence: A universal instrument for
comparing complex systems”
Dodds et al.,
, 2020. [5]
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FIG. 1. Allotaxonograph comparing 2-gram usage in the first and second half of Jane Austen’s Pride and
Prejudice using probability-turbulence divergence with α=3/4, DP

3/4. Histogram on the left: We bin all non-zero
probability pairs (log10 pτ,1, log10 pτ,2) in logarithmic space. Colors indicate counts of 2-grams per cell, and we highlight example
2-grams along the edges of the histogram. For pairs where one of the probabilities is zero, we add a separate rectangular panel
along the bottom of each axis (lighter gray and lighter blue). Contour lines indicate where probability-turbulence divergence
is constant (the jump to the zero probability region necessitates a break in smoothness). Based on the histogram, we choose
α=3/4 to engineer an approximate fit to the histogram’s periphery. The gray scale for 2-grams is indexed by their percentage
contribution to probability-turbulence divergence, δDP

3/4,τ , showing a mixture of rare and common 2-grams. Ranked list on

the right: We order the most salient 2-grams according to their overall contribution δDP
3/4,τ which we mark by bar length.

We show the rank pair for each 2-gram in light gray opposite each 2-gram. Corresponding Flipbook: Flipbooks S1, S2, and
S3 in the paper’s Online Appendices (compstorylab.org/allotaxonometry/), show how the instrument changes for the same
comparison with α being tuned from 0 to ∞ for 1-, 2-, and 3-grams. See Ref. [1] for a general introduction and motivation for
allotaxonometry and allotaxonographs in the context of rank-turbulence divergence.

The choices of α for the three Twitter examples and the
one from Barro Colorado Island further showcase how
good fits may be achieved by a range of values of α. There
is no universal α characterizing turbulence between Zipf
distributions.

The examples for 2-grams and 3-grams can also be seen
as demonstrations of possible comparisons of features of
complex networks and systems (e.g, 2-grams in text as
directed edges).

As for rank-turbulence divergence [1] but with some
key modifications, our allotaxonographs for probability-
turbulence divergence pair two complimentary visualiza-
tions: A map-like histogram and a ranked list.

In isolation, both the histogram and the ranked list

have important but limited descriptive power. The his-
togram helps us see how well our choice of α performs,
information that is entirely lost by the ranking process.
And the ranked list would be difficult to intuit from the
histogram alone.

Many aspects of our allotaxonographs are configurable.
On Gitlab, we provide our universal code for gener-
ating allotaxonographs for rank-turbulence divergence,
probability-turbulence divergence, and other probability
divergences (see Sec. V B).

In the paper’s Online Appendices (compstory-
lab.org/allotaxonometry/), we complement all of our
allotaxonographs with PDF flipbooks which move sys-
tematically through a range of α values.

“Probability-turbulence divergence: A
tunable allotaxonometric instrument for
comparing heavy-tailed categorical
distributions”
Dodds et al.,
, 2020. [6]

http://compstorylab.org/allotaxonometry/
https://pdodds.w3.uvm.edu//research/papers/others/everything/dodds2020a.pdf
https://pdodds.w3.uvm.edu//research/papers/others/everything/dodds2020a.pdf
https://pdodds.w3.uvm.edu//research/papers/others/everything/dodds2020a.pdf
https://pdodds.w3.uvm.edu//research/papers/others/everything/dodds2020a.pdf
https://pdodds.w3.uvm.edu//research/papers/others/everything/dodds2020g.pdf
https://pdodds.w3.uvm.edu//research/papers/others/everything/dodds2020g.pdf
https://pdodds.w3.uvm.edu//research/papers/others/everything/dodds2020g.pdf
https://pdodds.w3.uvm.edu//research/papers/others/everything/dodds2020g.pdf
https://pdodds.w3.uvm.edu//research/papers/others/everything/dodds2020g.pdf
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Basic science = Describe + Explain:
 Dashboards of single scale instruments helps us

understand, monitor, and control systems.

 Archetype: Cockpit dashboard for flying a plane
 Okay if comprehendible.
 Complex systems present two problems for

dashboards:
1. Scale with internal diversity of components: We

need meters for every species, every company,
every word.

2. Tracking change: We need to re-arrange meters
on the fly.

 Goal—Create comprehendible,
dynamically-adjusting, differential dashboards
showing two pieces:1
1. ‘Big picture’ map-like overview,
2. A tunable ranking of components.

1See the lexicocalorimeter

http://panometer.org/instruments/lexicocalorimeter/
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Baby names, much studied: [12]

How to build a dynamical dashboard that helps sort
through a massive number of interconnected time
series?
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a  b  s  t  r  a  c  t

Of  basic  interest  is  the  quantification  of  the  long  term  growth  of  a language’s  lexicon  as  it  develops  to
more  completely  cover  both  a  culture’s  communication  requirements  and  knowledge  space.  Here,  we
explore the usage  dynamics  of  words  in  the English  language  as reflected  by the  Google Books  2012
English  Fiction  corpus.  We critique  an  earlier  method  that  found  decreasing  birth  and  increasing  death
rates of  words  over  the  second  half  of  the  20th  Century,  showing  death  rates  to be  strongly  affected  by
the  imposed  time  cutoff  of  the  arbitrary  present  and  not  increasing  dramatically.  We provide  a  robust,
principled  approach  to examining  lexical  evolution  by tracking  the volume  of  word  flux across  various
relative  frequency  thresholds.  We show  that  while  the overall  statistical  structure  of  the  English  language
remains  stable  over  time  in  terms  of its  raw  Zipf  distribution,  we  find  evidence  of  an  enduring  ‘lexical
turbulence’:  The  flux of words  across  frequency  thresholds  from  decade  to  decade  scales  superlinearly
with  word rank and  exhibits  a scaling  break  we  connect  to  that  of Zipf’s  law.  To  better  understand  the
changing  lexicon,  we examine  the  contributions  to the  Jensen-Shannon  divergence  of  individual  words
crossing  frequency  thresholds.  We  also  find  indications  that scholarly  works  about  fiction  are  strongly
represented  in  the 2012  English  Fiction  corpus,  and  suggest  that  a  future  revision  of  the corpus  should
attempt  to  separate  critical  works  from  fiction  itself.

© 2017  Elsevier  B.V.  All  rights  reserved.

1. Introduction

In studying any entity or system, a fundamental scientific goal
is the satisfactory characterization of temporal dynamics, whether
empirically observed, simulated, or theoretically predicted. For lan-
guage, there are many kinds and scales of temporal dynamics to
consider such as the introduction and usage decline of specific
words [1], the evolution of accents, the long term development of
individual languages [2], and the changes in the overall ecology of
human languages which has now moved well into an era of die off
[3].

Here, we are concerned with the dynamics of the English lan-
guage’s lexicon. Primarily, we want to know how the usage of words
has changed in time, and how this is reflected in the English lex-
icon’s evolution. This focus leads us to several core questions: (1)
What are the rates at which words are born and at which they

∗ Corresponding author.
E-mail addresses: eitan.pechenick@gmail.com (E.A. Pechenick),

chris.danforth@uvm.edu (C.M. Danforth), peter.dodds@uvm.edu (P.S. Dodds).

die? (2) How do we  reasonably identify word births and deaths
in the first place? (3) As the English lexicon has expanded, how
have overall statistical patterns such as Zipf’s law [4] changed, if
at all? We are especially interested with revisiting work on word
“birth” and “death” rates as performed in [1]. As we will show, the
methods employed in [1] suffer from boundary effects, and we pro-
pose and investigate an alternative approach insensitive to time
range choice. We also investigate lexical changes at a range of usage
frequency levels.

We will perform our analyses using the Google Books corpus
[5,6] whose incredible volume generated from an extensive cover-
age of all written works would seemingly make it an ideal candidate
for linguistic research. However, there are two major caveats that
limit its potency and we  will lay them out before proceeding.

In previous research [7], we  broadly explored the characteris-
tics and dynamics of the unfiltered English and English Fiction data
sets from both the 2009 and 2012 versions of the Google Books
corpus. We showed that the 2009 and 2012 unfiltered English data
sets and, surprisingly, the 2009 English Fiction data set, all become
increasingly influenced by scientific texts throughout the 1900s,
with medical research language being especially prevalent. We

http://dx.doi.org/10.1016/j.jocs.2017.04.020
1877-7503/© 2017 Elsevier B.V. All rights reserved.

“Is language evolution grinding to a halt? The
scaling of lexical turbulence in English fiction
suggests it is not”
Pechenick, Danforth, Dodds, Alshaabi, Adams,
Dewhurst, Reagan, Danforth, Reagan, and
Danforth.
Journal of Computational Science, 21, 24–37,
2017. [14]
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For language, Zipf’s law has two scaling
regimes: [19]

𝑓 ∼ { 𝑟−𝛼 for 𝑟 ≪ 𝑟b,
𝑟−𝛼′ for 𝑟 ≫ 𝑟b,

When comparing two texts, define Lexical
turbulence as flux of words across a frequency
threshold:

𝜙 ∼ { 𝑓−𝜇
thr for 𝑓thr ≪ 𝑓b,

𝑓−𝜇′

thr for 𝑓thr ≫ 𝑓b,

Estimates: 𝜇 ≃ 0.77 and 𝜇′ ≃ 1.10, and 𝑓b is the scaling
break point.

𝜙 ∼ { 𝑟𝜈 = 𝑟𝛼𝜇′ for 𝑟 ≪ 𝑟b,
𝑟𝜈′ = 𝑟𝛼′𝜇 for 𝑟 ≫ 𝑟b.

Estimates: Lower and upper exponents 𝜈 ≃ 1.23 and
𝜈′ ≃ 1.47.
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Exclusive types:
 We call types that are present in one system only

‘exclusive types’.
 When warranted, we will use expressions of the

form Ω(1)-exclusive and Ω(2)-exclusive to indicate
to which system an exclusive type belongs.
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Probability-turbulence histogram:
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So, so many ways to compare probability distributions:
Entropy 2010, 12 1542

Table 1. Asymmetric Alpha-divergences and associated convex Csiszár-Morimoto
functions [30].

Divergence D(α)
A (P||Q) =

∫
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dµ(x) Csiszár function f (α)(u), u = p/q
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Table 1. Asymmetric Alpha-divergences and associated convex Csiszár-Morimoto
functions [30].
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paper have the shuffling invariant property [6] and thus 
naturally imply the level independency.  
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measures: vector and probabilistic. Since each level is 
assumed to be independent from other levels, a histogram or 
pdf can be considered as a vector, i.e., a point in the Euclidean 
space or a Cartesian coordinate system. Hence, numerous 
geometrical distances can be applied to compare two pdf’s. 
There is much literature regarding discrete versions of various 
divergences in probability and information theory fields [7,8]. 
Computing the distance between two pdf’s can be regarded as 
the same as computing the Bayes (or minimum 
misclassification) probability [1]. This is equivalent to 
measuring the overlap between two pdfs as the distance. The 
probabilistic approach is based on the fact that a histogram of 
a measurement provides the basis for an empirical estimate of 
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The rest of the paper is organized as follows. In section 2, 
various distance/similarity measures are enumerated according 
to their syntactic similarities. In order to provide a better 
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Table 1. Asymmetric Alpha-divergences and associated convex Csiszár-Morimoto
functions [30].
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paper have the shuffling invariant property [6] and thus 
naturally imply the level independency.  

There are two approaches in pdf distance/similarity 
measures: vector and probabilistic. Since each level is 
assumed to be independent from other levels, a histogram or 
pdf can be considered as a vector, i.e., a point in the Euclidean 
space or a Cartesian coordinate system. Hence, numerous 
geometrical distances can be applied to compare two pdf’s. 
There is much literature regarding discrete versions of various 
divergences in probability and information theory fields [7,8]. 
Computing the distance between two pdf’s can be regarded as 
the same as computing the Bayes (or minimum 
misclassification) probability [1]. This is equivalent to 
measuring the overlap between two pdfs as the distance. The 
probabilistic approach is based on the fact that a histogram of 
a measurement provides the basis for an empirical estimate of 
the pdf.  

The rest of the paper is organized as follows. In section 2, 
various distance/similarity measures are enumerated according 
to their syntactic similarities. In order to provide a better 
perspective on distance/similarity measures, section 3 presents 
the hierarchical cluster tree using the correlations between 
different measures. Finally, section 4 concludes this work.  
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often called Pythagorean metric since it is derived from the 
Pythagorean Theorem. In the late 19th century, Hermann 
Minkowski considered the city block distance [9]. Other 
names for the eqn (2) include rectilinear distance, taxicab 
norm, and Manhattan distance. Hermann also generalized the 
formulae (1) and (2) to the eqn (3) which is coined after 
Minkowski. When p goes to infinite, the eqn (4) can be 
derived and it is called the chessboard distance in 2D, the 
minimax approximation, or the Chebyshev distance named 
after Pafnuty Lvovich Chebyshev [10]. 
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more precisely the absolute difference. The eqn (5), which is 
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[12] or Bray-Curtis [2,4,13]. When it is used for comparing 
two pdfs, it is nothing but the L1 divided by 2. Gower distance 
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space and then uses the L1. Since the pdf is already normalized 
space, Gower distance is the L1 divided by d. Other L1 family 
distances that are non-proportional to the L1 include Soergel 
and Kulczynski distances given in the eqns (8) [4] and (9) [2] 
respectively. At first glance, Canberra metric given in the eqn 
(10) [2,15] resembles Sørensen but normalizes the absolute 
difference of the individual level. It is known to be very 
sensitive to small changes near zero [15]. The eqn (11) [2], 
attributed to Lorentzian, also contains the absolute difference 
and the natural logarithm is applied. 1 is added to guarantee 
the non-negativity property and to eschew the log of zero. 

 
Table 3. Intersection family 
11. Intersection ¦

 

 
d

i
iiIS QPs

1
),min(  (12) 

 ¦
 

� � � 
d

i
iiISISnon QPsd

1
||

2
11  (13) 

12. Wave Hedges ¦
 

� 
d

i ii

ii
WH QP

QPd
1

)
),max(
),min(1(  (14) 

 ¦
 

�
 

d

i ii

ii

QP
QP

1 ),max(
||  (15) 

13. Czekanowski 

¦

¦

 

 

�
 d

i
ii

d

i
ii

Cze

QP

QP
s

1

1

)(

),min(2  
(16) 

 

¦

¦

 

 

�

�
 � d

i
ii

d

i
ii

CzeCze

QP

QP
sd

1

1

)(

||
1

  
(17) 

INTERNATIONAL JOURNAL OF MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES

Issue 4, Volume 1, 2007 301

 

 

paper have the shuffling invariant property [6] and thus 
naturally imply the level independency.  

There are two approaches in pdf distance/similarity 
measures: vector and probabilistic. Since each level is 
assumed to be independent from other levels, a histogram or 
pdf can be considered as a vector, i.e., a point in the Euclidean 
space or a Cartesian coordinate system. Hence, numerous 
geometrical distances can be applied to compare two pdf’s. 
There is much literature regarding discrete versions of various 
divergences in probability and information theory fields [7,8]. 
Computing the distance between two pdf’s can be regarded as 
the same as computing the Bayes (or minimum 
misclassification) probability [1]. This is equivalent to 
measuring the overlap between two pdfs as the distance. The 
probabilistic approach is based on the fact that a histogram of 
a measurement provides the basis for an empirical estimate of 
the pdf.  

The rest of the paper is organized as follows. In section 2, 
various distance/similarity measures are enumerated according 
to their syntactic similarities. In order to provide a better 
perspective on distance/similarity measures, section 3 presents 
the hierarchical cluster tree using the correlations between 
different measures. Finally, section 4 concludes this work.  

II. DEFINITIONS 
Table 1. Lp Minkowski family 

1. Euclidean L2 ¦
 

� 
d

i
iiEuc QPd

1

2||  (1) 

2. City block L1 ¦
 

� 
d

i
iiCB QPd

1
||  (2) 

3. Minkowski Lp p
d

i

p
iiMk QPd ¦

 

� 
1

||  (3) 

4. Chebyshev Lf  ||max iiiCheb QPd �  (4) 
 

A couple of thousand years ago, Euclid stated that the 
shortest distance between two points is a line and thus the eqn 
(1) is predominantly known as Euclidean distance. It was 
often called Pythagorean metric since it is derived from the 
Pythagorean Theorem. In the late 19th century, Hermann 
Minkowski considered the city block distance [9]. Other 
names for the eqn (2) include rectilinear distance, taxicab 
norm, and Manhattan distance. Hermann also generalized the 
formulae (1) and (2) to the eqn (3) which is coined after 
Minkowski. When p goes to infinite, the eqn (4) can be 
derived and it is called the chessboard distance in 2D, the 
minimax approximation, or the Chebyshev distance named 
after Pafnuty Lvovich Chebyshev [10]. 

 
Table 2. L1 family 
5. Sørensen 

¦

¦

 

 

�

�
 d

i
ii

d

i
ii

sor

QP

QP
d

1

1

)(

||  
(5) 

¦
 

�
 

d

i i

ii
gow R

QP
d

d
1

||1  (6) 
6. Gower 

¦
 

� 
d

i
ii QP

d 1
||1  (7) 

7. Soergel 

¦

¦

 

 

�
 d

i
ii

d

i
ii

sg

QP

QP
d

1

1

),max(

||  
(8) 

8. Kulczynski d 

¦

¦

 

 

�
 d

i
ii

d

i
ii

kul

QP

QP
d

1

1

),min(

||  
(9) 

9. Canberra ¦
 �

�
 

d

i ii

ii
Can QP

QPd
1

||  (10) 

10. Lorentzian ¦
 

�� 
d

i
iiLor QPd

1
|)|1ln(  (11) 

* L1 family � {Intersectoin (13), Wave Hedges (15), 
Czekanowski (16), Ruzicka (21), Tanimoto (23), etc}. 
 
Several distance measures listed in Table 2 facilitate the L1, 

more precisely the absolute difference. The eqn (5), which is 
widely used in ecology [11], is known as Sørensen distance 
[12] or Bray-Curtis [2,4,13]. When it is used for comparing 
two pdfs, it is nothing but the L1 divided by 2. Gower distance 
[14] in the eqn (6) scales the vector space into the normalized 
space and then uses the L1. Since the pdf is already normalized 
space, Gower distance is the L1 divided by d. Other L1 family 
distances that are non-proportional to the L1 include Soergel 
and Kulczynski distances given in the eqns (8) [4] and (9) [2] 
respectively. At first glance, Canberra metric given in the eqn 
(10) [2,15] resembles Sørensen but normalizes the absolute 
difference of the individual level. It is known to be very 
sensitive to small changes near zero [15]. The eqn (11) [2], 
attributed to Lorentzian, also contains the absolute difference 
and the natural logarithm is applied. 1 is added to guarantee 
the non-negativity property and to eschew the log of zero. 

 
Table 3. Intersection family 
11. Intersection ¦

 

 
d

i
iiIS QPs

1
),min(  (12) 

 ¦
 

� � � 
d

i
iiISISnon QPsd

1
||

2
11  (13) 

12. Wave Hedges ¦
 

� 
d

i ii

ii
WH QP

QPd
1

)
),max(
),min(1(  (14) 

 ¦
 

�
 

d

i ii

ii

QP
QP

1 ),max(
||  (15) 

13. Czekanowski 

¦

¦

 

 

�
 d

i
ii

d

i
ii

Cze

QP

QP
s

1

1

)(

),min(2  
(16) 

 

¦

¦

 

 

�

�
 � d

i
ii

d

i
ii

CzeCze

QP

QP
sd

1

1

)(

||
1

  
(17) 

INTERNATIONAL JOURNAL OF MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES

Issue 4, Volume 1, 2007 301

 

 

paper have the shuffling invariant property [6] and thus 
naturally imply the level independency.  

There are two approaches in pdf distance/similarity 
measures: vector and probabilistic. Since each level is 
assumed to be independent from other levels, a histogram or 
pdf can be considered as a vector, i.e., a point in the Euclidean 
space or a Cartesian coordinate system. Hence, numerous 
geometrical distances can be applied to compare two pdf’s. 
There is much literature regarding discrete versions of various 
divergences in probability and information theory fields [7,8]. 
Computing the distance between two pdf’s can be regarded as 
the same as computing the Bayes (or minimum 
misclassification) probability [1]. This is equivalent to 
measuring the overlap between two pdfs as the distance. The 
probabilistic approach is based on the fact that a histogram of 
a measurement provides the basis for an empirical estimate of 
the pdf.  

The rest of the paper is organized as follows. In section 2, 
various distance/similarity measures are enumerated according 
to their syntactic similarities. In order to provide a better 
perspective on distance/similarity measures, section 3 presents 
the hierarchical cluster tree using the correlations between 
different measures. Finally, section 4 concludes this work.  

II. DEFINITIONS 
Table 1. Lp Minkowski family 

1. Euclidean L2 ¦
 

� 
d

i
iiEuc QPd

1

2||  (1) 

2. City block L1 ¦
 

� 
d

i
iiCB QPd

1
||  (2) 

3. Minkowski Lp p
d

i

p
iiMk QPd ¦

 

� 
1

||  (3) 

4. Chebyshev Lf  ||max iiiCheb QPd �  (4) 
 

A couple of thousand years ago, Euclid stated that the 
shortest distance between two points is a line and thus the eqn 
(1) is predominantly known as Euclidean distance. It was 
often called Pythagorean metric since it is derived from the 
Pythagorean Theorem. In the late 19th century, Hermann 
Minkowski considered the city block distance [9]. Other 
names for the eqn (2) include rectilinear distance, taxicab 
norm, and Manhattan distance. Hermann also generalized the 
formulae (1) and (2) to the eqn (3) which is coined after 
Minkowski. When p goes to infinite, the eqn (4) can be 
derived and it is called the chessboard distance in 2D, the 
minimax approximation, or the Chebyshev distance named 
after Pafnuty Lvovich Chebyshev [10]. 

 
Table 2. L1 family 
5. Sørensen 

¦

¦

 

 

�

�
 d

i
ii

d

i
ii

sor

QP

QP
d

1

1

)(

||  
(5) 

¦
 

�
 

d

i i

ii
gow R

QP
d

d
1

||1  (6) 
6. Gower 

¦
 

� 
d

i
ii QP

d 1
||1  (7) 

7. Soergel 

¦

¦

 

 

�
 d

i
ii

d

i
ii

sg

QP

QP
d

1

1

),max(

||  
(8) 

8. Kulczynski d 

¦

¦

 

 

�
 d

i
ii

d

i
ii

kul

QP

QP
d

1

1

),min(

||  
(9) 

9. Canberra ¦
 �

�
 

d

i ii

ii
Can QP

QPd
1

||  (10) 

10. Lorentzian ¦
 

�� 
d

i
iiLor QPd

1
|)|1ln(  (11) 

* L1 family � {Intersectoin (13), Wave Hedges (15), 
Czekanowski (16), Ruzicka (21), Tanimoto (23), etc}. 
 
Several distance measures listed in Table 2 facilitate the L1, 

more precisely the absolute difference. The eqn (5), which is 
widely used in ecology [11], is known as Sørensen distance 
[12] or Bray-Curtis [2,4,13]. When it is used for comparing 
two pdfs, it is nothing but the L1 divided by 2. Gower distance 
[14] in the eqn (6) scales the vector space into the normalized 
space and then uses the L1. Since the pdf is already normalized 
space, Gower distance is the L1 divided by d. Other L1 family 
distances that are non-proportional to the L1 include Soergel 
and Kulczynski distances given in the eqns (8) [4] and (9) [2] 
respectively. At first glance, Canberra metric given in the eqn 
(10) [2,15] resembles Sørensen but normalizes the absolute 
difference of the individual level. It is known to be very 
sensitive to small changes near zero [15]. The eqn (11) [2], 
attributed to Lorentzian, also contains the absolute difference 
and the natural logarithm is applied. 1 is added to guarantee 
the non-negativity property and to eschew the log of zero. 

 
Table 3. Intersection family 
11. Intersection ¦

 

 
d

i
iiIS QPs

1
),min(  (12) 

 ¦
 

� � � 
d

i
iiISISnon QPsd

1
||

2
11  (13) 

12. Wave Hedges ¦
 

� 
d

i ii

ii
WH QP

QPd
1

)
),max(
),min(1(  (14) 

 ¦
 

�
 

d

i ii

ii

QP
QP

1 ),max(
||  (15) 

13. Czekanowski 

¦

¦

 

 

�
 d

i
ii

d

i
ii

Cze

QP

QP
s

1

1

)(

),min(2  
(16) 

 

¦

¦

 

 

�

�
 � d

i
ii

d

i
ii

CzeCze

QP

QP
sd

1

1

)(

||
1

  
(17) 

INTERNATIONAL JOURNAL OF MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES

Issue 4, Volume 1, 2007 301

 

 

paper have the shuffling invariant property [6] and thus 
naturally imply the level independency.  

There are two approaches in pdf distance/similarity 
measures: vector and probabilistic. Since each level is 
assumed to be independent from other levels, a histogram or 
pdf can be considered as a vector, i.e., a point in the Euclidean 
space or a Cartesian coordinate system. Hence, numerous 
geometrical distances can be applied to compare two pdf’s. 
There is much literature regarding discrete versions of various 
divergences in probability and information theory fields [7,8]. 
Computing the distance between two pdf’s can be regarded as 
the same as computing the Bayes (or minimum 
misclassification) probability [1]. This is equivalent to 
measuring the overlap between two pdfs as the distance. The 
probabilistic approach is based on the fact that a histogram of 
a measurement provides the basis for an empirical estimate of 
the pdf.  

The rest of the paper is organized as follows. In section 2, 
various distance/similarity measures are enumerated according 
to their syntactic similarities. In order to provide a better 
perspective on distance/similarity measures, section 3 presents 
the hierarchical cluster tree using the correlations between 
different measures. Finally, section 4 concludes this work.  

II. DEFINITIONS 
Table 1. Lp Minkowski family 

1. Euclidean L2 ¦
 

� 
d

i
iiEuc QPd

1

2||  (1) 

2. City block L1 ¦
 

� 
d

i
iiCB QPd

1
||  (2) 

3. Minkowski Lp p
d

i

p
iiMk QPd ¦

 

� 
1

||  (3) 

4. Chebyshev Lf  ||max iiiCheb QPd �  (4) 
 

A couple of thousand years ago, Euclid stated that the 
shortest distance between two points is a line and thus the eqn 
(1) is predominantly known as Euclidean distance. It was 
often called Pythagorean metric since it is derived from the 
Pythagorean Theorem. In the late 19th century, Hermann 
Minkowski considered the city block distance [9]. Other 
names for the eqn (2) include rectilinear distance, taxicab 
norm, and Manhattan distance. Hermann also generalized the 
formulae (1) and (2) to the eqn (3) which is coined after 
Minkowski. When p goes to infinite, the eqn (4) can be 
derived and it is called the chessboard distance in 2D, the 
minimax approximation, or the Chebyshev distance named 
after Pafnuty Lvovich Chebyshev [10]. 

 
Table 2. L1 family 
5. Sørensen 

¦

¦

 

 

�

�
 d

i
ii

d

i
ii

sor

QP

QP
d

1

1

)(

||  
(5) 

¦
 

�
 

d

i i

ii
gow R

QP
d

d
1

||1  (6) 
6. Gower 

¦
 

� 
d

i
ii QP

d 1
||1  (7) 

7. Soergel 

¦

¦

 

 

�
 d

i
ii

d

i
ii

sg

QP

QP
d

1

1

),max(

||  
(8) 

8. Kulczynski d 

¦

¦

 

 

�
 d

i
ii

d

i
ii

kul

QP

QP
d

1

1

),min(

||  
(9) 

9. Canberra ¦
 �

�
 

d

i ii

ii
Can QP

QPd
1

||  (10) 

10. Lorentzian ¦
 

�� 
d

i
iiLor QPd

1
|)|1ln(  (11) 

* L1 family � {Intersectoin (13), Wave Hedges (15), 
Czekanowski (16), Ruzicka (21), Tanimoto (23), etc}. 
 
Several distance measures listed in Table 2 facilitate the L1, 

more precisely the absolute difference. The eqn (5), which is 
widely used in ecology [11], is known as Sørensen distance 
[12] or Bray-Curtis [2,4,13]. When it is used for comparing 
two pdfs, it is nothing but the L1 divided by 2. Gower distance 
[14] in the eqn (6) scales the vector space into the normalized 
space and then uses the L1. Since the pdf is already normalized 
space, Gower distance is the L1 divided by d. Other L1 family 
distances that are non-proportional to the L1 include Soergel 
and Kulczynski distances given in the eqns (8) [4] and (9) [2] 
respectively. At first glance, Canberra metric given in the eqn 
(10) [2,15] resembles Sørensen but normalizes the absolute 
difference of the individual level. It is known to be very 
sensitive to small changes near zero [15]. The eqn (11) [2], 
attributed to Lorentzian, also contains the absolute difference 
and the natural logarithm is applied. 1 is added to guarantee 
the non-negativity property and to eschew the log of zero. 
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The intersection between two pdfs in the eqn (12) is a 

widely used form of similarity [1] where the non-overlaps 
between two pdfs defined in the eqn (13) is nothing but the L1 
divided by 2 [6]. Hence, most similarity measures pertinent to 
the intersection enumerated in Table 3 can be transformed into 
the L1 based distance measures using the technique, i.e., 
dx(P,Q) = 1 – sx(P,Q) with a few of exceptions. The eqn (14) 
is called Wave Hedges [16] and its L1 based distance form is 
given in the eqn (15). Czekanowski Coefficient in the eqn (16) 
[15] has its distance form identical to Sørensen (5). Half of the 
Czekanowski Coefficient is called Motyka similarity in the 
eqn (18) [2]. The eqn (20) is known as Kulczynski similarity 
[2]. Unlike the other similarity and distance relationship, 
Kulczynski has skul skul(P,Q) = 1/ dkul(P,Q). The eqn (22) is 
referred to as Tanimoto distance [1] a.k.a., Jaccard distance. 
Soergel distance in the eqn (8) is identical to Tanimoto. 1 – 
dTani is Ruzicka similarity given in the eqn (21) [2]. The eqn 
(23) is given to help understand their equivalencies. 

 
Table 4. Inner Product family 
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Table 4 deals exclusively with similarity measures which 

incorporate the inner product , PxQ explicitly in their 
definitions. The inner product of two vectors in the eqn (24) 
yields a scalar and is sometimes called the scalar product or 
dot product [1]. The inner product is also called the number of 
matches or the overlap if it is used for binary vectors. The eqn 
(25) is the harmonic mean [2]. The eqn (26) is the normalized 
inner product and called the cosine coefficient because it 
measures the angle between two vectors and thus often called 
the angular metric [2]. Other names for the cosine coefficient 
include Ochiai [2,4] and Carbo [4]. Kumar and Hassebrook 
utilized PxQ to measure the Peak-to-correlation energy, PCE 
in short [17] in the eqn (27). Jaccard coefficient [18], a.k.a. 
Tanimoto [19], defined in the eqn (28) is another variation of 
the normalized inner product. Dice coefficient in the eqn (30) 
[20] is occasionally called Sorensen, Czekannowski, Hodgkin-
Richards [4] or Morisita [21]. The eqns (24,26,28,30) are 
frequently encountered similarity measures in the fields of 
information retrieval and biological taxonomy for the binary 
feature vector comparison (see [2,22] for the exhaustive list of 
distance and similarity measures for the binary feature 
vectors). 

 
Table 5. Fidelity family or Squared-chord family 
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The intersection between two pdfs in the eqn (12) is a 

widely used form of similarity [1] where the non-overlaps 
between two pdfs defined in the eqn (13) is nothing but the L1 
divided by 2 [6]. Hence, most similarity measures pertinent to 
the intersection enumerated in Table 3 can be transformed into 
the L1 based distance measures using the technique, i.e., 
dx(P,Q) = 1 – sx(P,Q) with a few of exceptions. The eqn (14) 
is called Wave Hedges [16] and its L1 based distance form is 
given in the eqn (15). Czekanowski Coefficient in the eqn (16) 
[15] has its distance form identical to Sørensen (5). Half of the 
Czekanowski Coefficient is called Motyka similarity in the 
eqn (18) [2]. The eqn (20) is known as Kulczynski similarity 
[2]. Unlike the other similarity and distance relationship, 
Kulczynski has skul skul(P,Q) = 1/ dkul(P,Q). The eqn (22) is 
referred to as Tanimoto distance [1] a.k.a., Jaccard distance. 
Soergel distance in the eqn (8) is identical to Tanimoto. 1 – 
dTani is Ruzicka similarity given in the eqn (21) [2]. The eqn 
(23) is given to help understand their equivalencies. 

 
Table 4. Inner Product family 
18. Inner Product ¦

 

 x 
d

j
iiIP QPQPs

1

 (24) 

19. Harmonic  
       mean ¦

 �
 

d

i ii

ii
HM QP

QPs
1

2  (25) 

20. Cosine 

¦¦

¦

  

  
d

i
i

d

i
i

d

i
ii

Cos

QP

QP
s

1

2

1

2

1
 

(26) 

21. Kumar- 
Hassebrook  
(PCE) ¦¦¦

¦

   

 

��
 d

i
ii

d

i
i

d

i
i

d

i
ii

Jac

QPQP

QP
s

11

2

1

2

1
 

(27) 

22. Jaccard 

¦¦¦

¦

   

 

��
 d

i
ii

d

i
i

d

i
i

d

i
ii

Jac

QPQP

QP
s

11

2

1

2

1
 

(28) 

 

¦¦¦

¦

   

 

��

�
 � d

i
ii

d

i
i

d

i
i

d

i
ii

JacJac

QPQP

QP
sd

11

2

1

2

1

2)(
1 (39) 

23. Dice 
     

¦¦

¦

  

 

�
 d

i
i

d

i
i

d

i
ii

Dice

QP

QP
s

1

2

1

2

1
2  

(40) 

 

¦¦

¦

  

 

�

�
 � d

i
i

d

i
i

d

i
ii

DiceDice

QP

QP
sd

1

2

1

2

1

2)(
1

 

(31) 

 
Table 4 deals exclusively with similarity measures which 

incorporate the inner product , PxQ explicitly in their 
definitions. The inner product of two vectors in the eqn (24) 
yields a scalar and is sometimes called the scalar product or 
dot product [1]. The inner product is also called the number of 
matches or the overlap if it is used for binary vectors. The eqn 
(25) is the harmonic mean [2]. The eqn (26) is the normalized 
inner product and called the cosine coefficient because it 
measures the angle between two vectors and thus often called 
the angular metric [2]. Other names for the cosine coefficient 
include Ochiai [2,4] and Carbo [4]. Kumar and Hassebrook 
utilized PxQ to measure the Peak-to-correlation energy, PCE 
in short [17] in the eqn (27). Jaccard coefficient [18], a.k.a. 
Tanimoto [19], defined in the eqn (28) is another variation of 
the normalized inner product. Dice coefficient in the eqn (30) 
[20] is occasionally called Sorensen, Czekannowski, Hodgkin-
Richards [4] or Morisita [21]. The eqns (24,26,28,30) are 
frequently encountered similarity measures in the fields of 
information retrieval and biological taxonomy for the binary 
feature vector comparison (see [2,22] for the exhaustive list of 
distance and similarity measures for the binary feature 
vectors). 

 
Table 5. Fidelity family or Squared-chord family 
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The intersection between two pdfs in the eqn (12) is a 

widely used form of similarity [1] where the non-overlaps 
between two pdfs defined in the eqn (13) is nothing but the L1 
divided by 2 [6]. Hence, most similarity measures pertinent to 
the intersection enumerated in Table 3 can be transformed into 
the L1 based distance measures using the technique, i.e., 
dx(P,Q) = 1 – sx(P,Q) with a few of exceptions. The eqn (14) 
is called Wave Hedges [16] and its L1 based distance form is 
given in the eqn (15). Czekanowski Coefficient in the eqn (16) 
[15] has its distance form identical to Sørensen (5). Half of the 
Czekanowski Coefficient is called Motyka similarity in the 
eqn (18) [2]. The eqn (20) is known as Kulczynski similarity 
[2]. Unlike the other similarity and distance relationship, 
Kulczynski has skul skul(P,Q) = 1/ dkul(P,Q). The eqn (22) is 
referred to as Tanimoto distance [1] a.k.a., Jaccard distance. 
Soergel distance in the eqn (8) is identical to Tanimoto. 1 – 
dTani is Ruzicka similarity given in the eqn (21) [2]. The eqn 
(23) is given to help understand their equivalencies. 
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Table 4 deals exclusively with similarity measures which 

incorporate the inner product , PxQ explicitly in their 
definitions. The inner product of two vectors in the eqn (24) 
yields a scalar and is sometimes called the scalar product or 
dot product [1]. The inner product is also called the number of 
matches or the overlap if it is used for binary vectors. The eqn 
(25) is the harmonic mean [2]. The eqn (26) is the normalized 
inner product and called the cosine coefficient because it 
measures the angle between two vectors and thus often called 
the angular metric [2]. Other names for the cosine coefficient 
include Ochiai [2,4] and Carbo [4]. Kumar and Hassebrook 
utilized PxQ to measure the Peak-to-correlation energy, PCE 
in short [17] in the eqn (27). Jaccard coefficient [18], a.k.a. 
Tanimoto [19], defined in the eqn (28) is another variation of 
the normalized inner product. Dice coefficient in the eqn (30) 
[20] is occasionally called Sorensen, Czekannowski, Hodgkin-
Richards [4] or Morisita [21]. The eqns (24,26,28,30) are 
frequently encountered similarity measures in the fields of 
information retrieval and biological taxonomy for the binary 
feature vector comparison (see [2,22] for the exhaustive list of 
distance and similarity measures for the binary feature 
vectors). 

 
Table 5. Fidelity family or Squared-chord family 
24. Fidelity ¦

 

 
d

i
iiFid QPs

1

 (32) 

25. Bhattacharyya ¦
 

� 
d

i
iiB QPd

1
ln  (33) 

26. Hellinger 
¦
 

� 
d

i
iiH QPd

1

2)(2  (34) 

 
¦
 

� 
d

i
iiQP

1
12  (35) 

INTERNATIONAL JOURNAL OF MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES

Issue 4, Volume 1, 2007 302

 

 

14. Motyka 

¦

¦

 

 

�
 d

i
ii

d

i
ii

Mot

QP

QP
s

1

1

)(

),min(  
(18) 

 

¦

¦

 

 

�
 � d

i
ii

d

i
ii

MotMot

QP

QP
sd

1

1

)(

),max(
1

 
(19) 

15. Kulczynski s 

¦

¦

 

 

�
  d

i
ii

d

i
ii

Kul
Kul

QP

QP

d
s

1

1

||

),min(
1

 

(20) 

16. Ruzicka 

¦

¦

 

  d

i
ii

d

i
ii

Ruz

QP

QP
s

1

1

),max(

),min(  
(21) 

¦¦¦

¦¦¦

   

   

��

��
 

d

i
ii

d

i
i

d

i
i

d

i
ii

d

i
i

d

i
i

Tani

QPQP

QPQP
d

111

111

),min(

),min(2  
(22) 

17. Tani- 
         moto 

¦

¦

 

 

�
 d

i
ii

d

i
iiii

QP

QPQP

1

1

),max(

)),min(),(max(  
(23) 

 
The intersection between two pdfs in the eqn (12) is a 

widely used form of similarity [1] where the non-overlaps 
between two pdfs defined in the eqn (13) is nothing but the L1 
divided by 2 [6]. Hence, most similarity measures pertinent to 
the intersection enumerated in Table 3 can be transformed into 
the L1 based distance measures using the technique, i.e., 
dx(P,Q) = 1 – sx(P,Q) with a few of exceptions. The eqn (14) 
is called Wave Hedges [16] and its L1 based distance form is 
given in the eqn (15). Czekanowski Coefficient in the eqn (16) 
[15] has its distance form identical to Sørensen (5). Half of the 
Czekanowski Coefficient is called Motyka similarity in the 
eqn (18) [2]. The eqn (20) is known as Kulczynski similarity 
[2]. Unlike the other similarity and distance relationship, 
Kulczynski has skul skul(P,Q) = 1/ dkul(P,Q). The eqn (22) is 
referred to as Tanimoto distance [1] a.k.a., Jaccard distance. 
Soergel distance in the eqn (8) is identical to Tanimoto. 1 – 
dTani is Ruzicka similarity given in the eqn (21) [2]. The eqn 
(23) is given to help understand their equivalencies. 
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Table 4 deals exclusively with similarity measures which 

incorporate the inner product , PxQ explicitly in their 
definitions. The inner product of two vectors in the eqn (24) 
yields a scalar and is sometimes called the scalar product or 
dot product [1]. The inner product is also called the number of 
matches or the overlap if it is used for binary vectors. The eqn 
(25) is the harmonic mean [2]. The eqn (26) is the normalized 
inner product and called the cosine coefficient because it 
measures the angle between two vectors and thus often called 
the angular metric [2]. Other names for the cosine coefficient 
include Ochiai [2,4] and Carbo [4]. Kumar and Hassebrook 
utilized PxQ to measure the Peak-to-correlation energy, PCE 
in short [17] in the eqn (27). Jaccard coefficient [18], a.k.a. 
Tanimoto [19], defined in the eqn (28) is another variation of 
the normalized inner product. Dice coefficient in the eqn (30) 
[20] is occasionally called Sorensen, Czekannowski, Hodgkin-
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frequently encountered similarity measures in the fields of 
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feature vector comparison (see [2,22] for the exhaustive list of 
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vectors). 
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The sum of geometric means in the eqn (32) is referred to 

as Fidelity similarity, a.k.a. Bhattacharyya coefficient or 
Hellinger affinity [2]. Bhattacharyya distance given in the eqn 
(33), which is a value between 0 and 1, provides bounds on 
the Bayes misclassification probability [23]. Other approaches 
closely related to Bhattacharyya include Hellinger [2] and 
Matusita [24] in eqns (34) and (36) respectively. The basic 
form in the eqn (38), i.e., Matusita without the square root is 
called Squared-chord distance [5] and thus all Fidelity based 
measures have their alternative representation using the 
squared-chord distance. 
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* Squared L2 family � {Jaccard (29), Dice (31)} 
 
Several distance measures containing the Squared 

Euclidean distance in the eqn (40) as the dividend are 
corralled in Table 6. Jaccard and Dice distance forms in the 
eqns (29) and (31) also belong to this family. The cornerstone 
to the F2 family (eqns (41)~(47)) is Pearson F2 divergence in 
the eqn (41) [25] which embodies the Squared Euclidean 
distance. Of particular concern to mathematicians is that 
Pearson F2 divergence is asymmetric. Neyman F2 in the eqn 
(42) [26] is dP(P,Q)= dP(Q,P). Various symmetric versions of 
the F2 have been exploited. The eqn (43) is called the squared 
F2 distance [5] or triangular discrimination [27,28]. Twice of 

the eqn (44) is called the probabilistic symmetric F2 [2] which 
is equivalent to Sangvi F2 distance between populations [2]. 
The term ‘divergence’ is pronominal to refer non-metric 
distance. Notwithstanding the eqn (45) has been commonly 
called divergence [29]. The squared root of half of the 
divergence is called Clark in the eqn (46) [2].  

One of techniques to transform asymmetric distances into 
symmetric form utilizes the addition method; dsym(P,Q)= 
dasym(P,Q) + dasym(Q,P), e.g., The eqn (47) is dAdChi(P,Q) = 
dP(P,Q) + dP(Q,P) [2,3]. Albeit the eqn (47) is occasionally 
called ‘symmetric F2 divergence’, let’s call it the additive 
symmetric F2 here in order to distinguish other symmetric 
versions of F2. Other techniques that are not listed in the 
above table would include max, min, and avg methods; dmax-

sym(P,Q) = max(dasym(P,Q), dasym(Q,P)), dmin-sym(P,Q) = 
min(dasym(P,Q), dasym(Q,P)), and davg-sym(P,Q) = 
avg(dasym(P,Q), dasym(Q,P)). 
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Eqns (48~53) in Table 7 are primary due to Shannon’s 

concept of probabilistic uncertainty or “entropy” H(P)=6d
i=1  

Pi lnPi [30]. Kullback and Leibler [31] introduced the eqn (48) 
called KL divergence, relative entropy, or information 
deviation [2]. The symmetric form of the KL divergence using 
the addition method is in the eqn (49) [31-33] and it is called 
Jeffreys or J divergence. The eqn (50) is called the K 
divergence and its symmetric form using the addition method 
is given in the eqn (51) and called Topsøe distance [2] or 
information statistics [5]. The half of the Topsøe distance is 
called Jensen-Shannon divergence [2,34] which uses the avg 
method to make the K divergence symmetric. Sibson [35] 
studied the idea of information radius for a measure arising 
due to concavity property of Shannon's entropy and 
introduced the Jensen difference in the eqn (53) [33]. All eqns 
(48~53) can be expressed in terms of entropy. 
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* Squared L2 family � {Jaccard (29), Dice (31)} 
 
Several distance measures containing the Squared 

Euclidean distance in the eqn (40) as the dividend are 
corralled in Table 6. Jaccard and Dice distance forms in the 
eqns (29) and (31) also belong to this family. The cornerstone 
to the F2 family (eqns (41)~(47)) is Pearson F2 divergence in 
the eqn (41) [25] which embodies the Squared Euclidean 
distance. Of particular concern to mathematicians is that 
Pearson F2 divergence is asymmetric. Neyman F2 in the eqn 
(42) [26] is dP(P,Q)= dP(Q,P). Various symmetric versions of 
the F2 have been exploited. The eqn (43) is called the squared 
F2 distance [5] or triangular discrimination [27,28]. Twice of 

the eqn (44) is called the probabilistic symmetric F2 [2] which 
is equivalent to Sangvi F2 distance between populations [2]. 
The term ‘divergence’ is pronominal to refer non-metric 
distance. Notwithstanding the eqn (45) has been commonly 
called divergence [29]. The squared root of half of the 
divergence is called Clark in the eqn (46) [2].  

One of techniques to transform asymmetric distances into 
symmetric form utilizes the addition method; dsym(P,Q)= 
dasym(P,Q) + dasym(Q,P), e.g., The eqn (47) is dAdChi(P,Q) = 
dP(P,Q) + dP(Q,P) [2,3]. Albeit the eqn (47) is occasionally 
called ‘symmetric F2 divergence’, let’s call it the additive 
symmetric F2 here in order to distinguish other symmetric 
versions of F2. Other techniques that are not listed in the 
above table would include max, min, and avg methods; dmax-

sym(P,Q) = max(dasym(P,Q), dasym(Q,P)), dmin-sym(P,Q) = 
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Table 7. Shannon’s entropy family 
37. Kullback– 
     Leibler ¦

 

 
d

i i

i
iKL Q

PPd
1

ln  (48) 

38. Jeffreys ¦
 

� 
d

i i

i
iiJ Q

P
QPd

1
ln)(  (49) 

39. K divergence ¦
 �

 
d

i ii

i
iKdiv QP

P
Pd

1

2
ln  (50) 

40. Topsøe 

¦
 

¸
¸
¹

·
¨
¨
©

§
¸̧
¹

·
¨̈
©

§
�

�¸̧
¹

·
¨̈
©

§
�

 
d

i ii

i
i

ii

i
iTop QP

QQ
QP

PPd
1

2ln2ln  (51) 

41. Jensen-Shannon 

»
»
¼

º
¸̧
¹

·
¨̈
©

§
�

�
«
«
¬

ª
¸̧
¹

·
¨̈
©

§
�

 ¦¦
  

d

i ii

i
i

d

i ii

i
iJS QP

Q
Q

QP
P

Pd
11

2
ln

2
ln

2
1  (52) 

42. Jensen difference 

»
¼

º
¸
¹

·
¨
©

§ �
¸
¹

·
¨
©

§ �
�«

¬

ª �
 ¦

 2
ln

2
 

2
lnln

1

iiii
b

i

iiii
JD

QPQPQQPP
d  (53) 

 
Eqns (48~53) in Table 7 are primary due to Shannon’s 

concept of probabilistic uncertainty or “entropy” H(P)=6d
i=1  

Pi lnPi [30]. Kullback and Leibler [31] introduced the eqn (48) 
called KL divergence, relative entropy, or information 
deviation [2]. The symmetric form of the KL divergence using 
the addition method is in the eqn (49) [31-33] and it is called 
Jeffreys or J divergence. The eqn (50) is called the K 
divergence and its symmetric form using the addition method 
is given in the eqn (51) and called Topsøe distance [2] or 
information statistics [5]. The half of the Topsøe distance is 
called Jensen-Shannon divergence [2,34] which uses the avg 
method to make the K divergence symmetric. Sibson [35] 
studied the idea of information radius for a measure arising 
due to concavity property of Shannon's entropy and 
introduced the Jensen difference in the eqn (53) [33]. All eqns 
(48~53) can be expressed in terms of entropy. 
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as Fidelity similarity, a.k.a. Bhattacharyya coefficient or 
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(33), which is a value between 0 and 1, provides bounds on 
the Bayes misclassification probability [23]. Other approaches 
closely related to Bhattacharyya include Hellinger [2] and 
Matusita [24] in eqns (34) and (36) respectively. The basic 
form in the eqn (38), i.e., Matusita without the square root is 
called Squared-chord distance [5] and thus all Fidelity based 
measures have their alternative representation using the 
squared-chord distance. 
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* Squared L2 family � {Jaccard (29), Dice (31)} 
 
Several distance measures containing the Squared 

Euclidean distance in the eqn (40) as the dividend are 
corralled in Table 6. Jaccard and Dice distance forms in the 
eqns (29) and (31) also belong to this family. The cornerstone 
to the F2 family (eqns (41)~(47)) is Pearson F2 divergence in 
the eqn (41) [25] which embodies the Squared Euclidean 
distance. Of particular concern to mathematicians is that 
Pearson F2 divergence is asymmetric. Neyman F2 in the eqn 
(42) [26] is dP(P,Q)= dP(Q,P). Various symmetric versions of 
the F2 have been exploited. The eqn (43) is called the squared 
F2 distance [5] or triangular discrimination [27,28]. Twice of 

the eqn (44) is called the probabilistic symmetric F2 [2] which 
is equivalent to Sangvi F2 distance between populations [2]. 
The term ‘divergence’ is pronominal to refer non-metric 
distance. Notwithstanding the eqn (45) has been commonly 
called divergence [29]. The squared root of half of the 
divergence is called Clark in the eqn (46) [2].  

One of techniques to transform asymmetric distances into 
symmetric form utilizes the addition method; dsym(P,Q)= 
dasym(P,Q) + dasym(Q,P), e.g., The eqn (47) is dAdChi(P,Q) = 
dP(P,Q) + dP(Q,P) [2,3]. Albeit the eqn (47) is occasionally 
called ‘symmetric F2 divergence’, let’s call it the additive 
symmetric F2 here in order to distinguish other symmetric 
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above table would include max, min, and avg methods; dmax-
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Eqns (48~53) in Table 7 are primary due to Shannon’s 

concept of probabilistic uncertainty or “entropy” H(P)=6d
i=1  

Pi lnPi [30]. Kullback and Leibler [31] introduced the eqn (48) 
called KL divergence, relative entropy, or information 
deviation [2]. The symmetric form of the KL divergence using 
the addition method is in the eqn (49) [31-33] and it is called 
Jeffreys or J divergence. The eqn (50) is called the K 
divergence and its symmetric form using the addition method 
is given in the eqn (51) and called Topsøe distance [2] or 
information statistics [5]. The half of the Topsøe distance is 
called Jensen-Shannon divergence [2,34] which uses the avg 
method to make the K divergence symmetric. Sibson [35] 
studied the idea of information radius for a measure arising 
due to concavity property of Shannon's entropy and 
introduced the Jensen difference in the eqn (53) [33]. All eqns 
(48~53) can be expressed in terms of entropy. 

 
Table 8. Combinations 

INTERNATIONAL JOURNAL OF MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES

Issue 4, Volume 1, 2007 303

 

 

27. Matusita 
¦
 

� 
d

i
iiM QPd

1

2)(  (36) 

 
¦
 

� 
d

i
iiQP

1
22  (37) 

28. Squared-chord ¦
 

� 
d

i
iisqc QPd

1

2)(  (38) 

ssqc = 1-dsqc 12
1

� ¦
 

d

i
iisqc QPs  (39) 

 
The sum of geometric means in the eqn (32) is referred to 

as Fidelity similarity, a.k.a. Bhattacharyya coefficient or 
Hellinger affinity [2]. Bhattacharyya distance given in the eqn 
(33), which is a value between 0 and 1, provides bounds on 
the Bayes misclassification probability [23]. Other approaches 
closely related to Bhattacharyya include Hellinger [2] and 
Matusita [24] in eqns (34) and (36) respectively. The basic 
form in the eqn (38), i.e., Matusita without the square root is 
called Squared-chord distance [5] and thus all Fidelity based 
measures have their alternative representation using the 
squared-chord distance. 

 
Table 6. Squared L2 family or F� family 
29. Squared  
Euclidean ¦

 

� 
d

i
iisqe QPd

1

2)(  (40) 

30. Pearson F� ¦
 

�
 

d

i i

ii
P Q

QPQPd
1

2)(),(  (41) 

31. Neyman F� 
¦
 

�
 

d

i i

ii
N P

QPQPd
1

2)(),(  (42) 

32. Squared F2 
¦
 �

�
 

d

i ii

ii
SqChi QP

QPd
1

2)(  (43) 

33. Probabilistic 
Symmetric F2 ¦

 �
�

 
d

i ii

ii
PChii QP

QP
d

1

2)(
2  (44) 

34. Divergence 
¦
 �

�
 

d

i ii

ii
Div QP

QP
d

1
2

2

)(
)(

2  (45) 

35. Clark 
¦
 

¸̧
¹

·
¨̈
©

§
�
�

 
d

i ii

ii
Clk QP

QPd
1

2
||  (46) 

36. Additive 
Symmetric F2 ¦

 

��
 

b

i ii

iiii
AdChi QP

QPQPd
1

2 )()(  (47) 

* Squared L2 family � {Jaccard (29), Dice (31)} 
 
Several distance measures containing the Squared 
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corralled in Table 6. Jaccard and Dice distance forms in the 
eqns (29) and (31) also belong to this family. The cornerstone 
to the F2 family (eqns (41)~(47)) is Pearson F2 divergence in 
the eqn (41) [25] which embodies the Squared Euclidean 
distance. Of particular concern to mathematicians is that 
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(42) [26] is dP(P,Q)= dP(Q,P). Various symmetric versions of 
the F2 have been exploited. The eqn (43) is called the squared 
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the eqn (44) is called the probabilistic symmetric F2 [2] which 
is equivalent to Sangvi F2 distance between populations [2]. 
The term ‘divergence’ is pronominal to refer non-metric 
distance. Notwithstanding the eqn (45) has been commonly 
called divergence [29]. The squared root of half of the 
divergence is called Clark in the eqn (46) [2].  
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42. Jensen difference 
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Eqns (48~53) in Table 7 are primary due to Shannon’s 

concept of probabilistic uncertainty or “entropy” H(P)=6d
i=1  

Pi lnPi [30]. Kullback and Leibler [31] introduced the eqn (48) 
called KL divergence, relative entropy, or information 
deviation [2]. The symmetric form of the KL divergence using 
the addition method is in the eqn (49) [31-33] and it is called 
Jeffreys or J divergence. The eqn (50) is called the K 
divergence and its symmetric form using the addition method 
is given in the eqn (51) and called Topsøe distance [2] or 
information statistics [5]. The half of the Topsøe distance is 
called Jensen-Shannon divergence [2,34] which uses the avg 
method to make the K divergence symmetric. Sibson [35] 
studied the idea of information radius for a measure arising 
due to concavity property of Shannon's entropy and 
introduced the Jensen difference in the eqn (53) [33]. All eqns 
(48~53) can be expressed in terms of entropy. 

 
Table 8. Combinations 
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Table 8 exhibits distance measures utilizing multiple ideas 

or measures. Taneja utilized both arithmetic and geometric 
means came up with the arithmetic and geometric mean 
divergence in the eqn (54) [36]. Symmetric F2, arithmetic and 
geometric mean divergence is given in the eqn (55) [37]. The 
average of city block and Chebyshev distances in the eqn (56) 
appears in [9]. 

 
Table 9. Grouping of distance/similarity measures by 
caveats to implementation 
Vector 
Ops 

Eqns (1~9), (11~13), (16~19), (21~23),
(26~40), and (56~57) 

0 / 0 Canberra (10), Wave Hedges (14), Harmonic 
mean (25), Squared F2 (43),  Probabilistic 
Symmetric F2 (44), Divergence (45), Clark (46), 
and Additive Symmetric F2 (47) 

division 
by zero 

Kulczynski (9) (20),  Pearson F2 (41), Neyman 
F2 (42), KL (48), Jeffreys (49), Taneja (54), and 
Kumar-Johnson (55) 

0 log0 KL (48), K divergence (50), Topsøe (51), 
Jensen-Shannon (52), Jensen difference (53), 
and Taneja (54) 

Log of 0 Jeffreys (49) 
 

Those readers who wish to implement some 
distance/similarity measures presented in this section will face 
some technical problems. Table 9 identifies measures with 
their caveats to implementation. While most measures can be 
efficiently computed using simple vector operators, some 
measures prone to the division by zero and the log of zero 
cases deserve careful attention. Measures like Canberra 
belong to the zero divided by zero caveat group. When the 
divisor becomes zero, the dividend is always zero as well. It 
should be noted that 0/0 are treated as 0. Similarly, 0 log0 is 
treated as 0 as well. For the division by zero and log of zero 
group cases, the zero is replaced by a very small value.   

III. HIERARCHICAL CLUSTERING ON DISTANCE/SIMILARITY 
MEASURES 

Hitherward, the focus is moved from the syntactic similarity 
to the semantic similarity between distance/similarity 
measures. So as to assess how similar distance/similarity 
measures are, the following experiments were conducted 
using the cluster analysis. n samples whose values are 
between 1 and d are randomly selected to build a histogram. 
Next, each bin is divided by n to produce the pdf. Let R be the 
set of r number of reference pdfs and q be a query pdf. Then r 

number of distance values are produced using a certain 
distance measure dx(ri,q) for �i. ri and q are randomly 
generated pdfs.  

Figure 2 presents the upper triangle matrix of correlation 
between dx(ri,q) and dy(ri,q) plots for selected distance or 
similarity measures where n = 20, b = 8, and r = 30. Each plot 
in Figure 2 represents the relation between two distance 
measures. In order to quantify the correlation between 
distance/similarity measures, a correlation coefficient measure 
in the eqn (57) is used. 
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It indicates the strength and direction of a linear 
relationship between two distance measures. If the value gets 
close to 1, it represents a good fit, i.e., two distance measures 
are semantically similar. As the fit gets worse, the correlation 
coefficient approaches zero. When either two distance or two 
similarity measures are compared, the correlation coefficient 
is a positive value. When a distance measure and a similarity 
measure are compared, the correlation coefficient is a negative 
value e.g., the squared F2 and probabilistic symmetric F2 
divergences have dSsqChi,= .5 dPrChi and Corr (dSsqChi, dPrChi) = 1 
whereas Motyka similarity (20) and Sørensen (5) have sMot = 1 
– dSor and Corr (sMot, dSor) = –1.  

To adequately understand the similarities among 
distance/similarity measures, cluster analysis is adopted. The 
correlation coefficient is converted into the distance in the eqn 
(58) to find clusters of distance or similarity measures shown 
in Figure 3. 

dDM (dx, dy) = 1 – |Corr(dx, dy)| (58) 
The dendrogram representing the hierarchical clusters of 

distance/similarity measures is produced by averaging 30 
independent trials of the above experiment. It is built using the 
agglomerative single linkage with the average clustering 
method [1]. The vertical scale on the left represents various 
distance/similarity measures and the horizontal scale 
represents the closeness between two clusters of 
distance/similarity measures. The dendrogram provides 
intuitive groupings of distance/similarity measures. Some 
distance measures in syntactic groups are interspersed in the 
semantic groups. Here are a few simple observations.   
Observation 1: if two measures are proportional to each 
other, i.e., dx=cdy , dDM (dx, dy) = 0.  
Observation 2: if two measures are in distance/similarity 
relation such that dx=1 – sy,  

dDM (dx, dy) = 0.  
Observation 3: if two measures are in distance/similarity 
relation such that sy = 1/dx, dDM (dx, dy) � 0.    e.g, Kulczynski 
has skul = 1/dkul and dDM (skul, dkul) > 0. 
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Fig. 4 Histogram / PDF space. 

 
It is because histograms are of the same size. As depicted in 

Figure 4 (a), pdf or histogram space of the same size is only 
subpart of the entire vector space. The pdf space in the d 
dimensional vector space is a segmented d – 1 space which 
has three corners in Figure 4 (c) case. Figure 4 (b) illustrates 
the intuitive close relation between the angle and the 
Euclidean distances.  

IV. CONCLUSION 
This article built the edifice of distance/similarity measures 

by enumerating and categorizing a large variety of 
distance/similarity measures for comparing nominal type 
histograms. Grouping aforementioned measures has 
concentrated upon three general aspects: syntactic similarity, 
implementation caveats, and semantics. The importance of 
finding suitable distance/similarity measures cannot be 
overemphasized. There is a continual demand for better ones.  
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Table 10 exhibits a few distance measures that are not in 

literature. Similar syntactic relationship between Sørensen and 
Canberra can be applied to Kulczynski which yields the eqn 
(60). When squared, a new kind of symmetric F2divergence 
can be derived in the eqn (61). Evolving from this point, two 
symmetric F2 divergences can be generated given in eqns (62) 
and (63). They are not the same as using the max and min 
method to make the F2 divergence symmetric given in eqns 
(64) and (65). A large number of new distance/similarity can 
be relayed by studying the syntactic relations and may be 
useful in some applications. 

REFERENCES   
[1] Duda, R.O., Hart, P.E., and Stork, D.G., Pattern Classification, 2nd ed. 

Wiley, 2001 
[2] Deza E. and Deza M.M., Dictionary of Distances, Elsevier, 2006 
[3] Zezula P., Amato G., Dohnal V., and Batko M., Similarity Search The 

Metric Space Approach, Springer, 2006 
[4] Monev V., Introduction to Similarity Searching in Chemistry, MATCH 

Commun. Math. Comput. Chem. 51 pp. 7-38 , 2004 
[5] Gavin D.G., Oswald W.W., Wahl, E.R., and Williams J.W., A statistical 

approach to evaluating distance metrics and analog assignments for pollen 
records, Quaternary Research 60, pp 356–367, 2003  

[6] S. Cha and S. N. Srihari, On Measuring the Distance between Histograms, 
in Pattern Recognition, Vol 35/6, pp 1355-1370, June 2002 

[7] T. Kailath, The divergence and bhattacharyya distance measures in signal 
selection, IEEE Trans. Commun. Technol. COM-15 (1) (1967) 52–60. 

[8] G.T. Toussaint, Bibliography on estimation of misclassification, IEEE 
Trans. Inform. Theory 20 (4) (1974) 472–479. pp. 21–24. 

[9] Krause E.F., Taxicab Geometry An Adventure in Non-Euclidean 
Geometry 

[10] David M. J. Tax, Robert Duin, and Dick De Ridder (2004). Classification, 
Parameter Estimation and State Estimation: An Engineering Approach 
Using MATLAB. John Wiley and Sons. 

[11] Looman, J. and Campbell, J.B. (1960) Adaptation of Sorensen's K (1948) 
for estimating unit affinities in prairie vegetation. Ecology 41 (3): 409-
416 

[12] Sørensen, T. (1948) A method of establishing groups of equal amplitude 
in plant sociology based on similarity of species and its application to 
analyses of the vegetation on Danish commons. Biologiske Skrifter / 
Kongelige Danske Videnskabernes Selskab, 5 (4): 1-34.  

[13] Bray J. R., Curtis J. T., 1957. An ordination of the upland forest of the 
southern Winsconsin. Ecological Monographies, 27, 325-349. 

[14] Gower, J.C. General Coefficient of Similarity and Some of Its Properties, 
Biometrics 27, pp857-874 1971 

[15] Gordon, A.D., Classification. 2nd edition London-New York 1999 
[16] Hedges, T.S., 1976, “An empirical modication to linear wave theory”. 

Proc. Inst. Civ. Eng. , 61, 575-579. 
[17] B. V. K. Vijaya Kumar and L. G. Hassebrook, "Performance measures for 

correlation filters," Appl. Opt. 29, 2997-3006 (1990). 
[18] Jaccard P., Étude comparative de la distribution florale dans une portion 

des Alpes et des Jura. Bulletin del la Société Vaudoise des Sciences 
Naturelles 37, 1901, 547-579. 

[19] Tanimoto, T.T. (1957) IBM Internal Report 17th Nov. 1957. 
[20] Dice, L. R., Measures of the amount of ecologic association between 

species, Ecology, 26:297-302, 1945 
[21] Morisita M. Measuring of interspecific association and similarity between 

communities. Mem. Fac. Sci. Kyushu Univ. Ser. E (Biol.) 3:65-80, 1959. 
[22] Cha, S.-H. and Tappert, C.C., Enhancing Binary Feature Vector Similarity 

Measures, in Journal of Pattern Recognition Research (JPRR), Vol 1 No 
1, 2006, pp 63-77 

INTERNATIONAL JOURNAL OF MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES

Issue 4, Volume 1, 2007 306

 

 

 
Observation 4: Angular based similarity coefficients such as 
cosine, Jaccard, and Dice are closely related to the Euclidean 
distance.  

H(X)

H(Y)

Euclidean

Cosine

0 1 2 3 4

0

1

2

3

4

x

y

z

(0,n,0)
(0,0,0)

(0,0,n)

(n,0,0)

(a)

(b)

(c)

 
Fig. 4 Histogram / PDF space. 

 
It is because histograms are of the same size. As depicted in 

Figure 4 (a), pdf or histogram space of the same size is only 
subpart of the entire vector space. The pdf space in the d 
dimensional vector space is a segmented d – 1 space which 
has three corners in Figure 4 (c) case. Figure 4 (b) illustrates 
the intuitive close relation between the angle and the 
Euclidean distances.  

IV. CONCLUSION 
This article built the edifice of distance/similarity measures 

by enumerating and categorizing a large variety of 
distance/similarity measures for comparing nominal type 
histograms. Grouping aforementioned measures has 
concentrated upon three general aspects: syntactic similarity, 
implementation caveats, and semantics. The importance of 
finding suitable distance/similarity measures cannot be 
overemphasized. There is a continual demand for better ones.  

 
Table 10. Vicissitude 
Vicis-Wave 
Hedges ¦

 

�
 

d

i ii

ii
emanon QP

QPd
1

1 ),min(
||  (60) 

Vicis-
Symmetric F2 ¦

 

�
 

d

i ii

ii
emanon QP

QPd
1

2

2

2 ),min(
)(  (61) 

Vicis-
Symmetric F2 ¦

 

�
 

d

i ii

ii
emanon QP

QPd
1

2

3 ),min(
)(  (62) 

Vicis-
Symmetric F2 ¦

 

�
 

d

i ii

ii
emanon QP

QPd
1

2

4 ),max(
)(  (63) 

max-
Symmetric 
F2 

¸̧
¹

·
¨̈
©

§ ��
 ¦¦

  

d

i i

ii
d

i i

ii
e Q

QP
P
QPd

1

2

1

2

5
)(,)(max  (64) 

min-
symmetric 
F2 

¸̧
¹

·
¨̈
©

§ ��
 ¦¦

  

d

i i

ii
d

i i

ii
e Q

QP
P
QPd

1

2

1

2

6
)(,)(min  (65) 

 
Table 10 exhibits a few distance measures that are not in 

literature. Similar syntactic relationship between Sørensen and 
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can be derived in the eqn (61). Evolving from this point, two 
symmetric F2 divergences can be generated given in eqns (62) 
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 We want two main
things:
1. A measure of

difference between
systems

2. A way of sorting which
types/species/words
contribute to that
difference

 For sorting, many
comparisons give the
same ordering.

 A few basic building
blocks:
 |𝑃𝑖 − 𝑄𝑖| (dominant)
 max(𝑃𝑖, 𝑄𝑖)
 min(𝑃𝑖, 𝑄𝑖)
 𝑃𝑖𝑄𝑖
 |𝑃 1/2

𝑖 − 𝑄1/2
𝑖 |

(Hellinger)

 

 

paper have the shuffling invariant property [6] and thus 
naturally imply the level independency.  

There are two approaches in pdf distance/similarity 
measures: vector and probabilistic. Since each level is 
assumed to be independent from other levels, a histogram or 
pdf can be considered as a vector, i.e., a point in the Euclidean 
space or a Cartesian coordinate system. Hence, numerous 
geometrical distances can be applied to compare two pdf’s. 
There is much literature regarding discrete versions of various 
divergences in probability and information theory fields [7,8]. 
Computing the distance between two pdf’s can be regarded as 
the same as computing the Bayes (or minimum 
misclassification) probability [1]. This is equivalent to 
measuring the overlap between two pdfs as the distance. The 
probabilistic approach is based on the fact that a histogram of 
a measurement provides the basis for an empirical estimate of 
the pdf.  

The rest of the paper is organized as follows. In section 2, 
various distance/similarity measures are enumerated according 
to their syntactic similarities. In order to provide a better 
perspective on distance/similarity measures, section 3 presents 
the hierarchical cluster tree using the correlations between 
different measures. Finally, section 4 concludes this work.  

II. DEFINITIONS 
Table 1. Lp Minkowski family 
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A couple of thousand years ago, Euclid stated that the 
shortest distance between two points is a line and thus the eqn 
(1) is predominantly known as Euclidean distance. It was 
often called Pythagorean metric since it is derived from the 
Pythagorean Theorem. In the late 19th century, Hermann 
Minkowski considered the city block distance [9]. Other 
names for the eqn (2) include rectilinear distance, taxicab 
norm, and Manhattan distance. Hermann also generalized the 
formulae (1) and (2) to the eqn (3) which is coined after 
Minkowski. When p goes to infinite, the eqn (4) can be 
derived and it is called the chessboard distance in 2D, the 
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naturally imply the level independency.  

There are two approaches in pdf distance/similarity 
measures: vector and probabilistic. Since each level is 
assumed to be independent from other levels, a histogram or 
pdf can be considered as a vector, i.e., a point in the Euclidean 
space or a Cartesian coordinate system. Hence, numerous 
geometrical distances can be applied to compare two pdf’s. 
There is much literature regarding discrete versions of various 
divergences in probability and information theory fields [7,8]. 
Computing the distance between two pdf’s can be regarded as 
the same as computing the Bayes (or minimum 
misclassification) probability [1]. This is equivalent to 
measuring the overlap between two pdfs as the distance. The 
probabilistic approach is based on the fact that a histogram of 
a measurement provides the basis for an empirical estimate of 
the pdf.  

The rest of the paper is organized as follows. In section 2, 
various distance/similarity measures are enumerated according 
to their syntactic similarities. In order to provide a better 
perspective on distance/similarity measures, section 3 presents 
the hierarchical cluster tree using the correlations between 
different measures. Finally, section 4 concludes this work.  
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difference of the individual level. It is known to be very 
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and the natural logarithm is applied. 1 is added to guarantee 
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The PoCSverse
Allotaxonometry
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A plenitude of
distances

Rank-turbulence
divergence

Probability-
turbulence
divergence

Explorations

References

 We want two main
things:
1. A measure of

difference between
systems

2. A way of sorting which
types/species/words
contribute to that
difference

 For sorting, many
comparisons give the
same ordering.

 A few basic building
blocks:
 |𝑃𝑖 − 𝑄𝑖| (dominant)
 max(𝑃𝑖, 𝑄𝑖)
 min(𝑃𝑖, 𝑄𝑖)
 𝑃𝑖𝑄𝑖
 |𝑃 1/2

𝑖 − 𝑄1/2
𝑖 |

(Hellinger)
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assumed to be independent from other levels, a histogram or 
pdf can be considered as a vector, i.e., a point in the Euclidean 
space or a Cartesian coordinate system. Hence, numerous 
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There is much literature regarding discrete versions of various 
divergences in probability and information theory fields [7,8]. 
Computing the distance between two pdf’s can be regarded as 
the same as computing the Bayes (or minimum 
misclassification) probability [1]. This is equivalent to 
measuring the overlap between two pdfs as the distance. The 
probabilistic approach is based on the fact that a histogram of 
a measurement provides the basis for an empirical estimate of 
the pdf.  

The rest of the paper is organized as follows. In section 2, 
various distance/similarity measures are enumerated according 
to their syntactic similarities. In order to provide a better 
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different measures. Finally, section 4 concludes this work.  
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minimax approximation, or the Chebyshev distance named 
after Pafnuty Lvovich Chebyshev [10]. 
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paper have the shuffling invariant property [6] and thus 
naturally imply the level independency.  

There are two approaches in pdf distance/similarity 
measures: vector and probabilistic. Since each level is 
assumed to be independent from other levels, a histogram or 
pdf can be considered as a vector, i.e., a point in the Euclidean 
space or a Cartesian coordinate system. Hence, numerous 
geometrical distances can be applied to compare two pdf’s. 
There is much literature regarding discrete versions of various 
divergences in probability and information theory fields [7,8]. 
Computing the distance between two pdf’s can be regarded as 
the same as computing the Bayes (or minimum 
misclassification) probability [1]. This is equivalent to 
measuring the overlap between two pdfs as the distance. The 
probabilistic approach is based on the fact that a histogram of 
a measurement provides the basis for an empirical estimate of 
the pdf.  

The rest of the paper is organized as follows. In section 2, 
various distance/similarity measures are enumerated according 
to their syntactic similarities. In order to provide a better 
perspective on distance/similarity measures, section 3 presents 
the hierarchical cluster tree using the correlations between 
different measures. Finally, section 4 concludes this work.  

II. DEFINITIONS 
Table 1. Lp Minkowski family 

1. Euclidean L2 ¦
 

� 
d

i
iiEuc QPd

1

2||  (1) 

2. City block L1 ¦
 

� 
d

i
iiCB QPd

1
||  (2) 

3. Minkowski Lp p
d

i

p
iiMk QPd ¦

 

� 
1

||  (3) 

4. Chebyshev Lf  ||max iiiCheb QPd �  (4) 
 

A couple of thousand years ago, Euclid stated that the 
shortest distance between two points is a line and thus the eqn 
(1) is predominantly known as Euclidean distance. It was 
often called Pythagorean metric since it is derived from the 
Pythagorean Theorem. In the late 19th century, Hermann 
Minkowski considered the city block distance [9]. Other 
names for the eqn (2) include rectilinear distance, taxicab 
norm, and Manhattan distance. Hermann also generalized the 
formulae (1) and (2) to the eqn (3) which is coined after 
Minkowski. When p goes to infinite, the eqn (4) can be 
derived and it is called the chessboard distance in 2D, the 
minimax approximation, or the Chebyshev distance named 
after Pafnuty Lvovich Chebyshev [10]. 

 
Table 2. L1 family 
5. Sørensen 

¦

¦

 

 

�

�
 d

i
ii

d

i
ii

sor

QP

QP
d

1

1

)(

||  
(5) 

¦
 

�
 

d

i i

ii
gow R

QP
d

d
1

||1  (6) 
6. Gower 

¦
 

� 
d

i
ii QP

d 1
||1  (7) 

7. Soergel 

¦

¦

 

 

�
 d

i
ii

d

i
ii

sg

QP

QP
d

1

1

),max(

||  
(8) 

8. Kulczynski d 

¦

¦

 

 

�
 d

i
ii

d

i
ii

kul

QP

QP
d

1

1

),min(

||  
(9) 

9. Canberra ¦
 �

�
 

d

i ii

ii
Can QP

QPd
1

||  (10) 

10. Lorentzian ¦
 

�� 
d

i
iiLor QPd

1
|)|1ln(  (11) 

* L1 family � {Intersectoin (13), Wave Hedges (15), 
Czekanowski (16), Ruzicka (21), Tanimoto (23), etc}. 
 
Several distance measures listed in Table 2 facilitate the L1, 

more precisely the absolute difference. The eqn (5), which is 
widely used in ecology [11], is known as Sørensen distance 
[12] or Bray-Curtis [2,4,13]. When it is used for comparing 
two pdfs, it is nothing but the L1 divided by 2. Gower distance 
[14] in the eqn (6) scales the vector space into the normalized 
space and then uses the L1. Since the pdf is already normalized 
space, Gower distance is the L1 divided by d. Other L1 family 
distances that are non-proportional to the L1 include Soergel 
and Kulczynski distances given in the eqns (8) [4] and (9) [2] 
respectively. At first glance, Canberra metric given in the eqn 
(10) [2,15] resembles Sørensen but normalizes the absolute 
difference of the individual level. It is known to be very 
sensitive to small changes near zero [15]. The eqn (11) [2], 
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and the natural logarithm is applied. 1 is added to guarantee 
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and the natural logarithm is applied. 1 is added to guarantee 
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paper have the shuffling invariant property [6] and thus 
naturally imply the level independency.  

There are two approaches in pdf distance/similarity 
measures: vector and probabilistic. Since each level is 
assumed to be independent from other levels, a histogram or 
pdf can be considered as a vector, i.e., a point in the Euclidean 
space or a Cartesian coordinate system. Hence, numerous 
geometrical distances can be applied to compare two pdf’s. 
There is much literature regarding discrete versions of various 
divergences in probability and information theory fields [7,8]. 
Computing the distance between two pdf’s can be regarded as 
the same as computing the Bayes (or minimum 
misclassification) probability [1]. This is equivalent to 
measuring the overlap between two pdfs as the distance. The 
probabilistic approach is based on the fact that a histogram of 
a measurement provides the basis for an empirical estimate of 
the pdf.  

The rest of the paper is organized as follows. In section 2, 
various distance/similarity measures are enumerated according 
to their syntactic similarities. In order to provide a better 
perspective on distance/similarity measures, section 3 presents 
the hierarchical cluster tree using the correlations between 
different measures. Finally, section 4 concludes this work.  
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formulae (1) and (2) to the eqn (3) which is coined after 
Minkowski. When p goes to infinite, the eqn (4) can be 
derived and it is called the chessboard distance in 2D, the 
minimax approximation, or the Chebyshev distance named 
after Pafnuty Lvovich Chebyshev [10]. 
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difference of the individual level. It is known to be very 
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attributed to Lorentzian, also contains the absolute difference 
and the natural logarithm is applied. 1 is added to guarantee 
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 Shannon’s Entropy:

𝐻(𝑃) = ⟨log2
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 Kullback-Liebler (KL) divergence:

𝐷KL (𝑃2 ∣∣ 𝑃1) = ⟨log2
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− log2
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𝜏∈𝑅1,2;𝛼

𝑝2,𝜏 log2
𝑝1,𝜏
𝑝2,𝜏

. (2)

 Problem: If just one component type in system 2 is not
present in system 1, KL divergence = ∞.

 Solution: If we can’t compare a spork and a platypus
directly, we create a fictional spork-platypus hybrid.

 New problem: Re-read solution.
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 Jensen-Shannon divergence (JSD): [9, 7, 13, 1]

𝐷JS (𝑃1 ∣∣ 𝑃2)

= 1
2 𝐷KL (𝑃1 ∣∣ 1

2 [𝑃1 + 𝑃2]) + 1
2 𝐷KL (𝑃2 ∣∣ 1

2 [𝑃1 + 𝑃2])

= 1
2 ∑

𝜏∈𝑅1,2;𝛼

(𝑝1,𝜏 log2
𝑝1,𝜏

1
2 [𝑝1,𝜏 + 𝑝2,𝜏] + 𝑝2,𝜏 log2

𝑝2,𝜏
1
2 [𝑝1,𝜏 + 𝑝2,𝜏] ) .

(3)

 Involving a third intermediate averaged system means JSD is now
finite: 0 ≤ 𝐷JS (𝑃1 ∣∣ 𝑃2) ≤ 1.

 Generalized entropy divergence: [2]

𝐷AS2
𝛼 (𝑃1 ∣∣ 𝑃2) =

1
𝛼(𝛼 − 1) ∑

𝜏∈𝑅1,2;𝛼

[(𝑝1−𝛼
𝜏,1 + 𝑝1−𝛼

𝜏,2 ) ( 𝑝𝜏,1 + 𝑝𝜏,2
2 )

𝛼
− (𝑝𝜏,1 + 𝑝𝜏,2)] .

(4)

Produces JSD when 𝛼 → 0.
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Desirable rank-turbulence divergence features:
1. Rank-based.

2. Symmetric.
3. Semi-positive: 𝐷R

𝛼(Ω1 ∣∣ Ω2) ≥ 0.
4. Linearly separable, for interpretability.
5. Subsystem applicable: Ranked lists of any

principled subset may be equally well compared
(e.g., hashtags on Twitter, stock prices of a certain
sector, etc.).

6. Turbulence-handling: Suited for systems with
rank-ordered component size distribution that are
heavy-tailed.

7. Scalable: Allow for sensible comparisons across
system sizes.

8. Tunable.
9. Story-finding: Features 1–8 combine to show

which component types are most ‘important’
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Some good things about ranks:

 Working with ranks is intuitive
 Affords some powerful statistics (e.g., Spearman’s

rank correlation coefficient)
 Can be used to generalize beyond systems with

probabilities

A start:

∣ 1
𝑟𝜏,1

− 1
𝑟𝜏,2

∣ . (5)

 Inverse of rank gives an increasing measure of
‘importance’

 High rank means closer to rank 1
 We assign tied ranks for components of equal ‘size’

 Issue: Biases toward high rank components
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We introduce a tuning parameter:

∣ 1
[𝑟𝜏,1]𝛼 − 1

[𝑟𝜏,2]𝛼 ∣
1/𝛼

. (6)

 As 𝛼 → 0, high ranked components are
increasingly dampened

 For words in texts, for example, the weight of
common words and rare words move increasingly
closer together.

 As 𝛼 → ∞, high rank components will dominate.
 For texts, the contributions of rare words will

vanish.
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Trouble:
 The limit of 𝛼 → 0 does not behave well for

∣ 1
[𝑟𝜏,1]𝛼 − 1

[𝑟𝜏,2]𝛼 ∣
1/𝛼

.

 The leading order term is:

(1 − 𝛿𝑟𝜏,1𝑟𝜏,2
) 𝛼1/𝛼 ∣ln𝑟𝜏,1

𝑟𝜏,2
∣
1/𝛼

, (7)

which heads toward ∞ as 𝛼 → 0.

 Oops.
 But the insides look nutritious:

∣ln𝑟𝜏,1
𝑟𝜏,2

∣

is a nicely interpretable log-ratio of ranks.
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Some reworking:

𝛿𝐷R
𝛼,𝜏(𝑅1 ∣∣ 𝑅2) ∝ 𝛼 + 1

𝛼 ∣ 1
[𝑟𝜏,1]𝛼 − 1

[𝑟𝜏,2]𝛼 ∣
1/(𝛼+1)

.

(8)

 Keeps the core structure.
 Large 𝛼 limit remains the same.
 𝛼 → 0 limit now returns log-ratio of ranks.
 Next: Sum over 𝜏 to get divergence.
 Still have an option for normalization.

Rank-turbulence divergence:

𝐷R
𝛼(𝑅1 ∣∣ 𝑅2) = 1

𝒩1,2;𝛼
∑

𝜏∈𝑅1,2;𝛼

𝛿𝐷R
𝛼,𝜏(𝑅1 ∣∣ 𝑅2) (9)
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Normalization:
 Take a data-driven rather than analytic approach

to determining 𝒩1,2;𝛼.

 Compute 𝒩1,2;𝛼 by taking the two systems to be
disjoint while maintaining their underlying Zipf
distributions.

 Ensures: 0 ≤ 𝐷R
𝛼(𝑅1 ‖ 𝑅2) ≤ 1

 Limits of 0 and 1 correspond to the two systems
having identical and disjoint Zipf distributions.
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Rank-turbulence divergence:
Summing over all types, dividing by a normalization
prefactor 𝒩1,2;𝛼 we have our prototype:

𝐷R
𝛼(𝑅1 ∣∣ 𝑅2) = 1

𝒩1,2;𝛼

𝛼 + 1
𝛼 ∑

𝜏∈𝑅1,2;𝛼

∣ 1
[𝑟𝜏,1]𝛼 − 1

[𝑟𝜏,2]𝛼 ∣
1/(𝛼+1)

.

(10)
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General normalization:
 Iif the Zipf distributions are disjoint, then in Ω(1)’s

merged ranking, the rank of all Ω(2) types will be
𝑟 = 𝑁1 + 1

2𝑁2, where 𝑁1 and 𝑁2 are the number
of distinct types in each system.

 Similarly, Ω(2)’s merged ranking will have all of
Ω(1)’s types in last place with rank 𝑟 = 𝑁2 + 1

2𝑁1.
 The normalization is then:

𝒩1,2;𝛼 = 𝛼 + 1
𝛼 ∑

𝜏∈𝑅1

∣ 1
[𝑟𝜏,1]𝛼 − 1

[𝑁1 + 1
2𝑁2]𝛼 ∣

1/(𝛼+1)

+ 𝛼 + 1
𝛼 ∑

𝜏∈𝑅1

∣ 1
[𝑁2 + 1

2𝑁1]𝛼 − 1
[𝑟𝜏,2]𝛼 ∣

1/(𝛼+1)

.

(11)
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Limit of 𝛼 → 0:

𝐷R
0(𝑅1 ‖ 𝑅2) = ∑

𝜏∈𝑅1,2;𝛼

𝛿𝐷R
0,𝜏 = 1

𝒩1,2;0
∑

𝜏∈𝑅1,2;𝛼

∣ln𝑟𝜏,1
𝑟𝜏,2

∣ ,

(12)
where

𝒩1,2;0 = ∑
𝜏∈𝑅1

∣ln 𝑟𝜏,1
𝑁1 + 1

2𝑁2
∣ + ∑

𝜏∈𝑅2

∣ln 𝑟𝜏,2
1
2𝑁1 + 𝑁2

∣ .

(13)

 Largest rank ratios dominate.
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Limit of 𝛼 → ∞:

𝐷R
∞(𝑅1 ‖ 𝑅2) = ∑

𝜏∈𝑅1,2;𝛼

𝛿𝐷R
∞,𝜏

= 1
𝒩1,2;∞

∑
𝜏∈𝑅1,2;𝛼

(1 − 𝛿𝑟𝜏,1𝑟𝜏,2
)max𝜏 { 1

𝑟𝜏,1
, 1
𝑟𝜏,2

} .

(14)

where

𝒩1,2;∞ = ∑
𝜏∈𝑅1

1
𝑟𝜏,1

+ ∑
𝜏∈𝑅2

1
𝑟𝜏,2

. (15)

 Highest ranks dominate.



1 0.5 0 0.5 1
 A.  D.

 C.

 B.

 E.

 F.



Probability-turbulence divergence:

𝐷P
𝛼(𝑃1 ∣∣ 𝑃2) = 1

𝒩P
1,2;𝛼

𝛼 + 1
𝛼 ∑

𝜏∈𝑅1,2;𝛼

∣ [ 𝑝𝜏,1]𝛼−[ 𝑝𝜏,2]𝛼 ∣
1/(𝛼+1)

.

(16)

 For the unnormalized version (𝒩P
1,2;𝛼=1), some

troubles return with 0 probabilities and 𝛼 → 0.
 Weep not: 𝒩P

1,2;𝛼 will save the day.
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Normalization:
With no matching types, the probability of a type
present in one system is zero in the other, and the
sum can be split between the two systems’ types:

𝒩P
1,2;𝛼 = 𝛼 + 1

𝛼 ∑
𝜏∈𝑅1

[ 𝑝𝜏,1]𝛼/(𝛼+1) + 𝛼 + 1
𝛼 ∑

𝜏∈𝑅2

[ 𝑝𝜏,2]𝛼/(𝛼+1)

(17)
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Limit of 𝛼=0 for probability-turbulence divergence
 if both 𝑝𝜏,1 > 0 and 𝑝𝜏,2 > 0 then

lim𝛼→0
𝛼 + 1

𝛼 ∣ [ 𝑝𝜏,1]𝛼 −[ 𝑝𝜏,2]𝛼 ∣
1/(𝛼+1)

= ∣ln𝑝𝜏,2
𝑝𝜏,1

∣ .
(18)

 But if 𝑝𝜏,1 = 0 or 𝑝𝜏,2 = 0, limit diverges as 1/𝛼.
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Limit of 𝛼=0 for probability-turbulence divergence
 Normalization:

𝒩P
1,2;𝛼 → 1

𝛼 (𝑁1 + 𝑁2) . (19)

 Because the normalization also diverges as 1/𝛼,
the divergence will be zero when there are no
exclusive types and non-zero when there are
exclusive types.
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Combine these cases into a single expression:

𝐷P
0(𝑃1 ‖ 𝑃2) = 1

(𝑁1 + 𝑁2) ∑
𝜏∈𝑅1,2;0

(𝛿𝑝𝜏,1,0 + 𝛿0,𝑝𝜏,2
) .

(20)

 The term (𝛿𝑝𝜏,1,0 + 𝛿0,𝑝𝜏,2
) returns 1 if either

𝑝𝜏,1 = 0 or 𝑝𝜏,2 = 0, and 0 otherwise when both
𝑝𝜏,1 > 0 and 𝑝𝜏,2 > 0.

 Ratio of types that are exclusive to one system
relative to the total possible such types,
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Type contribution ordering for the limit of 𝛼=0
 In terms of contribution to the divergence score,

all exclusive types supply a weight of 1/(𝑁1 + 𝑁2).
We can order them by preserving their ordering as
𝛼 → 0, which amounts to ordering by descending
probability in the system in which they appear.

 And while types that appear in both systems make
no contribution to 𝐷P

0(𝑃1 ‖ 𝑃2), we can still order
them according to the log ratio of their
probabilities.

 The overall ordering of types by divergence
contribution for 𝛼=0 is then: (1) exclusive types by
descending probability and then (2) types
appearing in both systems by descending log ratio.
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Limit of 𝛼=∞ for probability-turbulence
divergence

𝐷P
∞(𝑃1 ‖ 𝑃2) = 1

2 ∑
𝜏∈𝑅1,2;∞

(1 − 𝛿𝑝𝜏,1,𝑝𝜏,2
)max (𝑝𝜏,1, 𝑝𝜏,2)

(21)
where

𝒩P
1,2;∞ = ∑

𝜏∈𝑅1,2;∞

( 𝑝𝜏,1 + 𝑝𝜏,2 )= 1 + 1 = 2. (22)
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Connections for PTD:
 𝛼 = 0: Similarity measure Sørensen-Dice

coefficient [4, 17, 10], 𝐹1 score of a test’s
accuracy [18, 15].

 𝛼 = 1/2: Hellinger distance [8] and Mautusita
distance [11].

 𝛼 = 1: Many including all 𝐿(𝑝)-norm type
constructions.

 𝛼 = ∞: Motyka distance [3].
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FIG. 8. Rank-turbulence divergence allotaxonograph [34] of word rank distributions in the incel vs
random comment corpora. The rank-rank histogram on the left shows the density of words by their rank in the
incel comments corpus against their rank in the random comments corpus. Words at the top of the diamond are
higher frequency, or lower rank. For example, the word “the” appears at the highest observed frequency, and thus
has the lowest rank, 1. This word has the lowest rank in both corpora, so its coordinates lie along the center vertical
line in the plot. Words such as “women” diverge from the center line because their rank in the incel corpus is higher
than in the random corpus. The top 40 words with greatest divergence contribution are shown on the right. In this
comparison, nearly all of the top 40 words are more common in the incel corpus, so they point to the right. The
word that has the most notable change in rank from the random to incel corpus is “women”, the object of hatred
and desire for the incel community. The following words reference various categories of men: “incels”, “chad”, and
“men”. References to physical appearance are also more common in the incel corpus, such as “ugly”, “attractive”,
and “height”. A number of these words are made-up: “normies”, “foids”, “blackpill”, “femoids”, “roastie”, “volcel”,
and “fakecel”. These 40 words capture the real-life topics and made-up terms that populate the incel lexicon.

indicates that the discussion in incel forums is
topic-specific and homogeneous. It is these words
derived from rank-turbulence divergence that we
identify as the empirical incel lexicon in Table II.
Our identified lexicon is comparable to online incel
glossaries, written by and for the incel community
[35], but is revealed algorithmically in Fig. 8. As
such, it confirms prior knowledge about the words
that incels use to communicate with each other.
In the following analysis, we will study changes in
the prevalence of incel language over time, and the
contexts in which they are used.

To examine the stability of these words, we
plot the timeseries of the incel lexicon in Fig. 9.
A word may have had a short period of high
frequency that contributed greatly to its rank, but
may not reflect the incel lexicon as accurately as

words that appear consistently over time. The
timeseries shown in Fig. 9 reveal that the relative
frequency of the words “women”, “men”, “incel”,
“chad”, “cope”, “cuck”, “normies”, “virgin”, and
“blackpill” are consistent over time, and consistent
over three di↵erent communities. To assess the
stability of each of the timeseries in Fig. 9, we
perform Augmented Dickey-Fuller (ADF) tests for
the unit root. We reject the null hypothesis for
the timeseries which yield a p-value below our
significance threshold, 0.05. These timeseries do
not have a unit root, and are therefore stationary.
See Supplementary Table S1 for the ADF test
summaries for each timeseries in Fig. 9.

Consistent relative frequency over three banned
communities shows us that the words in our
identified lexicon may be a fingerprint for the larger



The PoCSverse
Allotaxonometry
54 of 72

A plenitude of
distances

Rank-turbulence
divergence

Probability-
turbulence
divergence

Explorations

References

Effect of subsampling:
N=1000 N=3,162 N=10,000 N=31,623 N=100,000 N=316,228 N=1,000,000 N<3,162,278

DR
1/3=0.235 DR
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N=31 N=100 N=316 N=1,000 N=3,162 N=10,000 N<31,622

DR
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∞=0.934 DR

∞=0.926 DR
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DR
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∞=0.887 DR
∞=0.878 DR

∞=0.855 DR
∞=0.848 DR

∞=0.847 DR
∞=0.850
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N=31 N=100 N=316 N=1000 N=3,162 N<10,000

DR
1/3=0.931 DR

1/3=0.938 DR
1/3=0.907 DR

1/3=0.809 DR
1/3=0.504 DR

1/3=0.441
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Flipbooks for RTD:

 Twitter:
instrument-flipbook-1-rank-div.pdf
instrument-flipbook-2-probability-div.pdf
instrument-flipbook-3-gen-entropy-div.pdf

 Market caps:
instrument-flipbook-4-marketcaps-6years-rank-div.pdf

 Baby names:
instrument-flipbook-5-babynames-girls-50years-rank-div.pdf
instrument-flipbook-6-babynames-boys-50years-rank-div.pdf

 Google books:
instrument-flipbook-7-google-books-onegrams-rank-div.pdf
instrument-flipbook-8-google-books-bigrams-rank-div.pdf
instrument-flipbook-9-google-books-trigrams-rank-div.pdf

https://pdodds.w3.uvm.edu/videos/figallotaxonometer9000-2016-11-09-2017-08-13-all-rank-div_combined_noname.pdf
https://pdodds.w3.uvm.edu/videos/figallotaxonometer9000-2016-11-09-2017-08-13-all-prob-div_combined_noname.pdf
https://pdodds.w3.uvm.edu/videos/figallotaxonometer9000-2016-11-09-2017-08-13-storywrangler-all-entropy-alpha-div_combined_noname.pdf
https://pdodds.w3.uvm.edu/videos/figallotaxonometer9000-siblis_flipbook001_marketcaps001_combined.pdf
https://pdodds.w3.uvm.edu/videos/figallotaxonometer9000-babynames-1-50-decade-combined.pdf
https://pdodds.w3.uvm.edu/videos/figallotaxonometer9000-babynames-2-50-decade-combined.pdf
https://pdodds.w3.uvm.edu/videos/figallotaxonometer9000-google-books-fiction-1948-1987-onegrams-rank-div-lcs-combined_noname.pdf
https://pdodds.w3.uvm.edu/videos/figallotaxonometer9000-google-books-fiction-1948-1987-bigrams-rank-div-lcs-combined_noname.pdf
https://pdodds.w3.uvm.edu/videos/figallotaxonometer9000-google-books-fiction-1948-1987-trigrams-rank-div-lcs-combined_noname.pdf


Flipbooks for PTD:

 Jane Austen:
Pride and Prejudice, 1-grams
Pride and Prejudice, 2-grams
Pride and Prejudice, 3-grams

 Social media:
Twitter, 1-grams
Twitter, 2-grams
Twitter, 3-grams

 Ecology:
Barro Colorado Island

https://pdodds.w3.uvm.edu/videos/allotaxonometer-flipbook-1-probability-divergence-pride-and-prejudice-1-grams.pdf
https://pdodds.w3.uvm.edu/videos/allotaxonometer-flipbook-2-probability-divergence-pride-and-prejudice-2-grams.pdf
https://pdodds.w3.uvm.edu/videos/allotaxonometer-flipbook-3-probability-divergence-pride-and-prejudice-3-grams.pdf
https://pdodds.w3.uvm.edu/videos/allotaxonometer-flipbook-4-probability-divergence-twitter-1-grams.pdf
https://pdodds.w3.uvm.edu/videos/allotaxonometer-flipbook-5-probability-divergence-twitter-2-grams.pdf
https://pdodds.w3.uvm.edu/videos/allotaxonometer-flipbook-6-probability-divergence-twitter-3-grams.pdf
https://pdodds.w3.uvm.edu/videos/allotaxonometer-flipbook-7-probability-turbulence-divergence-barro-colorado-island.pdf
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Code:
https://gitlab.com/compstorylab/allotaxonometer

https://gitlab.com/compstorylab/allotaxonometer
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Claims, exaggerations, reminders:
 Needed for comparing large-scale complex

systems:
Comprehendible, dynamically-adjusting,
differential dashboards

 Many measures seem poorly motivated and
largely unexamined (e.g., JSD)

 Of value: Combining big-picture maps with ranked
lists

 Maybe one day: Online tunable version of
rank-turbulence divergence (plus many other
instruments)

5 0 5
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