Power-Law Mechanisms: Variable Transformation

Last updated: 2025/08/24, 21:49:24 EDT

Principles of Complex Systems, Vols. 1, 2, & 3D CSYS/MATH 6701, 6713, & a pretend number, 2025–2026

Prof. Peter Sheridan Dodds

Computational Story Lab | Vermont Complex Systems Center Santa Fe Institute | University of Vermont

Licensed under the Creative Commons Attribution 4.0 International

The PoCSverse Variable Transformation 1 of 22

Variable transformation

Basics

Holtsmark's Distributio

LIPLO

These slides are brought to you by:

The PoCSverse Variable Transformation 2 of 22

Variable

Basics

loltsmark's Distribution

These slides are also brought to you by:

Special Guest Executive Producer

On Instagram at pratchett_the_cat

The PoCSverse Variable Transformation 3 of 22

Variable transformation

Basics

Holtsmark's Distribution

Outline

Variable transformation
Basics
Holtsmark's Distribution
PLIPLO

References

The PoCSverse Variable Transformation 4 of 22

Variable transformation

Basics

Holtsmark's Distribution

PLIPLO

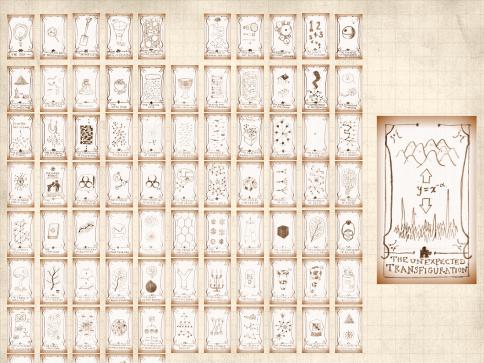
The Boggoracle Speaks:

The PoCSverse Variable Transformation 5 of 22

Variable transformation

Basics

Holtsmark's Distribution



Outline

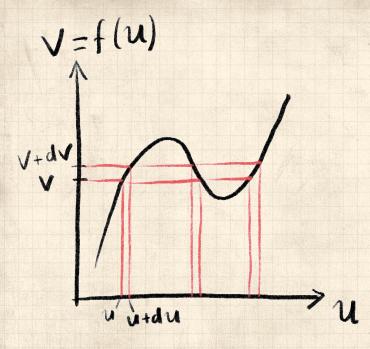
Variable transformation
Basics
Holtsmark's Distribution

Reference

The PoCSverse Variable Transformation 7 of 22

Variable transformation

Basics Holtsmark's Distribution



The PoCSverse Variable Transformation 8 of 22

Variable

transformation

Basics Holtsmark's Distribution

Understand power laws as arising from:

The PoCSverse Variable Transformation 9 of 22

Variable transformation

Basics

PLIPLO

Understand power laws as arising from:

1. Elementary distributions (e.g., exponentials).

The PoCSverse Variable Transformation

Variable

Basics

Holtsmark's Distribution

PLIPLO

Understand power laws as arising from:

- 1. Elementary distributions (e.g., exponentials).
- 2. Variables connected by power relationships.

The PoCSverse Variable Transformation

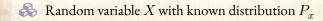
Variable

Basics
Holtsmark's Distribution

PLIPLO

Understand power laws as arising from:

- 1. Elementary distributions (e.g., exponentials).
- 2. Variables connected by power relationships.



The PoCSverse Variable Transformation 9 of 22

Variable transformation

Basics Holtsmark's Distribution

121120

Understand power laws as arising from:

- 1. Elementary distributions (e.g., exponentials).
- 2. Variables connected by power relationships.
- $\red Random variable X$ with known distribution P_x
- Second random variable Y with y = f(x).

The PoCSverse Variable Transformation 9 of 22

Variable transformation

> Basics Holtsmark's Distribution

PLIPLO

Understand power laws as arising from:

- 1. Elementary distributions (e.g., exponentials).
- 2. Variables connected by power relationships.
- \clubsuit Random variable X with known distribution P_x
- Second random variable Y with y = f(x).

$$\begin{array}{ll} & P_Y(y)\mathrm{d}y = \\ & \sum_{x|f(x)=y} P_X(x)\mathrm{d}x \\ = & \sum_{y|f(x)=y} P_X(f^{-1}(y))\frac{\mathrm{d}y}{|f'(f^{-1}(y))|} \end{array}$$

The PoCSverse Variable Transformation 9 of 22

Variable transformation

Basics

Holtsmark's Distribution

Understand power laws as arising from:

- 1. Elementary distributions (e.g., exponentials).
- 2. Variables connected by power relationships.
- \clubsuit Random variable X with known distribution P_x
- Second random variable Y with y = f(x).

$$\begin{array}{ll} \bigotimes & P_{Y}(y)\mathrm{d}y = \\ & \sum_{x|f(x)=y} P_{X}(x)\mathrm{d}x \\ = & \\ & \sum_{y|f(x)=y} P_{X}(f^{-1}(y)) \frac{\mathrm{d}y}{|f'(f^{-1}(y))|} \end{array}$$

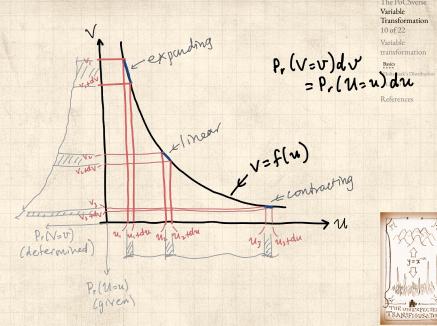
Often easier to do by hand...

The PoCSverse Variable Transformation 9 of 22

Variable transformation

Basics Holtsmark's Distribut

PLIPLO



The PoCSverse Variable Transformation 10 of 22

Variable

The PoCSverse Variable Transformation 11 of 22

Variable transformation

Basics Holtsmark's Distribution

Assume relationship between x and y is 1-1.

The PoCSverse Variable Transformation 11 of 22

Variable

Basics

Assume relationship between x and y is 1-1.

Power-law relationship between variables:

$$y = cx^{-\alpha}, \alpha > 0$$

The PoCSverse Variable Transformation 11 of 22

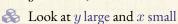
Variable

Basics

Assume relationship between x and y is 1-1.

Power-law relationship between variables:

$$y = cx^{-\alpha}, \alpha > 0$$



The PoCSverse Variable Transformation 11 of 22

Variable

Basics

Assume relationship between x and y is 1-1.

Power-law relationship between variables:

$$y = cx^{-\alpha}, \alpha > 0$$

Look at y large and x small

$$\mathrm{d}y=\mathrm{d}\left(cx^{-\alpha}\right)$$

The PoCSverse Variable Transformation 11 of 22.

Variable

Basics

Assume relationship between x and y is 1-1.

Power-law relationship between variables: $y = cx^{-\alpha}, \alpha > 0$

Look at y large and x small

$$\mathrm{d}y = \mathrm{d}\left(cx^{-\alpha}\right)$$

$$= c(-\alpha)x^{-\alpha - 1} \mathrm{d}x$$

The PoCSverse Variable Transformation 11 of 22.

Variable

Basics

Assume relationship between x and y is 1-1.

Power-law relationship between variables:

$$y = cx^{-\alpha}, \alpha > 0$$

Look at y large and x small

$$\mathrm{d}y = \mathrm{d}\left(cx^{-\alpha}\right)$$

$$= c(-\alpha)x^{-\alpha - 1} \mathrm{d}x$$

invert:
$$\mathrm{d}x = \frac{-1}{c\alpha}x^{\alpha+1}\mathrm{d}y$$

The PoCSverse Variable Transformation 11 of 22.

Variable

Basics

Assume relationship between x and y is 1-1.

Power-law relationship between variables:

$$y = cx^{-\alpha}, \alpha > 0$$

Look at y large and x small

$$\mathrm{d}y = \mathrm{d}\left(cx^{-\alpha}\right)$$

$$= c(-\alpha)x^{-\alpha - 1} \mathrm{d}x$$

invert:
$$\mathrm{d}x = \frac{-1}{c\alpha}x^{\alpha+1}\mathrm{d}y$$

$$\mathrm{d}x \, = \frac{-1}{c\alpha} \left(\frac{y}{c}\right)^{-(\alpha+1)/\alpha} \mathrm{d}y$$

The PoCSverse Variable Transformation 11 of 22.

Variable

Basics

Assume relationship between x and y is 1-1.

Power-law relationship between variables:

$$y = cx^{-\alpha}, \alpha > 0$$

Look at y large and x small

$$\mathrm{d}y = \mathrm{d}\left(cx^{-\alpha}\right)$$

$$= c(-\alpha)x^{-\alpha-1}\mathrm{d}x$$

invert:
$$dx = \frac{-1}{c\alpha}x^{\alpha+1}dy$$

$$\mathrm{d}x\,=\frac{-1}{c\alpha}\left(\frac{y}{c}\right)^{-(\alpha+1)/\alpha}\mathrm{d}y$$

$$\mathrm{d}x = \frac{-c^{1/\alpha}}{\alpha} y^{-1-1/\alpha} \mathrm{d}y$$

The PoCSverse Variable Transformation 11 of 22.

Variable

Basics

$$P_y(y)\mathrm{d}y\,=P_x(x)\mathrm{d}x$$

The PoCSverse Variable Transformation 12 of 22

Variable transformation

Basics Holtsmark's Distribution

$$P_y(y)\mathrm{d}y = P_x(x)\mathrm{d}x$$

$$P_y(y)\mathrm{d}y = P_x \overbrace{\left(\left(\frac{y}{c}\right)^{-1/\alpha}\right)}^{(x)} \underbrace{\overbrace{\frac{c^{1/\alpha}}{\alpha}y^{-1-1/\alpha}\mathrm{d}y}^{\mathrm{d}x}}^{\mathrm{d}x}$$

The PoCSverse Variable Transformation 12 of 22

Variable transformation

Basics

Holtsmark's Distribution

$$P_y(y)\mathrm{d}y\,=P_x(x)\mathrm{d}x$$

$$P_y(y)\mathrm{d}y = P_x \overbrace{\left(\left(\frac{y}{c}\right)^{-1/\alpha}\right)}^{(x)} \underbrace{\frac{\mathrm{d}x}{c^{1/\alpha}} y^{-1-1/\alpha} \mathrm{d}y}^{\mathrm{d}x}$$

 $\begin{cases} \begin{cases} \& \end{cases} \end{cases} \begin{cases} \begin{cases} \begin{cases} \begin{cases} \& \begin{cases} \begin{cases} \begin{cases} \& \begin{cases} \begin{cases} \begin{cases} \& \begin{cases} \begin{cases} \begin{cases} \begin{cases} \& \begin{cases} \begin{cases} \begin{cases} \& \begin{cases} \begin{cases} \begin{cases} \begin{cases} \& \begin{cases} \beg$

$$P_y(y) \propto y^{-1-1/\alpha}$$
 as $y \to \infty$.

The PoCSverse Variable Transformation 12 of 22

Variable transformation

Basics
Holtsmark's Distribution

PLIPLO

$$P_y(y)\mathrm{d}y\,=P_x(x)\mathrm{d}x$$

$$P_y(y)\mathrm{d}y = P_x \overbrace{\left(\left(\frac{y}{c}\right)^{-1/\alpha}\right)}^{(x)} \underbrace{\frac{\mathrm{d}x}{c^{1/\alpha}} y^{-1-1/\alpha} \mathrm{d}y}^{\mathrm{d}x}$$

 $Rightharpoonup P(x) \rightarrow \text{non-zero constant as } x \rightarrow 0 \text{ then}$

$$P_y(y) \propto y^{-1-1/\alpha}$$
 as $y \to \infty$.

 \Re If $P_x(x) \to x^{\beta}$ as $x \to 0$ then

$$P_y(y) \propto y^{-1-1/\alpha-\beta/\alpha}$$
 as $y \to \infty$.

The PoCSverse Variable Transformation 12 of 22

Variable transformation

Basics

Holtsmark'

Exponential distribution

Given
$$P_x(x)=rac{1}{\lambda}e^{-x/\lambda}$$
 and $y=cx^{-lpha}$, then
$$P(y)\propto y^{-1-1/lpha}+O\left(y^{-1-2/lpha}
ight)$$

The PoCSverse Variable Transformation 13 of 22

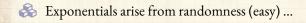
Variable transformation

Basics

Holtsmark's Distribution

Exponential distribution

Given
$$P_x(x)=rac{1}{\lambda}e^{-x/\lambda}$$
 and $y=cx^{-lpha}$, then
$$P(y)\propto y^{-1-1/lpha}+O\left(y^{-1-2/lpha}
ight)$$



The PoCSverse Variable Transformation 13 of 22

Variable transformation

Holtsmark's Distri

Exponential distribution

Given
$$P_x(x)=rac{1}{\lambda}e^{-x/\lambda}$$
 and $y=cx^{-lpha}$, then
$$P(y)\propto y^{-1-1/lpha}+O\left(y^{-1-2/lpha}\right)$$

& Exponentials arise from randomness (easy) ...

More later when we cover robustness.

The PoCSverse Variable Transformation 13 of 22

Variable transformation

Holtsmark's Distri

Outline

Variable transformation

Basic

Holtsmark's Distribution

PLIPLO

Reference

The PoCSverse Variable Transformation 14 of 22

Variable

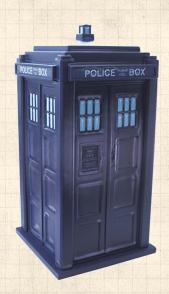
transformation

Basics

Holtsmark's Distribution

Gravity

Select a random point in the universe \vec{x} .



The PoCSverse Variable Transformation 15 of 22

Variable transformation

Basics

Holtsmark's Distribution

Gravity

Select a random point in the universe \vec{x} .

 $\ensuremath{\mathfrak{S}}$ Measure the force of gravity $F(\vec{x})$.

The PoCSverse Variable Transformation 15 of 22

Variable transformation

Basics

Holtsmark's Distribution

¹Stigler's Law of Eponymy ☑.

Gravity

Select a random point in the universe \vec{x} .

 \Leftrightarrow Observe that $P_F(F) \sim F^{-5/2}$.

The PoCSverse Variable Transformation 15 of 22

Variable transformation

Basics

Holtsmark's Distribution

Select a random point in the universe \vec{x} .

 \Leftrightarrow Observe that $P_F(F) \sim F^{-5/2}$.

Distribution named after
Holtsmark who was thinking
about electrostatics and plasma [1].

The PoCSverse Variable Transformation 15 of 22

Variable transformation

Basics

Holtsmark's Distribution

Select a random point in the universe \vec{x} .

 $\red { }$ Observe that $P_F(F) \sim F^{-5/2}$.

Distribution named after
Holtsmark who was thinking
about electrostatics and plasma [1].

Again, the humans naming things after humans, poorly.¹

The PoCSverse Variable Transformation 15 of 22

Variable transformation

Basics

Holtsmark's Distribution

 \Re F is distributed unevenly

The PoCSverse Variable Transformation 16 of 22

Variable

Basics

Holtsmark's Distribution

A Probability of being a distance r from a single star at $\vec{x} = \vec{0}$:

$$P_r(r) \mathrm{d} r \, \propto r^2 \mathrm{d} r$$

The PoCSverse Variable Transformation 16 of 22.

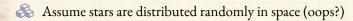
Variable

Basics

Holtsmark's Distribution

 \red Probability of being a distance r from a single star at $\vec{x} = \vec{0}$:

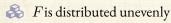
$$P_r(r) \mathrm{d} r \, \propto r^2 \mathrm{d} r$$



The PoCSverse Variable Transformation 16 of 22.

Variable

Holtsmark's Distribution



 \red Probability of being a distance r from a single star at $\vec{x} = \vec{0}$:

$$P_r(r) \mathrm{d} r \, \propto r^2 \mathrm{d} r$$

Assume stars are distributed randomly in space (oops?)

Assume only one star has significant effect at \vec{x} .

The PoCSverse Variable Transformation 16 of 22

Variable transformation

Basics

Holtsmark's Distribution

- $\Re F$ is distributed unevenly
- \red Probability of being a distance r from a single star at $\vec{x} = \vec{0}$:

$$P_r(r) \mathrm{d} r \, \propto r^2 \mathrm{d} r$$

- Assume stars are distributed randomly in space (oops?)
- Assume only one star has significant effect at \vec{x} .
- & Law of gravity:

 $F \propto r^{-2}$

The PoCSverse Variable Transformation 16 of 22

Variable transformation

Basics

Holtsmark's Distribution

- \clubsuit F is distributed unevenly
- \red Probability of being a distance r from a single star at $\vec{x} = \vec{0}$:

$$P_r(r) \mathrm{d} r \, \propto r^2 \mathrm{d} r$$

- Assume stars are distributed randomly in space (oops?)
- Assume only one star has significant effect at \vec{x} .
- & Law of gravity:

$$F \propto r^{-2}$$

invert:

$$r \propto F^{-\frac{1}{2}}$$

The PoCSverse Variable Transformation 16 of 22

Variable transformation

Basics

Holtsmark's Distribution

- \red Probability of being a distance r from a single star at $\vec{x} = \vec{0}$:

$$P_r(r) \mathrm{d} r \, \propto r^2 \mathrm{d} r$$

- Assume stars are distributed randomly in space (oops?)
- Assume only one star has significant effect at \vec{x} .
- & Law of gravity:

$$F \propto r^{-2}$$

invert:

$$r \propto F^{-\frac{1}{2}}$$

 $\red {\Bbb S}$ Connect differentials: ${
m d} r \propto {
m d} F^{-\frac{1}{2}} \propto F^{-\frac{3}{2}} {
m d} F$

The PoCSverse Variable Transformation 16 of 22

Variable transformation

Basics

Holtsmark's Distribution

Using $\boxed{r \propto F^{-1/2}}$, $\boxed{\mathrm{d}r \propto F^{-3/2}\mathrm{d}F}$, and $\boxed{P_r(r) \propto r^2}$

The PoCSverse Variable Transformation 17 of 22

Variable

Basics

Holtsmark's Distribution

Using
$$\boxed{r \propto F^{-1/2}}$$
 , $\boxed{{\rm d}r \propto F^{-3/2}{\rm d}F}$, and $\boxed{P_r(r) \propto r^2}$

$$P_F(F)\mathrm{d}F=P_r(r)\mathrm{d}r$$

The PoCSverse Variable Transformation 17 of 22

Variable transformation

Basics

Holtsmark's Distribution

Using
$$\boxed{r \propto F^{-1/2}}$$
 , $\boxed{\mathrm{d}r \propto F^{-3/2}\mathrm{d}F}$, and $\boxed{P_r(r) \propto r^2}$

$$P_F(F)\mathrm{d}F=P_r(r)\mathrm{d}r$$

$$\propto P_r({\rm const}\times F^{-1/2})F^{-3/2}{\rm d}F$$

The PoCSverse Variable Transformation 17 of 22

Variable transformation

Basics

Holtsmark's Distribution PLIPLO

Using
$$\boxed{r \propto F^{-1/2}}$$
 , $\boxed{\mathrm{d}r \propto F^{-3/2}\mathrm{d}F}$, and $\boxed{P_r(r) \propto r^2}$

2

$$P_F(F)\mathrm{d}F=P_r(r)\mathrm{d}r$$

8

$$\propto P_r({\rm const}\times F^{-1/2})F^{-3/2}{\rm d}F$$

$$\propto \left(F^{-1/2}\right)^2 F^{-3/2} \mathrm{d} F$$

The PoCSverse Variable Transformation 17 of 22

Variable transformation

Basics

Holtsmark's Distribution

Using
$$\boxed{r \propto F^{-1/2}}$$
 , $\boxed{\mathrm{d}r \propto F^{-3/2}\mathrm{d}F}$, and $\boxed{P_r(r) \propto r^2}$

$$P_F(F)\mathrm{d}F=P_r(r)\mathrm{d}r$$

$$\propto P_r({\rm const}\times F^{-1/2})F^{-3/2}{\rm d}F$$

$$\propto \left(F^{-1/2}\right)^2 F^{-3/2} \mathrm{d}F$$

$$=F^{-1-3/2}dF$$

The PoCSverse Variable Transformation 17 of 22

Variable transformation

Basics

Holtsmark's Distribution

Using
$$[r \propto F^{-1/2}]$$
 , $[dr \propto F^{-3/2}dF]$, and $[P_r(r) \propto r^2]$
$$P_F(F)dF = P_r(r)dr$$

$$\propto \left(F^{-1/2}\right)^2 F^{-3/2} \mathrm{d}F$$

 $\propto P_r(\text{const} \times F^{-1/2})F^{-3/2}dF$

$$= F^{-1-3/2} \mathrm{d}F$$

$$= F^{-5/2} \mathrm{d}F.$$

The PoCSverse Variable Transformation 17 of 22

> ariable ransformation

Basics

Holtsmark's Distribution

$$P_F(F) = {\color{red} F^{-5/2}} \mathrm{d} F$$

The PoCSverse Variable Transformation 18 of 22

Variable

Basics

Holtsmark's Distribution
PLIPLO

$$P_{F}(F)=F^{-5/2}\mathrm{d}F$$

 $\gamma = 5/2$

The PoCSverse Variable Transformation 18 of 22

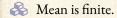
Variable transformation

Basics

Holtsmark's Distribution
PLIPLO

$$P_F(F) = F^{-5/2} \mathrm{d}F$$

$$\gamma = 5/2$$



The PoCSverse Variable Transformation 18 of 22

Variable

Basics

Holtsmark's Distribution
PLIPLO

$$P_{F}\!(F)=F^{-5/2}\mathrm{d}F$$

$$\gamma = 5/2$$

Mean is finite.

 \triangle Variance = ∞ .

The PoCSverse Variable Transformation 18 of 22

Variable

Basics

Holtsmark's Distribution

$$P_{\scriptscriptstyle F}(F) = F^{-5/2} \mathrm{d} F$$

$$\gamma = 5/2$$

- Mean is finite.
- Variance = ∞ .
- A wild distribution.

The PoCSverse Variable Transformation 18 of 22

Variable transformation

Basics .

Holtsmark's Distribution
PLIPLO

$$P_{\scriptscriptstyle F}(F) = F^{-5/2} \mathrm{d} F$$

$$\gamma = 5/2$$

- Mean is finite.
- \clubsuit Variance = ∞ .
- A wild distribution.
- Upshot: Random sampling of space usually safe but can end badly...

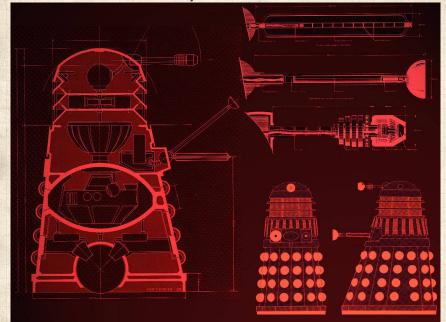
The PoCSverse Variable Transformation 18 of 22

Variable transformation

Basics

Holtsmark's Distribution
PLIPLO

☐ Todo: Build Dalek army.



Outline

Variable transformation

Basic

Holtsmark's Distribution

PLIPLO

Reference

The PoCSverse Variable Transformation 20 of 22

Variable transformation

Basics

Holtsmark's Distribution

PLIPLO

PLIPLO = Power law in, power law out

The PoCSverse Variable Transformation 21 of 22

Variable

Basics

PLIPLO

The PoCSverse Variable Transformation 21 of 22

Variable transformation

Basics

Holtsmark's Distribution

PLIPLO

References

A PLIPLO = Power law in, power law out

Explain a power law as resulting from another unexplained power law.

The PoCSverse Variable Transformation 21 of 22

Variable transformation

Basics

PLIPLO

References

Representation Plant Power law in, power law out

Explain a power law as resulting from another unexplained power law.

The PoCSverse Variable Transformation 21 of 22

Variable transformation

Basics

Holtsmark's Distribution
PLIPLO

- PLIPLO = Power law in, power law out
- Explain a power law as resulting from another unexplained power law.
- A Yet another homunculus argument ...
- 🙈 Don't do this!!! (slap, slap)

The PoCSverse Variable Transformation 21 of 22

Variable transformation

Basics

Holtsmark's Distribution

PLIPLO

- PLIPLO = Power law in, power law out
- Explain a power law as resulting from another unexplained power law.
- 🙈 Don't do this!!! (slap, slap)
- MIWO = Mild in, Wild out is the stuff.

The PoCSverse Variable Transformation 21 of 22

Variable transformation

Basics

Holtsmark's Distribution

PLIPLO

- PLIPLO = Power law in, power law out
- Explain a power law as resulting from another unexplained power law.
- A Yet another homunculus argument ...
- 🙈 Don't do this!!! (slap, slap)
- MIWO = Mild in, Wild out is the stuff.
- In general: We need mechanisms!

References I

[1] J. Holtsmark.
Über die verbreiterung von spektrallinien.
Ann. Phys., 58:577–630, 1919. pdf

[2] D. Sornette.

Critical Phenomena in Natural Sciences.
Springer-Verlag, Berlin, 1st edition, 2003.

The PoCSverse Variable Transformation 22 of 22

Variable transformation

Basics

Holtsmark's Distributio

