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Random network generator for N = 3:

& Get your own exciting generator b@{e .
@& As N 7, polyhedral die rapidly becomes a ball...
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Random networks

Pure, abstract random networks:

& Consider set of all networks with NV labelled nodes and m
edges.
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Random networks

Pure, abstract random networks:

& Consider set of all networks with NV labelled nodes and m
edges.

&% Standard random network =
one randomly chosen network from this set.
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Random networks

Consider set of all networks with IV labelled nodes and m
edges.

Standard random network =
one randomly chosen network from this set.

To be clear: each network is equally probable.

The PoCSverse
Random Networks
Nutshell

8 of 74

Pure random
networks

Definitions

Generalized Random
Networks

References



https://pdodds.w3.uvm.edu/teaching/courses/2024-2025pocsverse

Random networks

Consider set of all networks with IV labelled nodes and m
edges.

Standard random network =
one randomly chosen network from this set.

To be clear: each network is equally probable.

Sometimes equiprobability is a good assumption, but it is
always an assumption.
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Random networks

Consider set of all networks with IV labelled nodes and m
edges.

Standard random network =
one randomly chosen network from this set.

To be clear: each network is equally probable.

Sometimes equiprobability is a good assumption, but it is
always an assumption.

Known as Erdds-Rényi random networks or ER graphs.
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Random networks—basic features:

«% Number of possible edges:

3
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Random networks—basic features:

&% Number of possible edges:

&% Limitof m = 0: empty graph.
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Number of possible edges:
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Limit of m = 0: empty graph.
N

Limit of m = (5, ): complete or fully-connected graph.
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Number of possible edges:

0< < e
SHiLE AP 2
Limit of m = 0: empty graph.
Limitof m = (g) complete or fully-connected graph.

Number of possible networks with N labelled nodes:

2(1;]) ~ elnTZN(N71>‘

Given m edges, there are ( (:fi)) different possible networks.
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Number of possible edges:

OSM@):W—D

Limit of m = 0: empty graph.
Limitof m = (g) complete or fully-connected graph.

Number of possible networks with N labelled nodes:
ol ) 2 N(N-1)

~ € 2

Given m edges, there are ( (:fi)) different possible networks.

Crazy factorial explosion for 1 < m < (]2\[)
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9(3) ~ eBNW-1)

Given m edges, there are (2 (N)) different possible networks.
Crazy factorial explosion for 1 < m < (2 e

Real world: links are usually costly so real networks are almost

always sparse.
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Random networks

Given N and m.

Two probablistic methods (we’ll see a third later on)

1. Connect each of the (JQV) pairs with appropriate probability p.

Useful for theoretical work.

2. Take N nodes and add exactly m links by selecting edges
without replacement.
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Random networks

Given N and m.

Two probablistic methods (we’ll see a third later on)

1. Connect each of the (JQV) pairs with appropriate probability p.

Useful for theoretical work.
2. Take N nodes and add exactly m links by selecting edges
without replacement.
Algorithm: Randomly choose a pair of nodes ¢ and j, ¢ # 7,
and connect if unconnected; repeat until all m edges are
allocated.
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and connect if unconnected; repeat until all m edges are
allocated.

Best for adding relatively small numbers of links (most cases).
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Random networks

Given N and m.

Two probablistic methods (we’ll see a third later on)

1. Connect each of the (JQV) pairs with appropriate probability p.

Useful for theoretical work.
2. Take N nodes and add exactly m links by selecting edges
without replacement.
Algorithm: Randomly choose a pair of nodes ¢ and j, ¢ # 7,
and connect if unconnected; repeat until all m edges are
allocated.

Best for adding relatively small numbers of links (most cases).

1 and 2 are effectively equivalent for large N.
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Random networks

A few more things:

& For method 1, # links is probablistic:

(m)=p
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Random networks
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For method 1, # links is probablistic:

(m) = p(N) = pyN(V ~1)

So the expected or average degree is

2
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Random networks

For method 1, # links is probablistic:
N 1
= =p-N(N -1
(m) =p ( 5 ) PV )

So the expected or average degree is
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Random networks

For method 1, # links is probablistic:

N 1
(m) =p<2) =py NN —1)

So the expected or average degree is

o]
b ve Ve L
nPaV( I

Np

Which is what it should be...
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Random networks

For method 1, # links is probablistic:
N 1
= =p-N(N -1
(m) =p ( 5 ) PV )

So the expected or average degree is

= ZpaN(V —1) = Zp (N —1) = p(N - 1),

Which is what it should be...
If we keep (k) constant thenp o< 1/N — 0as N — oo.
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Random networks: examples

Next slides:

Example realizations of random networks

& N =500
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Random networks: examples

Next slides:

Example realizations of random networks
N =500

Vary m, the number of edges from 100 to 1000.
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Random networks: examples

Example realizations of random networks

N =500

Vary m, the number of edges from 100 to 1000.

Average degree (k) runs from 0.4 to 4.
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Random networks: examples for N=500
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Clustering in random networks:

For construction method 1, what is the clustering coefficient
for a finite network?
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Clustering in random networks:
For construction method 1, what is the clustering coefficient
for a finite network?
Consider triangle/triple clustering coefficient: L]

3 X #triangles
(e
#triples
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Clustering in random networks:

For construction method 1, what is the clustering coefficient
for a finite network?

Consider triangle/triple clustering coefficient: L]
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L Recall: C5 = probability that two
J friends of a node are also friends.
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Clustering in random networks:

For construction method 1, what is the clustering coefficient
for a finite network?

Consider triangle/triple clustering coefficient: L]
e 3 X #triangles
e #triples
L Recall: C5 = probability that two
J friends of a node are also friends.
; PG Or: C,, = probability thata triple is
[ £ L) 5 part of a triangle.

The PoCSverse
Random Networks
Nutshell

21 of 74

Pure random
networks

ow to build theoretic
Some visual examples

Clustering

Generalized Random
Networks

References



https://pdodds.w3.uvm.edu/teaching/courses/2024-2025pocsverse

Clustering in random networks:

For construction method 1, what is the clustering coefficient
for a finite network?

Consider triangle/triple clustering coefficient: L]

3 X #triangles
(e
#triples

. Recall: C5 = probability that two
friends of a node are also friends.

: P=c Or: C,, = probability that a triple is
[ i ' 5 part of a triangle.

v For standard random networks, we
) have simply that

! Co =p.
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Clustering in random networks:

&> Sofor large random networks
(N — 00), clustering drops to
zero.
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Clustering in random networks:

So for large random networks
(N — 00), clustering drops to
zero.

Key structural feature of random
networks is that they locally look
like

pure branching networks
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Clustering in random networks:

So for large random networks
(N — 00), clustering drops to
zero.

Key structural feature of random
networks is that they locally look
like

pure branching networks

No small loops.
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Recall P, = probability that a randomly selected node has
degree k.

Consider method 1 for constructing random networks: each
possible link is realized with probability p.

Now consider one node: there are ‘N — 1 choose £’ ways the
node can be connected to k of the other N — 1 nodes.
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Recall P, = probability that a randomly selected node has
degree k.

Consider method 1 for constructing random networks: each
possible link is realized with probability p.

Now consider one node: there are ‘N — 1 choose £’ ways the
node can be connected to k of the other N — 1 nodes.

Each connection occurs with probability p, each
non-connection with probability (1 — p).
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Recall P, = probability that a randomly selected node has
degree k.

Consider method 1 for constructing random networks: each
possible link is realized with probability p.

Now consider one node: there are ‘N — 1 choose £’ ways the
node can be connected to k of the other N — 1 nodes.

Each connection occurs with probability p, each
non-connection with probability (1 — p).

Therefore have a binomial distribution (4"

1
Bl N — pE( =) VR
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2l

Limiting foryrrll; of P

(k;p, N):
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Our degree distribution:
2L A T ok p) Vel
What happens as N — 00?

We must end up with the normal distribution right?
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Our degree distribution:

P(kip, N) = (FHpH(L - p)V I,

What happens as N — 00?

We must end up with the normal distribution right?

If p is fixed, then we would end up with a Gaussian with
average degree (k) >~ p/N — oo0.
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Our degree distribution:

P(kip, N) = (FHpH(L - p)V I,

What happens as N — 00?

We must end up with the normal distribution right?

If p is fixed, then we would end up with a Gaussian with
average degree (k) >~ p/N — oo0.

But we want to keep (k) fixed...
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Our degree distribution:

P(kip, N) = (FHpH(L - p)V I,

What happens as N — 00?

We must end up with the normal distribution right?

If p is fixed, then we would end up with a Gaussian with
average degree (k) >~ p/N — oo0.

But we want to keep (k) fixed...

So examine limit of P(k; p, N) whenp — Oand N — oo
with (k) = p(N — 1) = constant.

k N-1-k %
Popy = (1o ) B
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Our degree distribution:

P(kip, N) = (FHpH(L - p)V I,

What happens as N — 00?

We must end up with the normal distribution right?

If p is fixed, then we would end up with a Gaussian with
average degree (k) >~ p/N — oo0.

But we want to keep (k) fixed...

So examine limit of P(k; p, N) whenp — Oand N — oo
with (k) = p(N — 1) = constant.

k N-1-k %
Popy = (1o ) B

This is a Poisson distribution (4 with mean (k).
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Poisson basics:
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Classic use: probability that
an event occurs k times in a
given time period, given an
average rate of occurrence.
Erg.:

phone calls/minute,

horse-kick deaths.

‘Law of small numbers’
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Poisson basics:

The variance of degree distributions for random networks
turns out to be very important.
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Poisson basics:

The variance of degree distributions for random networks
turns out to be very important.

Using calculation similar to one for finding (k) we find the
second moment to be:

(k%) = (k)* + (k).
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Poisson basics:

The variance of degree distributions for random networks
turns out to be very important.

Using calculation similar to one for finding (k) we find the
second moment to be:

(k%) = (k)% + (k).
Variance is then

o = (k) = (k) = (0)° + (8) — (k)?
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Poisson basics:

The variance of degree distributions for random networks
turns out to be very important.

Using calculation similar to one for finding (k) we find the
second moment to be:

(k%) = (k)% + (k).
Variance is then

o? = (%) = (k) = (k) + (k) — ()? = (R).

The PoCSverse
Random Networks
Nutshell
27 of 74
Pure random
networks
Definitions

ow to build theoretic
Some visual exanples
G

Degree distributions

Generalized Random
Networks

References



https://pdodds.w3.uvm.edu/teaching/courses/2024-2025pocsverse

The PoCSverse

Poisson basics: Rodotn Netmbiia

Nutshell
27 of 74
Pure random

The variance of degree distributions for random networks nefyorks
turns out to be very important. HEEE

Using calculation similar to one for finding (k) we find the

second moment to be:

Generalized Random
Networks

(k%) = (k)* + (k). Hrmmeys

Variance is then iy

References

0% = (k%) — (k)® = (k) + (k) — (k)? = (k).

So standard deviation o is equal to / (k).



https://pdodds.w3.uvm.edu/teaching/courses/2024-2025pocsverse

The PoCSverse

Poisson basics: Rasdom Newkiks
Nutshell
27 of 74
Pure random
The variance of degree distributions for random networks nefyorks
turns out to be very important. HEEE
Son isual ex: bles.

Using calculation similar to one for finding (k) we find the
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So standard deviation o is equal to / (k).

Note: This is a special property of Poisson distribution and
can trip us up...
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General random networks

So... standard random networks have a Poisson degree

distribution
Generalize to arbitrary degree distribution P,.

Also known as the configuration model. [e]

Can generalize construction method from ER random

networks.

Assign each node a weight w from some distribution P,, and

form links with probability

P(link between 7 and j) o w,w

j.
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Also known as the configuration model. [
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But we’ll be more interested in

1. Randomly wiring up (and rewiring) already existing nodes

with fixed degrees.
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Also known as the configuration model. [e]
Generalized Random

Can generalize construction method from ER random Networks
Configuration model
networks. iR

Assign each node a weight w from some distribution P,, and
form links with probability

References

P(link between 7 and j) o< w;w;.

But we’ll be more interested in
1. Randomly wiring up (and rewiring) already existing nodes
with fixed degrees.

2. Examining mechanisms that lead to networks with certain
degree distributions.
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Random networks: examples

Example realizations of random networks with power law degree
distributions:

N = 1000.
Booc katffor ke
Set Py = 0 (no isolated nodes).

Vary exponent vy between 2.10 and 2.91.
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Vary exponent vy between 2.10 and 2.91.

Again, look at full network plus the largest component.
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Random networks: examples

Example realizations of random networks with power law degree
distributions:

N = 1000.

Booc katffor ke

Set Py = 0 (no isolated nodes).

Vary exponent vy between 2.10 and 2.91.

Again, look at full network plus the largest component.

Apart from degree distribution, wiring is random.
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Random networks: examples for N=1000

|

The PoCSverse
Random Networks
Nutshell

31 of 74

Pure random

networks

Generalized Random
Networks

Configuration madel

References



https://pdodds.w3.uvm.edu/teaching/courses/2024-2025pocsverse

The PoCSverse
Random networks: largest components Random Neorks
utshel
32 of 74
Pure random

networks

Generalized Random
Networks

Configuration madel

1 ~=219 ~=228 ~=237 ~ =246 ow tobuild in practi
3.448 (k) =2.986 (k) =2.306 (k) =2.504 (k) =1.856 Mo

References

=255 = 2.64 ~=273 ~ =282 ~=291
(k) =1712 (k)=16 (k)= 1.862 (k) =1386 (k) =149



https://pdodds.w3.uvm.edu/teaching/courses/2024-2025pocsverse

5 The PoCSverse
Outline

Random Networks
Nutshell

33 of 74

Pure random
networks

Definitions

How to build theoreically

al examples

Degree distributions

Generalized Random
Networks
Configuration madel

How to build in practice

ifs

Strange friends
Generalized Random Networks

Largest component
References

How to build in practice



https://pdodds.w3.uvm.edu/teaching/courses/2024-2025pocsverse

The PoCSverse
Models

Random Networks
Nutshell
34 of 74
Pure random
networks
Definitions
How to build theoretically
Some visual exanples
Clittering

Degree distributions

Generalized random networks: Generalized Random
Networks
Configuration model
How to build in practice
Morifs
Strange friends

Largest component

References



https://pdodds.w3.uvm.edu/teaching/courses/2024-2025pocsverse

The PoCSverse

MO delS Random Networks
Nutshell

34 of 74
Pure random
networks

Definitions

How to build theorerically

Some visual examples

Degree distributions

Generalized random networks: Generalized Random

Networks

Configuration model

) Arbitrary degree distribution P, Hhmi v

ifs

Strange friends

Largest component

References



https://pdodds.w3.uvm.edu/teaching/courses/2024-2025pocsverse

The PoCSverse
MO delS Random Networks

Nutshell

34 of 74

Pure random
networks

Definitions

Generalized random networks: Gl Ro B
INetworks

&% Arbitrary degree distribution P o 5 o
How to build in practice

@@ Create (unconnected) nodes with degrees sampled from P,.

References



https://pdodds.w3.uvm.edu/teaching/courses/2024-2025pocsverse

Models

Arbitrary degree distribution P,
Create (unconnected) nodes with degrees sampled from P,

Wire nodes together randomly.
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Create (unconnected) nodes with degrees sampled from P,
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Building random networks: Stubs

Idea: start with a soup of unconnected nodes with stubs

(half-edges):
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Randomly select stubs (not
nodes!) and connect them.

Must have an even number
of stubs.
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Building random networks: First rewiring

Phase?:
@ Now find any (A) self-loops and (B) repeat edges and

randomly rewire them.

(A) §O (B) >O/<
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Building random networks: First rewiring

Now find any (A) self-loops and (B) repeat edges and

randomly rewire them.

iy (B) >Q/<
Being careful: we can’t change the degree of any node, so we
can’t simply move links around.
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Building random networks: First rewiring

Now find any (A) self-loops and (B) repeat edges and

randomly rewire them.

iy (B) >O/<
Being careful: we can’t change the degree of any node, so we

can’t simply move links around.

Simplest solution: randomly rewire two edges at a time.
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General random rewiring algorithm

Randomly choose two edges.
(Or choose problem edge and a

random edge)
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General random rewiring algorithm

Randomly choose two edges.
(Or choose problem edge and a

random edge)

Check to make sure edges are disjoint.

Rewire one end of each edge.
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Randomly choose two edges.
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Check to make sure edges are disjoint.

Rewire one end of each edge.

Node degrees do not change.
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Randomly choose two edges. b

(Or choose problem edge and a
random edge)

Generalized Random
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Check to make sure edges are disjoint.
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Sampling random networks

Phase 2:

Use rewiring algorithm to remove all self and repeat loops.

Phase 3:

Randomize network wiring by applying rewiring algorithm

liberally.
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Random sampling

Problem with only joining up stubs is failure to randomly
sample from all possible networks.
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Random sampling

Problem with only joining up stubs is failure to randomly

sample from all possible networks.
Example from Milo et al. (2003) (41,

() (b)

1 configuration

90 configurations

% frequency of occurrence

Fo My el
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Network motifs

o Idea of motifs ") introduced by Shen-Orr, Alon et al. in 2002.
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Network motifs

Idea of motifs ! introduced by Shen-Orr, Alon et al. in 2002.

Looked at gene expression within full context of
transcriptional regulation networks.

Specific example of Escherichia coli.

Directed network with 577 interactions (edges) and 424
operons (nodes).

Used network randomization to produce ensemble of
alternate networks with same degree frequency V..
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Network motifs

Idea of motifs ! introduced by Shen-Orr, Alon et al. in 2002.

Looked at gene expression within full context of
transcriptional regulation networks.

Specific example of Escherichia coli.

Directed network with 577 interactions (edges) and 424
operons (nodes).
Used network randomization to produce ensemble of

alternate networks with same degree frequency V..

Looked for certain subnetworks (motifs) that appeared more
or less often than expected
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Z only turns on in response to sustained activity in X.
Turning off X rapidly turns oft Z.

Analogy to elevator doors.
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Network motifs

single input module (SIM)

Master switch.
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Network motifs

Note: selection of motifs to test is reasonable but nevertheless

ad-hoc.
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Network motifs

Note: selection of motifs to test is reasonable but nevertheless

ad-hoc.

For more, see work carried out by Wiggins ez 4/. at Columbia.
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The edge-degree distribution:

The degree distribution P, is fundamental for our description of
many complex networks
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The edge-degree distribution:

The degree distribution P, is fundamental for our description of
many complex networks

Again: P, is the degree of randomly chosen node.
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The edge-degree distribution:

The degree distribution P, is fundamental for our description of
many complex networks

Again: P, is the degree of randomly chosen node.

A second very important distribution arises from choosing
randomly on edges rather than on nodes.

Define @}, to be the probability the node at a random end of a
randomly chosen edge has degree k.

Now choosing nodes based on their degree (i.e., size):

Normalized form:
kP,
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The edge-degree distribution:

The degree distribution P, is fundamental for our description of
many complex networks

Again: P, is the degree of randomly chosen node.

A second very important distribution arises from choosing
randomly on edges rather than on nodes.

Define @}, to be the probability the node at a random end of a
randomly chosen edge has degree k.

Now choosing nodes based on their degree (i.e., size):

Normalized form:
kP, IS
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Define @}, to be the probability the node at a random end of a 5
randomly chosen edge has degree k.

Now choosing nodes based on their degree (i.e., size):
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Probability of landing on a node of
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The edge-degree distribution:

For random networks, ()}, is also the probability that a friend
(neighbor) of a random node has £ friends.
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The edge-degree distribution:

For random networks, ()}, is also the probability that a friend
(neighbor) of a random node has £ friends.

Usetul variant on Q)

R, = probability that a friend of a random node has k other
friends.
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The edge-degree distribution:

For random networks, ()}, is also the probability that a friend
(neighbor) of a random node has £ friends.

Usetul variant on Q)

R, = probability that a friend of a random node has k other
friends.

(k+1)Pp.q
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The edge-degree distribution:

For random networks, ()}, is also the probability that a friend
(neighbor) of a random node has £ friends.

Usetul variant on Q)

R, = probability that a friend of a random node has k other
friends.
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The edge-degree distribution:

For random networks, ()}, is also the probability that a friend
(neighbor) of a random node has £ friends.

Usetul variant on Q)

R, = probability that a friend of a random node has k other
friends.

R (k+1)Pp.q SR
= ==

PBrviis L ey ()

Equivalent to friend having degree £ + 1.
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The edge-degree distribution:

Given R, is the probability that a friend has k other friends, then
the average number of friends’ other friends is

= P
R A e+ DBy
k=0

? (k)
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k
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The edge-degree distribution:

Given R, is the probability that a friend has k other friends, then
the average number of friends’ other friends is

= —, (k+1)P,,

= 75 2K+ )Py
K=
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The edge-degree distribution:

Given R, is the probability that a friend has £ other friends, then
the average number of friends’ other friends is

(= > bty = Y- kEE Tt
k=0 k=0

= Z,% S k(k+1)Py
=
E <—]1;> S (k1P - (1) P
k=1

(where we have sneakily matched up indices)
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The edge-degree distribution:

Given R, is the probability that a friend has £ other friends, then
the average number of friends’ other friends is

(= > bty = Y- kEE Tt
k=0 k=0

1

T > k(k+1)Pyyy
K=
E ?]% S (k1P - (1) P
k=1

(where we have sneakily matched up indices)

1 &, ! i
= U (3 —j)Pj (using j = k+1)
7=0
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The edge-degree distribution:

Given R, is the probability that a friend has £ other friends, then
the average number of friends’ other friends is

=0 k=0 (k)
- 3 b+ 1Py
=
E % S (k1P - (1) P
k=1

(where we have sneakily matched up indices)

= % (3 —J)P; (usingj=k+1)
i=0
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The edge-degree distribution:

R

Note: our result, (k) ,, = @ ((k?) — (k)), is true for all
random networks, independent of degree distribution.
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The edge-degree distribution:

Note: our result, (k) , = % ((k?) — (k)), is true for all

random networks, independent of degree distribution.

For standard random networks, recall

(K2) = (k)2 + ().
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Therefore:

Again, neatness of results is a special property of the Poisson
distribution.

So friends on average have (k) other friends, and (k) + 1 total
friends...
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Two reasons why this matters

Reason #1:
Py Average # friends of friends per node is

(kg) = (K} X (k) = <k><1—> ((R2) — (k) = (K2) — ().

2 Key: Average depends on the 1st and 2nd moments of P, and not
just the 1st moment.
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Two reasons why this matters

Reason #1:

Average # friends of friends per node is

(ko) = (k) x (k)p = <k><~1*> (k%) — (k) = (k2) — (k).

Key: Average depends on the 1st and 2nd moments of P, and not
just the 1st moment.

Three peculiarities:

1. We might guess (ko) = (k)({k) — 1) butit’s actually
(k(k —1)).
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just the 1st moment.

Three peculiarities:
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2. If P, has alarge second moment,
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Two reasons why this matters

Average # friends of friends per node is

1

(ko) = (k) x (k)p = <k>< ;

(k%) — (k) = (k%) — (k).

Key: Average depends on the 1st and 2nd moments of P, and not
just the 1st moment.

Three peculiarities:

1. We might guess (ko) = (k)({k) — 1) butit’s actually
(k(k =1)).

2. If P, has alarge second moment,
then (k,) will be big.

(e.g., in the case of a power-law distribution)
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Two reasons why this matters

Average # friends of friends per node is

(ko) = (k) x (k)p = W% (k%) — (k) = (k2) — (k).

Key: Average depends on the 1st and 2nd moments of P, and not
just the 1st moment.

Three peculiarities:

1. We might guess (ko) = (k)({k) — 1) butit’s actually
(k(k—1)).

2. If P, has alarge second moment,
then (k,) will be big.
(e.g., in the case of a power-law distribution)

3. Your friends really are different from you... {331
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Two reasons why this matters

Average # friends of friends per node is

(ko) = (k) x (k)p = W% (k%) — (k) = (k2) — (k).

Key: Average depends on the 1st and 2nd moments of P, and not
just the 1st moment.

Three peculiarities:

1. We might guess (ko) = (k)({k) — 1) butit’s actually
(k(k—1)).

2. If P, has alarge second moment,

then (k,) will be big.

(e.g., in the case of a power-law distribution)

Your friends really are different from you... [3.5]

4. See also: class size paradoxes (nod to: Gelman)
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Two reasons why this matters

More on peculiarity #3:

&% A node’s average # of friends: (k)

& Friend’s average # of friends: )

(k%)

(k)

)

The PoCSverse
Random Networks
Nutshell

55 of 74

Pure random
networks

Generalized Random
Networks

References



https://pdodds.w3.uvm.edu/teaching/courses/2024-2025pocsverse

. The PoCSverse
Two reasons why this matters Random Newors
jutshel
55 of 74
Pure random
; ; networks
More on pecullarlty #3: Dufnns
&% A node’s average # of friends: (k)
2
&% Friend’s average # of friends: % Ceterdlized Raidony

Networks

Py Comparison:

(2t (k2
"G

—~
~cub

References



https://pdodds.w3.uvm.edu/teaching/courses/2024-2025pocsverse

Two reasons why this matters

More on peculiarity #3:

&% A node’s average # of friends: (k)
&% Friend’s average # of friends: <k )
Py Comparison:

(k) (k?)

e R

The PoCSverse
Random Networks
Nutshell

55 of 74

Pure random
networks

Definitions

Generalized Random
Networks

References



https://pdodds.w3.uvm.edu/teaching/courses/2024-2025pocsverse

Two reasons why this matters

More on pcculiarity #3:

&% A node’s average # of friends: (k)

&% Friend’s average # of friends: << 3

Py Comparison:

(k)

e s

(k)

= ()

The PoCSverse
Random Networks
Nutshell

55 of 74

Pure random
networks

Definitions

Generalized Random
Networks



https://pdodds.w3.uvm.edu/teaching/courses/2024-2025pocsverse

Two reasons why this matters

More on peculiarity #3:
&% A node’s average # of friends: (k)
&% Friend’s average # of friends: <
Py Comparison:

(k) e s

P e

The PoCSverse
Random Networks
Nutshell

55 of 74

Pure random
networks

Definitions

Generalized Random
Networks



https://pdodds.w3.uvm.edu/teaching/courses/2024-2025pocsverse

. The PoCSverse
Two reasons why this matters Random Newors
utshel
55 of 74
Pure random
networks

A node’s average # of friends: (k) Y s
Friend’s average # of friends: <k >> (.W‘L‘m;i L
Networks
Comparison: e
a2y (F2 02 + (k)2 o
= (k = (k =k |1+—] > (k

So only if everyone has the same degree (variance= % = 0)
can a node be the same as its friends.
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Two reasons why this matters

A node’s average # of friends: (k)
{k2)

Friend’s average # of friends: * )

Comparison:
(RSB o
= W = 0 g =@ (14 ) > 9

So only if everyone has the same degree (variance= % = 0)
can a node be the same as its friends.

Intuition: for random networks, the more connected a node,
the more likely it is to be chosen as a friend.
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Your friends really are sronsters #winners:!

&% Go on, hurt me: Friends have more coauthors, citations, and

publications. B
& Other horrific studies: your connections on Twitter have

more followers than you, your sexual partners more partners

than you, ...

& The hope: Maybe they have more enemies and diseases too.
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Two reasons why this matters

(Big) Reason #2:

@& (k) p is key to understanding how well random networks are
connected together.
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Two reasons why this matters

(k) g is key to understanding how well random networks are
connected together.

e.g., we'd like to know what’s the size of the largest
component within a network.
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Two reasons why this matters

(k) g is key to understanding how well random networks are
connected together.

e.g., we'd like to know what’s the size of the largest
component within a network.

As N — 00, does our network have a giant component?
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Two reasons why this matters

(k) g is key to understanding how well random networks are
connected together.

e.g., we'd like to know what’s the size of the largest
component within a network.

As N — 00, does our network have a giant component?

Defn: Component = connected subnetwork of nodes such
that 3 path between each pair of nodes in the subnetwork,
and no node outside of the subnetwork is connected to it.
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Two reasons why this matters

(k) g is key to understanding how well random networks are
connected together.

e.g., we'd like to know what’s the size of the largest
component within a network.

As N — 00, does our network have a giant component?

Defn: Component = connected subnetwork of nodes such
that 3 path between each pair of nodes in the subnetwork,
and no node outside of the subnetwork is connected to it.

Defn: Giant component = component that comprises a
non-zero fraction of a network as N — o00.
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Two reasons why this matters

(k) g is key to understanding how well random networks are
connected together.

e.g., we'd like to know what’s the size of the largest
component within a network.

As N — 00, does our network have a giant component?

Defn: Component = connected subnetwork of nodes such
that 3 path between each pair of nodes in the subnetwork,
and no node outside of the subnetwork is connected to it.
Defn: Giant component = component that comprises a
non-zero fraction of a network as N — oo.

Note: Component = Cluster
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Structure of random networks

Giant COlllpOllCllt:

A giant component exists if when we follow a random edge,
we are likely to hit a node with at least 1 other outgoing edge.
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Structure of random networks

A giant component exists if when we follow a random edge,

we are likely to hit a node with at least 1 other outgoing edge.

Equivalently, expect exponential growth in node number as
we move out from a random node.

All of this is the same as requiring (k) p > 1.
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Structure of random networks

A giant component exists if when we follow a random edge,

we are likely to hit a node with at least 1 other outgoing edge.

Equivalently, expect exponential growth in node number as
we move out from a random node.

All of this is the same as requiring (k) p > 1.
Giant component condition (or percolation condition):
(k?) — (k)

<k>R:T>1
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we are likely to hit a node with at least 1 other outgoing edge.
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Networks
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All of this is the same as requiring (k) p > 1.

Giant component condition (or percolation condition):

_ (k) = (k)
(k)r = E e 1

Again, see that the second moment is an essential part of the
story.
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All of this is the same as requiring (k) p > 1. e

Giant component condition (or percolation condition):
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(k)r = E e 1

Again, see that the second moment is an essential part of the
story.
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Therefore when (k) > 1, standard random networks have a
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Carrying on:

o0

x k
d— NG - 3 %e<k>5k
k=0 -

k=0

g i &’fgf_)k

k=0

Now substitute in 6 = 1 — S| and rearrange to obtain:

Sl = ]. En ei<k>sl

== e_<k>e<k>6 — e_<k><1_6,)
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First, we can write (k) in terms of S;:
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& Our dirty trick only works for ER random networks.
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Our dirty trick only works for ER random networks.

The problem: We assumed that neighbors have the same
probability 0 of belonging to the largest component.
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But we know our friends are different from us...
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Our dirty trick only works for ER random networks.

The problem: We assumed that neighbors have the same
probability 0 of belonging to the largest component.

But we know our friends are different from us...
Works for ER random networks because (k) = (k) p.

We need a separate probability 6" for the chance that an edge
leads to the giant (infinite) component.
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Our dirty trick only works for ER random networks.

The problem: We assumed that neighbors have the same
probability 0 of belonging to the largest component.

But we know our friends are different from us...
Works for ER random networks because (k) = (k) p.

We need a separate probability 6" for the chance that an edge
leads to the giant (infinite) component.

We can sort many things out with sensible probabilistic
arguments...
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Giant component

Our dirty trick only works for ER random networks.

The problem: We assumed that neighbors have the same
probability 0 of belonging to the largest component.

But we know our friends are different from us...
Works for ER random networks because (k) = (k) p.

We need a separate probability 6" for the chance that an edge
leads to the giant (infinite) component.
We can sort many things out with sensible probabilistic

arguments...

More detailed investigations will profit from a spot of
Generatingfunctionology. I’
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