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Introduction

Branching networks are useful things:
� Fundamental to material supply and collection
� Supply: From one source to many sinks in 2- or 3-d.
� Collection: Frommany sources to one sink in 2- or 3-d.
� Typically observe hierarchical, recursive self-similar structure

Examples:
� River networks (our focus)
� Cardiovascular networks
� Plants
� Evolutionary trees
� Organizations (only in theory …)

https://pdodds.w3.uvm.edu/teaching/courses/2024-2025pocsverse
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Branching networks are everywhere …

http://hydrosheds.cr.usgs.gov/�

https://pdodds.w3.uvm.edu/teaching/courses/2024-2025pocsverse
http://hydrosheds.cr.usgs.gov/
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Branching networks are everywhere …

http://en.wikipedia.org/wiki/Image:Applebox.JPG�

https://pdodds.w3.uvm.edu/teaching/courses/2024-2025pocsverse
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believed, an ideal scheme should follow. Little doubt can exist that
such an .deal scheme acts as an axis of variation about which natural
phenomena appear to group themselves.

Fig. 8—An ideal diagrammatic summary of the development or a drainage system g.ven for purposes
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The Stage of Integration
The processes responsible for integration may be designated as

follows: (1) abstraction, the loss of identity suffered bv a secondary-
stream at the hands of its primary; (2) absorption, the disappearance
ot a stream save immediately after rainfall; and (3) a sort of adjust
ment or aggression, the attempt made by the main stream to reach
the sea by the shortest route consistent with regional slope. The
reappearance of the skeletonized form out of the intricate plexus
of streams some time after maximum extension definitely marks
the existence of integration (Fig. 6). It constitutes the second and
nnal stage in the developmental history of a drainage system.
_ Abstraction refers to the elimination of a secondary stream byits primary. As the stream swings from side to side it constantlv

I '

The sequential stages recognized in the evolution of a drainage
system are “extension” and “integration”; the first, a stage of
increasing complexity; the second, of simplification.

https://pdodds.w3.uvm.edu/teaching/courses/2024-2025pocsverse
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Shaw andMagnasco’s beautiful erosion simulations��

� Unpublished.

� Though to be destroyed and lost.

� The VHS.

https://pdodds.w3.uvm.edu/teaching/courses/2024-2025pocsverse
https://pdodds.w3.uvm.edu/videos/the-lost-erosion-model.mp4
https://pdodds.w3.uvm.edu/videos/the-lost-erosion-model.mp4
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Geomorphological networks

Definitions
� Drainage basin for a point 𝑝 is the complete region of land

from which overland flow drains through 𝑝.
� Definition most sensible for a point in a stream.
� Recursive structure: Basins contain basins and so on.
� In principle, a drainage basin is defined at every point on a

landscape.
� On flat hillslopes, drainage basins are effectively linear.
� We treat subsurface and surface flow as following the gradient

of the surface.
� Okay for large-scale networks …

https://pdodds.w3.uvm.edu/teaching/courses/2024-2025pocsverse
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Basic basin quantities: 𝑎, 𝑙,𝐿∥,𝐿⟂:

a
L?0

L? Lk = L
a0 ll0Lk0

� 𝑎 = drainage basin
area

� ℓ = length of longest
(main) stream (which
may be fractal)

� 𝐿 = 𝐿∥ =
longitudinal length
of basin

� 𝐿 = 𝐿⟂ = width of
basin

https://pdodds.w3.uvm.edu/teaching/courses/2024-2025pocsverse
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Allometry

� Isometry:
dimensions scale
linearly with each
other.

� Allometry:
dimensions scale
nonlinearly.

https://pdodds.w3.uvm.edu/teaching/courses/2024-2025pocsverse
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Basin allometry

a
L?0

L? Lk = L
a0 ll0Lk0

Allometric
relationships:
�

ℓ ∝ 𝑎ℎ

�

ℓ ∝ 𝐿𝑑

� Combine above:

𝑎 ∝ 𝐿𝑑/ℎ ≡ 𝐿𝐷

https://pdodds.w3.uvm.edu/teaching/courses/2024-2025pocsverse


‘Laws’
� Hack’s law (1957) [3]:

ℓ ∝ 𝑎ℎ

reportedly 0.5 < ℎ < 0.7

� Scaling of main stream length with basin size:

ℓ ∝ 𝐿𝑑
∥

reportedly 1.0 < 𝑑 < 1.1

� Basin allometry:

𝐿∥ ∝ 𝑎ℎ/𝑑 ≡ 𝑎1/𝐷

𝐷 < 2 → basins elongate.
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There are a few more ‘laws’: [1]

Relation: Name or description:

𝑇𝑘 = 𝑇1(𝑅𝑇)𝑘−1 Tokunaga’s law
ℓ ∼ 𝐿𝑑 self-affinity of single channels

𝑛𝜔/𝑛𝜔+1 = 𝑅𝑛 Horton’s law of stream numbers
̄ℓ𝜔+1/ ̄ℓ𝜔 = 𝑅ℓ Horton’s law of main stream lengths
̄𝑎𝜔+1/ ̄𝑎𝜔 = 𝑅𝑎 Horton’s law of basin areas
̄𝑠𝜔+1/ ̄𝑠𝜔 = 𝑅𝑠 Horton’s law of stream segment lengths

𝐿⟂ ∼ 𝐿𝐻 scaling of basin widths
𝑃(𝑎) ∼ 𝑎−𝜏 probability of basin areas
𝑃(ℓ) ∼ ℓ−𝛾 probability of stream lengths

ℓ ∼ 𝑎ℎ Hack’s law
𝑎 ∼ 𝐿𝐷 scaling of basin areas
Λ ∼ 𝑎𝛽 Langbein’s law
𝜆 ∼ 𝐿𝜑 variation of Langbein’s law

https://pdodds.w3.uvm.edu/teaching/courses/2024-2025pocsverse
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Reported parameter values: [1]

Parameter: Real networks:

𝑅𝑛 3.0–5.0
𝑅𝑎 3.0–6.0

𝑅ℓ = 𝑅𝑇 1.5–3.0
𝑇1 1.0–1.5
𝑑 1.1 ± 0.01

𝐷 1.8 ± 0.1
ℎ 0.50–0.70
𝜏 1.43 ± 0.05
𝛾 1.8 ± 0.1

𝐻 0.75–0.80
𝛽 0.50–0.70
𝜑 1.05 ± 0.05

https://pdodds.w3.uvm.edu/teaching/courses/2024-2025pocsverse
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Kind of a mess …

Order of business:
1. Find out how these relationships are connected.
2. Determine most fundamental description.
3. Explain origins of these parameter values

For (3): Many attempts: not yet sorted out …

https://pdodds.w3.uvm.edu/teaching/courses/2024-2025pocsverse
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StreamOrdering:

Method for describing network architecture:
� Introduced by Horton (1945) [4]

� Modified by Strahler (1957) [7]

� Term: Horton-Strahler StreamOrdering [5]

� Can be seen as iterative trimming of a network.

https://pdodds.w3.uvm.edu/teaching/courses/2024-2025pocsverse
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StreamOrdering:

Some definitions:
� A channel head is a point in landscape where flow becomes

focused enough to form a stream.
� A source stream is defined as the stream that reaches from a

channel head to a junction with another stream.
� Roughly analogous to capillary vessels.
� Use symbol 𝜔 = 1, 2, 3, … for stream order.

https://pdodds.w3.uvm.edu/teaching/courses/2024-2025pocsverse
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StreamOrdering:

1. Label all source streams as order 𝜔 = 1 and remove.
2. Label all new source streams as order 𝜔 = 2 and remove.
3. Repeat until one stream is left (order =Ω)
4. Basin is said to be of the order of the last stream removed.
5. Example above is a basin of orderΩ = 3.

https://pdodds.w3.uvm.edu/teaching/courses/2024-2025pocsverse
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StreamOrdering—A large example:
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[source=/data6/dodds/work/rivers/dems/mississippi/figures/figorder_paths_mispi10.ps]

[21−Mar−2000 peter dodds]

https://pdodds.w3.uvm.edu/teaching/courses/2024-2025pocsverse
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StreamOrdering:

Another way to define ordering:
� As before, label all source streams as order 𝜔 = 1.
� Follow all labelled streams downstream
� Whenever two streams of the same order (𝜔) meet, the

resulting stream has order incremented by 1 (𝜔 + 1).

� If streams of different orders 𝜔1
and 𝜔2 meet, then the resultant
stream has order equal to the
largest of the two.

� Simple rule:

𝜔3 = max(𝜔1, 𝜔2) + 𝛿𝜔1,𝜔2

where 𝛿 is the Kronecker delta.

−
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[source=/data6/dodds/work/rivers/dems/mississippi/figures/figorder_paths_mispi10.ps]

[21−Mar−2000 peter dodds]

https://pdodds.w3.uvm.edu/teaching/courses/2024-2025pocsverse
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StreamOrdering:

One problem:
� Resolution of data messes with ordering
� Micro-description changes (e.g., order of a basin may increase)
� …but relationships based on ordering appear to be robust to

resolution changes.

Utility:
� Stream ordering helpfully discretizes a network.
� Goal: understand network architecture

https://pdodds.w3.uvm.edu/teaching/courses/2024-2025pocsverse
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Basic algorithm for extracting networks fromDigital
ElevationModels (DEMs):

� Also:
/Users/dodds/work/rivers/1998dems/kevinlakewaster.c

https://pdodds.w3.uvm.edu/teaching/courses/2024-2025pocsverse
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StreamOrdering:

Resultant definitions:
� A basin of orderΩ has 𝑛𝜔 streams (or sub-basins) of order 𝜔.

� 𝑛𝜔 > 𝑛𝜔+1

� An order 𝜔 basin has area 𝑎𝜔.
� An order 𝜔 basin has a main stream length ℓ𝜔.
� An order 𝜔 basin has a stream segment length 𝑠𝜔

1. an order 𝜔 stream segment is only that part of the stream
which is actually of order 𝜔

2. an order 𝜔 stream segment runs from the basin outlet up to
the junction of two order 𝜔 − 1 streams

https://pdodds.w3.uvm.edu/teaching/courses/2024-2025pocsverse
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Horton’s laws
Self-similarity of river networks
� First quantified by Horton (1945) [4], expanded by Schumm

(1956) [6]

Three laws:
� Horton’s law of stream numbers:

𝑛𝜔/𝑛𝜔+1 = 𝑅𝑛 > 1

� Horton’s law of stream lengths:

̄ℓ𝜔+1/ ̄ℓ𝜔 = 𝑅ℓ > 1

� Horton’s law of basin areas:

̄𝑎𝜔+1/ ̄𝑎𝜔 = 𝑅𝑎 > 1

https://pdodds.w3.uvm.edu/teaching/courses/2024-2025pocsverse
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Horton’s laws

Horton’s Ratios:
� So …laws are defined by three ratios:

𝑅𝑛, 𝑅ℓ, and𝑅𝑎.

� Horton’s laws describe exponential decay or growth:

𝑛𝜔 = 𝑛𝜔−1/𝑅𝑛

= 𝑛𝜔−2/𝑅 2
𝑛

⋮
= 𝑛1/𝑅 𝜔−1

𝑛

= 𝑛1𝑒−(𝜔−1)ln𝑅𝑛

https://pdodds.w3.uvm.edu/teaching/courses/2024-2025pocsverse
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Horton’s laws

Similar story for area and length:
�

̄𝑎𝜔 = ̄𝑎1𝑒(𝜔−1)ln𝑅𝑎

�

̄ℓ𝜔 = ̄ℓ1𝑒(𝜔−1)ln𝑅ℓ

� As stream order increases, number drops and area and length
increase.

https://pdodds.w3.uvm.edu/teaching/courses/2024-2025pocsverse
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Horton’s laws

A fewmore things:
� Horton’s laws are laws of averages.
� Averaging for number is across basins.
� Averaging for stream lengths and areas is within basins.
� Horton’s ratios go a long way to defining a branching

network …
� But we need one other piece of information …

https://pdodds.w3.uvm.edu/teaching/courses/2024-2025pocsverse
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Horton’s laws

A bonus law:
� Horton’s law of stream segment lengths:

̄𝑠𝜔+1/ ̄𝑠𝜔 = 𝑅𝑠 > 1

� Can show that𝑅𝑠 = 𝑅ℓ.
� Insert assignment question�

https://pdodds.w3.uvm.edu/teaching/courses/2024-2025pocsverse
https://pdodds.w3.uvm.edu/teaching/courses/2024-2025pocsverse/assignments/
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Horton’s laws in the real world:
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Horton’s laws-at-large

Blood networks:
� Horton’s laws hold for sections of cardiovascular networks
� Measuring such networks is tricky and messy …
� Vessel diameters obey an analogous Horton’s law.

https://pdodds.w3.uvm.edu/teaching/courses/2024-2025pocsverse
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Data from real blood networks

Network 𝑅𝑛 𝑅𝑟 𝑅ℓ − ln𝑅𝑟
ln𝑅𝑛

− ln𝑅ℓ
ln𝑅𝑛

𝛼

West et al. – – – 1/2 1/3 3/4

rat (PAT) 2.76 1.58 1.60 0.45 0.46 0.73

cat (PAT) [11] 3.67 1.71 1.78 0.41 0.44 0.79

dog (PAT) 3.69 1.67 1.52 0.39 0.32 0.90

pig (LCX) 3.57 1.89 2.20 0.50 0.62 0.62
pig (RCA) 3.50 1.81 2.12 0.47 0.60 0.65
pig (LAD) 3.51 1.84 2.02 0.49 0.56 0.65

human (PAT) 3.03 1.60 1.49 0.42 0.36 0.83
human (PAT) 3.36 1.56 1.49 0.37 0.33 0.94

https://pdodds.w3.uvm.edu/teaching/courses/2024-2025pocsverse
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Horton’s laws

Observations:
� Horton’s ratios vary:

𝑅𝑛 3.0–5.0
𝑅𝑎 3.0–6.0
𝑅ℓ 1.5–3.0

� No accepted explanation for these values.
� Horton’s laws tell us how quantities vary from level to level …
� …but they don’t explain how networks are structured.

https://pdodds.w3.uvm.edu/teaching/courses/2024-2025pocsverse
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Tokunaga’s law

Delving deeper into network architecture:
� Tokunaga (1968) identified a clearer picture of network

structure [8, 9, 10]

� As per Horton-Strahler, use stream ordering.
� Focus: describe how streams of different orders connect to

each other.
� Tokunaga’s law is also a law of averages.

https://pdodds.w3.uvm.edu/teaching/courses/2024-2025pocsverse
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Network Architecture

Definition:
� 𝑇𝜇,𝜈 = the average number of side streams of order 𝜈 that

enter as tributaries to streams of order 𝜇
� 𝜇, 𝜈 = 1, 2, 3, …
� 𝜇 ≥ 𝜈 + 1
� Recall each stream segment of order 𝜇 is ‘generated’ by two

streams of order 𝜇 − 1
� These generating streams are not considered side streams.

https://pdodds.w3.uvm.edu/teaching/courses/2024-2025pocsverse


The PoCSverse
Branching Networks I
48 of 56
Introduction
Definitions

Allometry

Laws

StreamOrdering

Horton’s Laws

Tokunaga’s Law

Nutshell

References

Network Architecture

Tokunaga’s law [8, 9, 10]

� Property 1: Scale independence—depends only on difference
between orders:

𝑇𝜇,𝜈 = 𝑇𝜇−𝜈

� Property 2: Number of side streams grows exponentially with
difference in orders:

𝑇𝜇,𝜈 = 𝑇1(𝑅𝑇)𝜇−𝜈−1

� We usually write Tokunaga’s law as:

𝑇𝑘 = 𝑇1(𝑅𝑇)𝑘−1 where𝑅𝑇 ≃ 2

.

https://pdodds.w3.uvm.edu/teaching/courses/2024-2025pocsverse
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Tokunaga’s law—an example:

𝑇1 ≃ 2

𝑅𝑇 ≃ 4

https://pdodds.w3.uvm.edu/teaching/courses/2024-2025pocsverse
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TheMississippi

ATokunaga graph:
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Nutshell:
� Branching networks show remarkable self-similarity over many

scales.

� There are many interrelated scaling laws.

� Horton-Strahler Stream ordering gives one useful way of getting at
the architecture of branching networks.

� Horton’s laws reveal self-similarity.

� Horton’s laws can be misinterpreted as suggesting a pure hierarchy.

� Tokunaga’s laws neatly describe network architecture.

� Branching networks exhibit a mixed hierarchical structure.

� Horton and Tokunaga can be connected analytically.

� Surprisingly:

𝑅𝑛 =
(2 + 𝑅𝑇 + 𝑇1) + √(2 + 𝑅𝑇 + 𝑇1)2 − 8𝑅𝑇

2

https://pdodds.w3.uvm.edu/teaching/courses/2024-2025pocsverse
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Crafting landscapes—Far Lands or Bust�:

https://pdodds.w3.uvm.edu/teaching/courses/2024-2025pocsverse
http://farlandsorbust.com
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