Branching Networks I

Last updated: 2024/10/17, 08:34:49 EDT

Principles of Complex Systems, Vols. 1, 2, & 3D CSYS/MATH 6701, 6713, & a pretend number, 2024-2025

Prof. Peter Sheridan Dodds

Computational Story Lab | Vermont Complex Systems Center Santa Fe Institute | University of Vermont

Branching Networks I 1 of 53

Introduction

Stream Orderin

Tokunaga's Lav

Horton's Laws Reference

Introduction

Horton's Laws

Tokunaga's Law

Branching networks are everywhere ...

http://hydrosheds.cr.usgs.gov/ 🗹

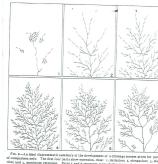
Branching Networks I 7 of 53

Introduction

Stream Orderin Horton's Laws

Tokunaga's Lav Nutshell

Reference



The sequential stages recognized in the evolution of a drainage system are "extension" and "integration"; the first, a stage of increasing complexity; the second, of simplification.

Outline

Introduction

Definitions

Allometry Laws

Stream Ordering

Horton's Laws

Tokunaga's Law

Nutshell

References

Branching networks are everywhere ...

http://en.wikipedia.org/wiki/Image:Applebox.JPG

Geomorphological networks

Branching Networks I Introduction

Stream Ordering Horton's Laws

Tokunaga's Law Nutshell References

Definitions

 Drainage basin for a point p is the complete region of land from which overland flow drains through p.

Definition most sensible for a point in a stream.

Recursive structure: Basins contain basins and so on.

In principle, a drainage basin is defined at every point on a landscape.

🗞 On flat hillslopes, drainage basins are effectively linear.

We treat subsurface and surface flow as following the gradient of the surface.

Okay for large-scale networks ...

Branching Networks I 12 of 53

Stream Ordering

The PoCSverse

Introduction

Stream Orderin

Horton's Law

Nutshell

Tokunaga's Law

Branching Networks I 10 of 53

Horton's Law

Tokunaga's Law

Nutshell

Introduction

Branching networks are useful things:

- Fundamental to material supply and collection
- Supply: From one source to many sinks in 2- or 3-d.
- & Collection: From many sources to one sink in 2- or 3-d.
- Recursive self-similar structure

Examples:

- River networks (our focus)
- & Cardiovascular networks
- Plants
- & Evolutionary trees
- Organizations (only in theory ...)

6 of 53

Stream Ordering Horton's Laws Tokunaga's Lav

Branching Networks I

An early thought piece: Extension and Integration

'The Development of Drainage Systems: A Synoptic

Waldo S. Glock,

The Geographical Review, **21**, 475–482, 1931. ^[2]

Initiation, Elongation

Abstraction, Absorption.

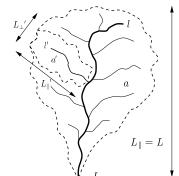
Branching Networks I

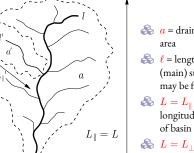
9 of 53

Horton's Laws

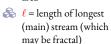
Tokunaga's Lav

Basic basin quantities: $a, l, L_{\parallel}, L_{\perp}$:





a = drainage basin



& $L = L_{\parallel} =$ longitudinal length

& $L = L_{\perp}$ = width of basin

Branching Networks I 13 of 53

Introduction Definitions

Stream Orderin

Horton's Law Tokunaga's Law

Allometry

& Isometry: dimensions scale linearly with each other.

Introduction

Stream Ordering Horton's Laws Tokunaga's Law Nutshell

There are a few more 'laws': $^{[1]}_{5\,of53}$

Reported parameter values: [1]

Relation:	Name or description:
$T_k = T_1(R_T)^{k-1}$	Tokunaga's law
$\ell \sim L^d$	self-affinity of single channels
$n_{\omega}/n_{\omega+1} = R_n$	Horton's law of stream numbers
$\bar{\ell}_{\omega+1}/\bar{\ell}_{\omega} = R_{\ell}$	Horton's law of main stream lengths
$\bar{a}_{\omega+1}/\bar{a}_{\omega}=R_a$	Horton's law of basin areas
$\bar{s}_{\omega+1}/\bar{s}_{\omega} = R_s$	Horton's law of stream segment lengths
$L_{\perp} \sim L^H$	scaling of basin widths
$P(a) \sim a^{-\tau}$	probability of basin areas
$P(\ell) \sim \ell^{-\gamma}$	probability of stream lengths
$\ell \sim a^h$	Hack's law
$a \sim L^D$	scaling of basin areas
$\Lambda \sim a^{eta}$	Langbein's law
$\lambda \sim L^{\varphi}$	variation of Langbein's law

Stream Ordering: Branching Networks I 19 of 53

Allometry

Laws Stream Orderin

Horton's Laws Tokunaga's Law

Nutshell References

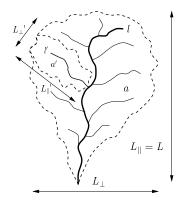
Method for describing network architecture:

A Introduced by Horton (1945) [4]

Modified by Strahler (1957) [7] Term: Horton-Strahler Stream Ordering [5]

& Can be seen as iterative trimming of a network.

Basin allometry



Allometric relationships:

 $\ell \propto a^h$

 $\ell \propto L^d$ Combine above:

 $a \propto L^{d/h} \equiv L^D$

Branching Networks I 16 of 53

Introduction Allometry

Stream Ordering Horton's Laws

Tokunaga's Law

R_n	3.0-5.0
R_a	3.0-6.0
$R_{\ell} = R_T$	1.5-3.0
T_1	1.0-1.5
d	1.1 ± 0.01
D	1.8 ± 0.1
h	0.50-0.70
au	1.43 ± 0.05
γ	1.8 ± 0.1
H	0.75 - 0.80
β	0.50-0.70
ω	1.05 ± 0.05

Parameter: Real networks:

Laws

Horton's Laws Tokunaga's Law

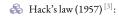
Nutshell

Stream Ordering:

Some definitions:

- A channel head is a point in landscape where flow becomes focused enough to form a stream.
- A source stream is defined as the stream that reaches from a channel head to a junction with another stream.
- Roughly analogous to capillary vessels.
- & Use symbol $\omega = 1, 2, 3, ...$ for stream order.

'Laws'



 $\ell \propto a^h$

reportedly 0.5 < h < 0.7

& Scaling of main stream length with basin size:

 $\ell \propto L_{\shortparallel}^d$

reportedly 1.0 < d < 1.1

Basin allometry:

 $L_{\parallel} \propto a^{h/d} \equiv a^{1/\overline{D}}$

 $D < 2 \rightarrow$ basins elongate.

Kind of a mess ...

Order of business:

- 1. Find out how these relationships are connected.
- 2. Determine most fundamental description.
- 3. Explain origins of these parameter values

For (3): Many attempts: not yet sorted out ...

Stream Ordering: Branching Networks I 21 of 53

Introduction

Laws

Horton's Laws Tokunaga's Lav

Stream Ordering

Nutshell

1. Label all source streams as order $\omega = 1$ and remove.

- 2. Label all new source streams as order $\omega = 2$ and remove.
- 3. Repeat until one stream is left (order = Ω)
- 4. Basin is said to be of the order of the last stream removed.
- 5. Example above is a basin of order $\Omega = 3$.

Branching Networks I 25 of 53 Introduction

The PoCSverse

Introduction

Stream Ordering

Tokunaga's Law

Branching Networks I 24 of 53

Stream Ordering

Tokunaga's Law

Horton's Law

Nutshell

Nutshell

References

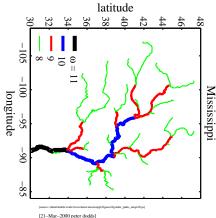
Horton's Law

Branching Networks I 23 of 53

Horton's Laws

Tokunaga's Law

Stream Ordering—A large example:



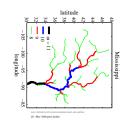
Stream Ordering:

Another way to define ordering:

- As before, label all source streams as order $\omega = 1$.
- Follow all labelled streams downstream
- Whenever two streams of the same order (ω) meet, the resulting stream has order incremented by 1 ($\omega + 1$).
- \mathcal{L}_1 If streams of different orders ω_1 and ω_2 meet, then the resultant stream has order equal to the largest of the two.
- Simple rule:

$$\omega_3 = \max(\omega_1, \omega_2) + \delta_{\omega_1, \omega_2}$$

where δ is the Kronecker delta.



Stream Ordering:

One problem:

- Resolution of data messes with ordering
- Micro-description changes (e.g., order of a basin may increase)
- 🚵 ...but relationships based on ordering appear to be robust to resolution changes.

Utility:

- Stream ordering helpfully discretizes a network.
- & Goal: understand network architecture

Branching Networks I 26 of 53

Introduction

Stream Ordering Horton's Law

Branching Networks I 27 of 53

Introduction

Stream Ordering

Horton's Law

Tokunaga's Law

Tokunaga's Law

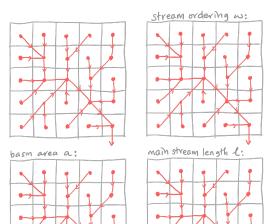
Basic algorithm for extracting networks from Digital Elevation Models (DEMs):

/Users/dodds/work/rivers/1998dems/kevinlakewaster.c

Branching Networks I 28 of 53 Introduction

Stream Ordering Horton's Law

Tokunaga's Law



The PoCSverse Branching Networks I 29 of 53 Stream Ordering:

Stream Ordering Resultant definitions:

Horton's Laws Tokunaga's Law

Nutshell References

 \mathbb{A} A basin of order Ω has n_{ω} streams (or sub-basins) of order ω . $n_{\omega} > n_{\omega+1}$

- An order ω basin has area a_{ω} .
- An order ω basin has a main stream length ℓ_{ω} .
- An order ω basin has a stream segment length s_{ω}
 - 1. an order ω stream segment is only that part of the stream which is actually of order ω
 - 2. an order ω stream segment runs from the basin outlet up to the junction of two order $\omega-1$ streams

Horton's laws

30 of 53

Stream Ordering

Branching Networks I

Horton's Laws Tokunaga's Law

Laws

Nutshell References

Self-similarity of river networks

First quantified by Horton (1945) [4], expanded by Schumm $(1956)^{[6]}$

Three laws:

A Horton's law of stream numbers:

$$n_{\omega}/n_{\omega+1} = R_n > 1$$

A Horton's law of stream lengths:

$$\bar{\ell}_{\omega+1}/\bar{\ell}_{\omega}=R_{\ell}>1$$

A Horton's law of basin areas:

$$\boxed{\bar{a}_{\omega+1}/\bar{a}_{\omega}=R_a>1}$$

Horton's laws

Branching Networks I 31 of 53 Introduction

Stream Ordering Horton's Laws

Tokunaga's Law Nutshell

Horton's Ratios:

So ...laws are defined by three ratios:

$$R_n,\ R_\ell,\ {\rm and}\ R_a.$$

A Horton's laws describe exponential decay or growth:

$$\begin{split} n_{\omega} &= n_{\omega-1}/R_n \\ &= n_{\omega-2}/R_n^{\ 2} \\ \vdots \\ &= n_1/R_n^{\ \omega-1} \\ &= n_1 e^{-(\omega-1)\ln R_n} \end{split}$$

Branching Networks I 34 of 53

Branching Networks I 32 of 53

Introduction

Stream Ordering

Tokunaga's Law

Nutshell

References

Horton's Law

Stream Ordering

Horton's Laws Tokunaga's Law

Nutshell

References

Branching Networks I 35 of 53

Stream Ordering

Introduction

Horton's Laws

Nutshell

Tokunaga's Law

Horton's laws

Similar story for area and length:

8

$$\bar{a}_{\omega} = \bar{a}_1 e^{(\omega-1) {\rm ln} R_a}$$

8

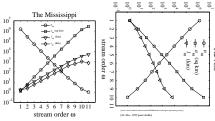
$$\bar{\ell}_{\omega} = \bar{\ell}_1 e^{(\omega-1)\ln R_{\ell}}$$

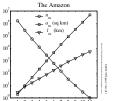
As stream order increases, number drops and area and length

Introduction

Stream Ordering

Horton's Laws Tokunaga's Law





Horton's laws

A few more things:

Horton's laws

A bonus law:

- A Horton's laws are laws of averages.
- Averaging for number is across basins.
- Averaging for stream lengths and areas is within basins.
- Horton's ratios go a long way to defining a branching network ...
- & But we need one other piece of information ...

A Horton's law of stream segment lengths:

 \mathcal{L} Can show that $R_{\mathfrak{L}} = R_{\ell}$.

Insert assignment question

 $\bar{s}_{\omega+1}/\bar{s}_{\omega} = R_s > 1$

Introduction

Stream Ordering

Horton's Laws Tokunaga's Law

Nutshell

Blood networks:

- Measuring such networks is tricky and messy ...
- Vessel diameters obey an analogous Horton's law.

Horton's laws-at-large

Inc POLSVETSE
Branching Networks I Horton's laws in the real world: 36 of 53

- A Horton's laws hold for sections of cardiovascular networks

Data from real blood networks

Branching Networks I 38 of 53 Introduction

Stream Ordering Horton's Laws

Reference

Tokunaga's Lav

Network R_n R_r R_ℓ $-\frac{\ln R_r}{\ln R_n}$	$-\frac{\ln R_{\ell}}{\ln R_n}$	α
West <i>et al</i> . – – 1/2	1/3	3/4
rat (PAT) 2.76 1.58 1.60 0.45	0.46	0.73
cat (PAT) [11] 3.67 1.71 1.78 0.41	0.44	0.79
dog (PAT) 3.69 1.67 1.52 0.39	0.32	0.90
pig (LCX) 3.57 1.89 2.20 0.50	0.62	0.62
pig (RCA) 3.50 1.81 2.12 0.47	0.60	0.65
pig (LAD) 3.51 1.84 2.02 0.49	0.56	0.65
human (PAT) 3.03 1.60 1.49 0.42	0.36	0.83
human (PAT) 3.36 1.56 1.49 0.37	0.33	0.94

lo D

In D

Branching Networks I Horton's laws

Allometry

Stream Orderins

Horton's Laws

Tokunaga's Lav Nutshell References

Observations:

A Horton's ratios vary:

 R_n 3.0-5.0 R_a 3.0-6.0 R_{ℓ} 1.5–3.0

- No accepted explanation for these values.
- A Horton's laws tell us how quantities vary from level to level ...
- ...but they don't explain how networks are structured.

Tokunaga's law

Branching Networks I

Laws

Stream Ordering

Horton's Laws Tokunaga's Law

Nutshell

Delving deeper into network architecture:

- Tokunaga (1968) identified a clearer picture of network structure [8, 9, 10]
- As per Horton-Strahler, use stream ordering.
- Focus: describe how streams of different orders connect to each other.
- Tokunaga's law is also a law of averages.

Network Architecture

41 of 53 Introduction

Laws

Stream Ordering Horton's Laws

Branching Networks I

Tokunaga's Lav Nutshell

Definition:

 $\underset{\nu}{\&} T_{\mu\nu}$ = the average number of side streams of order ν that enter as tributaries to streams of order μ

- & μ , ν = 1, 2, 3, ...
- & $\mu \geq \nu + 1$
- Recall each stream segment of order μ is 'generated' by two streams of order $\mu - 1$
- These generating streams are not considered side streams.

The PoCSverse Branching Networks I 42 of 53

Introduction

Stream Orderin

Horton's Laws Tokunaga's Law

Nutshell

References

Branching Networks I 43 of 53

Stream Ordering

Horton's Laws

Tokunaga's Law Nutshell

References

Branching Networks I 44 of 53

Introduction

Stream Ordering Horton's Laws

Tokunaga's Law

References

Network Architecture

Tokunaga's law [8, 9, 10]

Property 1: Scale independence—depends only on difference between orders:

$$T_{\mu,\nu} = T_{\mu-\nu}$$

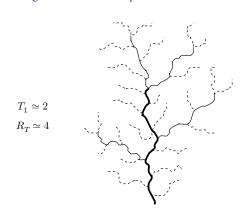
Property 2: Number of side streams grows exponentially with difference in orders:

$$T_{\mu,\nu} = T_1(R_T)^{\mu-\nu-1}$$

We usually write Tokunaga's law as:

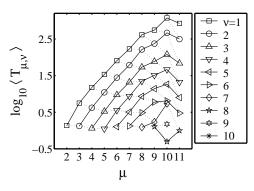
$$T_k = T_1(R_T)^{k-1}$$
 where $R_T \simeq 2$

Tokunaga's law—an example:



A Tokunaga graph:

The Mississippi



The PoCSverse Branching Networks I 45 of 53

Introduction

Stream Orderin

Horton's Laws

Tokunaga's Law

Branching Networks I 46 of 53

Introduction

Horton's Laws

Tokunaga's Law

Nutshell:

- Branching networks show remarkable self-similarity over many scales.
- There are many interrelated scaling laws.
- Horton-Strahler Stream ordering gives one useful way of getting at the architecture of branching networks.
- Horton's laws reveal self-similarity.
- Horton's laws can be misinterpreted as suggesting a pure hierarchy.
- Nokunaga's laws neatly describe network architecture.
- Branching networks exhibit a mixed hierarchical structure.
- Horton and Tokunaga can be connected analytically.
- Surprisingly:

$$R_n = \frac{(2 + R_T + T_1) + \sqrt{(2 + R_T + T_1)^2 - 8R_T}}{2}$$

Crafting landscapes—Far Lands or Bust ☑:

Branching Networks I

Introduction

Horton's Laws

Tokunaga's Law

Reference

References 1

[1] P. S. Dodds and D. H. Rothman. Unified view of scaling laws for river networks. Physical Review E, 59(5):4865–4877, 1999. pdf

[2] W. S. Glock. The development of drainage systems: A synoptic view. The Geographical Review, 21:475-482, 1931. pdf

[3] J. T. Hack.

Studies of longitudinal stream profiles in Virginia and Maryland.

United States Geological Survey Professional Paper, 294-B:45-97, 1957. pdf

Branching Networks I 48 of 53

Allometry

Stream Orderin

Horton's Laws Tokunaga's Law Nutshell

References II

[4] R. E. Horton. Erosional development of streams and their drainage basins; hydrophysical approach to quatitative morphology. Bulletin of the Geological Society of America, 56(3):275-370, 1945. pdf

[5] I. Rodríguez-Iturbe and A. Rinaldo. Fractal River Basins: Chance and Self-Organization. Cambridge University Press, Cambrigde, UK, 1997.

[6] S. A. Schumm. Evolution of drainage systems and slopes in badlands at Perth Amboy, New Jersey. Bulletin of the Geological Society of America, 67:597-646,

References III

Branching Networks I 49 of 53

Stream Ordering Horton's Laws Tokunaga's Law

Nutshell Reference [7] A. N. Strahler.

1956. pdf

Hypsometric (area altitude) analysis of erosional topography. Bulletin of the Geological Society of America, 63:1117-1142, 1952.

[8] E. Tokunaga.

The composition of drainage network in Toyohira River Basin and the valuation of Horton's first law. Geophysical Bulletin of Hokkaido University, 15:1-19, 1966. pdf 🖸

[9] E. Tokunaga.

Consideration on the composition of drainage networks and

Geographical Reports of Tokyo Metropolitan University, 13:G1−27, 1978. pdf 🗷

Branching Networks I

Introduction Laws

> Stream Ordering Horton's Laws

Tokunaga's Lav Nutshell

References

References IV

Ordering of divide segments and law of divide segment numbers.

Transactions of the Japanese Geomorphological Union, 5(2):71-77, 1984.

[11] D. L. Turcotte, J. D. Pelletier, and W. I. Newman. Networks with side branching in biology. Journal of Theoretical Biology, 193:577-592, 1998. pdf Branching Networks I 52 of 53

The PoCSverse

Introduction

Stream Orderin

Horton's Law

Tokunaga's Law

Nutshell

References

Branching Networks I 51 of 53

Stream Orderin Horton's Law

Tokunaga's Law Nutshell

References

Branching Networks I 53 of 53

Stream Ordering

Introduction

Horton's Law

Tokunaga's Lav

Nutshell References