Principles of Complex Systems, Vols. 1, 2, & 3D
P <. Whats CSYS/MATH 6701, 6713, & a pretend number
8 ;« The University of Vermont, Fall 2024
gI"S5” Story? “The seal is for marksmanship and the gorilla is for sand racing” (&

Assignment 06

Buster Bluth (4, Arrested Development, Afternoon Delight, S2E06.

Due: Monday, October 7, by 11:59 pm
https://pdodds.w3.uvm.edu/teaching/courses/2024-2025pocsverse /assignments /06 /
Some useful reminders:

Deliverator: Prof. Peter Sheridan Dodds (contact through Teams)

Office: The Ether and/or Innovation, fourth floor

Office hours: See Teams calendar

Course website: https://pdodds.w3.uvm.edu/teaching/courses/2024-2025pocsverse
Overleaf: IATEX templates and settings for all assignments are available at

https://www.overleaf.com /read /tsxfwwmwdgxj.

Some guidelines:

1. Each student should submit their own assignment.
2. All parts are worth 3 points unless marked otherwise.

3. Please show all your work/workings/workingses clearly and list the names of others with
whom you eenspired collaborated.

4. We recommend that you write up your assignments in IATEX (using the Overleaf
template). However, if you are new to IATEX or it is all proving too much, you may
submit handwritten versions. Whatever you do, please only submit single PDFs.

5. For coding, we recommend you improve your skills with Python, R, and/or Julia.
Please do not use any kind of Al thing. The (evil) Deliverator uses (evil) Matlab.

6. There is no need to include your code but you can if you are feeling especially proud.

Assignment submission:
Via Brightspace (which is not to be confused with the death vortex of the same name).

Again: One PDF document per assignment only.

https://www.youtube.com/watch?v=0NUoNnX045A
https://compstorylab.org/archetypometrics/cards/Arrested-Development-Buster-Bluth-2000-464-341.pdf
https://en.wikipedia.org/wiki/Afternoon_Delight_(Arrested_Development)
https://www.imdb.com/title/tt0515207/
https://arresteddevelopment.fandom.com/wiki/Afternoon_Delight
https://tvtropes.org/pmwiki/pmwiki.php/Recap/ArrestedDevelopmentS2E6AfternoonDelight
https://pdodds.w3.uvm.edu/teaching/courses/2024-2025pocsverse/assignments/06/
https://pdodds.w3.uvm.edu/
https://pdodds.w3.uvm.edu/teaching/courses/2024-2025pocsverse

Please submit your project’s current draft in pdf format via Brightspace four days after the
due date for this assignment (normally a Friday). For teams, please list all team member
names clearly at the start.

1. (3 + 3 + 3 points for each plot)
Code up Simon'’s rich-gets-richer model.

Plot Zipf distributions for p = 0.10, 0.01, and 0.001. and perform regressions to
testa=1—p.
Run the simulation for long enough to produce decent scaling laws (recall: three

orders of magnitude is good).

Averaging over simulations will produce cleaner results so try 10 and then, if
possible, 100.

Note the first mover advantage.
2. (3 4 3 + 3 points) For Herbert Simon's rich-get-richer model of what we've called

Random Competitive Replication, we found in class that the normalized number of
groups in the long time limit, n;, satisfies the following difference equation:

(k= D(1—p)
Ng_1 1+ (1—pk

(1)

where k > 2. The model parameter p is the probability that a newly arriving node
forms a group of its own (or is a novel word, starts a new city, has a unique flavor,
etc.). For k =1, we have instead

np=p—(1-pm (2)
which directly gives us ny in terms of p.

(a) Derive the exact solution for n; in terms of Gamma functions and ultimately
the Beta function.

(b) From this exact form, determine the large k behavior for ny (~ £~7) and
identify the exponent 7 in terms of p. You are welcome to use the fact that
B(z,y) ~ x~Y for large x and fixed y (or use Stirling's approximation
directly on the Gamma functions that will appear).

Note: Simon's own calculation is slightly awry. The end result is good however.

Hint—Setting up Simon’s model:
http://www.youtube.com /watch?v=0TzI5J5W1K0

2

http://www.youtube.com/watch?v=OTzI5J5W1K0

The hint's output including the bits not in the video:

/ (e-OC1-p) ,
kz - y - ’[L'j Ae-1]
AT 1+ (el (¥ =
N - i gk Do
v & i ==
[o)] |-)
i ‘\Lé”'*" \ {/\:" (:J {1‘%_2
O) e 4
w3)00 i,
| A (1-¢ (ke - T
My ()71 A
| Trl0d)
'7‘ A = ' /ﬁ/v\"l’
5 ‘7(“*\'»_ \/LF(’A)' /1{ .
,".\.‘. o \Y\’Hﬁ
/w‘w N\ N\
STk ek) (2 () (1+24) . >
| & o ; ! \ St ({14 'L,»\‘%(J et).
k /- [= & le-) - 1) =2° (3+¢ .
= Z (& 4 I&J) \ V) ‘>k 1 [¢ + J — j:i_ % ,y -“I
At e l)\J i Z (’\, Ulz"%
~ le \J(i\) 5(|)
=y

3. (3 points) What happens to 7 in the limits p — 0 and p — 1?7 Explain in a
sentence or two what's going on in these cases and how the specific limiting value
of v makes sense.

4. (6 + 3 + 3 points)

In Simon's original model, the expected total number of distinct groups at time ¢
is pt. Recall that each group is made up of elements of a particular flavor.

In class, we derived the fraction of groups containing only 1 element, finding

Ni(t 1
n® — 1(8)

pt 2—p

(a) (3 + 3 points)

Find the form of nég) and nég), the fraction of groups that are of size 2 and
size 3.

(b) Using data for James Joyce's Ulysses (see below), first show that Simon's
estimate for the innovation rate pes; =~ 0.115 is reasonably accurate for the
version of the text's word counts given below.

Hint: You should find a slightly higher number than Simon did.

Hint: Do not compute pes; from an estimate of ~.

(c) Now compare the theoretical estimates for n'?, n'?, and n'?, with empirical

values you obtain for Ulysses.

The data (links are clickable):

« Matlab file (sortedcounts = word frequency f in descending order,
sortedwords = ranked words):
https://pdodds.w3.uvm.edu/teaching/courses/2024-
2025pocsverse/docs/ulysses.mat

 Colon-separated text file (first column = word, second column = word
frequency f):
https://pdodds.w3.uvm.edu/teaching/courses/2024-
2025pocsverse/docs/ulysses.txt

Data taken from http://www.doc.ic.ac.uk/~rac101/concord /texts/ulysses/ (4.

Note that some matching words with differing capitalization are recorded as
separate words.

. (3+3)

Repeat the preceding data analysis for Ulysses for Jane Austen’s “Pride and
Prejudice” and Alexandre Dumas’ “Le comte de Monte-Cristo” (in the original
French), working this time from the original texts.

For each text, measure the fraction of words that appear only once, twice, and
three times, and compare them with the theoretical values offered by Simon'’s
model.

Download text (UTF-8) versions from https://www.gutenberg.org (4"

You will need to parse and count words using your favorite/most-hated language
(Python, R, Perl-ha-ha, etc.).

Gutenberg adds some (non-uniform) boilerplate to the beginning and ends of texts,
and you should remove that first. Easiest to do so by inspection for just two texts.

For a curated version of Gutenberg, see this paper by Gerlach and Font-Clos:
https://arxiv.org/abs/1812.08092 (',

https://pdodds.w3.uvm.edu/teaching/courses/2024-2025pocsverse/docs/ulysses.mat
https://pdodds.w3.uvm.edu/teaching/courses/2024-2025pocsverse/docs/ulysses.mat
https://pdodds.w3.uvm.edu/teaching/courses/2024-2025pocsverse/docs/ulysses.txt
https://pdodds.w3.uvm.edu/teaching/courses/2024-2025pocsverse/docs/ulysses.txt
http://www.doc.ic.ac.uk/~rac101/concord/texts/ulysses/
https://www.gutenberg.org
https://www.gutenberg.org/ebooks/42671
https://www.gutenberg.org/ebooks/17989
https://arxiv.org/abs/1812.08092

6. (3+3)
You've earlier determined the theoretical scaling of the largest sample of a
power-law size distribution as a function of sample number.
Let's see how well things match up with simulations.
For v = 5/2, generate n = 1000 sets each of N = 10, 10%, 10, 10%, 10°, and 10°
samples, using P, = ck=%2? with k =1,2,3,...
How do we computationally sample from a discrete probability distribution?

Note: We examined some of these in class. See slides on power-law size
distributions.

Perishing Monk Hint: You can use a continuum approximation to speed things up.
See below.

(a) For each value of sample size N, sequentially create n sets of N samples. For
each set, determine and record the maximum value of the set’'s N samples.
(You can discard each set once you have found the maximum sample.)

You should have ky.x; for e =1,2,...,n where 7 is the set number. For
each IV, plot the n values of k. ; as a function of i.

If you think of n as time ¢, you will be plotting a kind of time series.
These plots should give a sense of the unevenness of the maximum value of
k, a feature of power-law size distributions.

(b) Now find the average maximum value (k,.x) for each N.

The steps again here are:

1. Sample N times from Pj;

2. Determine the maximum of the sample, kyax;

3. Repeat steps 1 and 2 a total of n times and take the average of the n
values of k. you have obtained.

Plot (kmax) as a function of N on double logarithmic axes, and calculate the
scaling using least squares. Report error estimates.

Does your scaling match up with your theoretical estimate for v = 5/27

How to sample from your power law distribution (and similarly upsetting things):

Because the tail of power-law size distributions can be so long, trying to sample
from a discrete distribution can be either painfully slow or even computationally
impossible. Brute force often works but not here.

We use a continuous approximation for P, to make sampling both possible and
fast.

We first approximate Py, with P(z) = (v — 1)z77 for 2 > 1 (we have used the
normalization coefficient found in assignment 1 for a = 1 and b = o0). Writing
F(2) as the cdf for P(2), we have F(2) =1 — 2~07Y =1 — 272/3 when y=5/2.

Inverting, we obtain z = [1 — F(2)]7/0~Y = [1 — F(2)]~2 when y=5/2.

We now replace F'(z) with our random number x and round the value of z to
finally get an estimate of k.

In sum, given z is distributed uniformly on [0, 1], then
k=[(1-x)""

is approximately distributed according to a power-law size distribution P, = ck~°/?
where [- | indicates rounding to the nearest integer.

