Optimal supply & Structure detection

Last updated: 2023/08/22, 11:48:21 EDT

Principles of Complex Systems, Vols. 1, 2, & 3D CSYS/MATH 6701, 6713, & a pretend number, 2023-2024 | @pocsvox

Prof. Peter Sheridan Dodds | @peterdodds

Computational Story Lab | Vermont Complex Systems Center Santa Fe Institute | University of Vermont

Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 License

Single Source

Distributed

Facility location

Hierarchy by shuffling Spectral methods Hierarchies & Missing Links Final words

Optimal supply & Structure

Sources

Structure Detection

References

Single source optimal supply

Basic Q for distribution/supply networks:

How does flow behave given cost:

$$C = \sum_{j} I_{j}^{\gamma} Z_{j}$$

where

 I_i = current on link jand

 Z_i = link j's impedance?

Example: $\gamma = 2$ for electrical networks.

Optimal supply & Structure

Single Source Distributed

Sources Facility location Size-density law Global redistribution networks

Detection Hierarchy by shuffling Hierarchies & Missing Links

Structure

Final words References

Optimal supply &

Structure

5 of 79

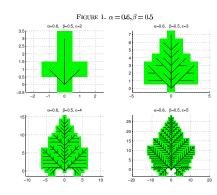
Sources

Size-density law

Structure Detection

Global redistribution networks

Hierarchy by shuffling


Hierarchies & Missing Links

Final words

References

Single Source

Growing networks:

Xia (2007) [23]

References

Optimal supply & Structure

detection

Single Source

Distributed

Sources

Structure

Detection

Final words

Hierarchies & Missing

Outline

Single Source

Distributed Sources

Facility location Size-density law A reasonable derivation Global redistribution networks

Structure Detection

Hierarchy by division Hierarchy by shuffling Spectral methods Hierarchies & Missing Links General structure detection

Final words

Optimal supply &

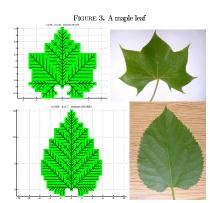
Structure 2 of 79 Single Source

Distributed Sources Size-density law Global redistribution networks

Structure Detection Hierarchy by shuffling Spectral methods Hierarchies & Missing Links

Final words

Single source optimal supply


(a) $\gamma > 1$: Braided (bulk) flow

(b) $\gamma < 1$: Local minimum: Branching flow

(c) $\gamma < 1$: Global minimum: Branching flow

From Bohn and Magnasco [3] See also Banavar et al. [1]

Growing networks:

Xia (2007) [23]

References

Optimal supply networks

What's the best way to distribute stuff?

Stuff = medical services, energy, nutrients, people,

Some fundamental network problems:

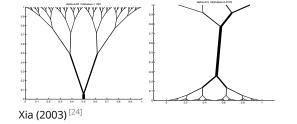
- 1. Distribut e stuff from single source to many sinks
- 2. Collect stuff coming from many sources at a single
- 3. Distribute stuff from many sources to many sinks
- 4. Redistribute stuff between many nodes

Q: How do optimal solutions scale with system size?

Optimal supply &

3 of 79 Single Source

Structure


Sources Global redistribution

Structure Detection Hierarchy by shuffling Hierarchies & Missing

Final words References

Single source optimal supply

Optimal paths related to transport (Monge) problems:

Optimal supply & Structure detection

Single Source

Sources Size-density law Global redistribution

Structure Detection Hierarchy by shufflin Hierarchies & Missing Links

Final words References

Single source optimal supply

An immensely controversial issue...

The form of river networks and blood networks: optimal or not? [22, 2, 7]

Two observations:

- Self-similar networks appear everywhere in nature for single source supply/single sink collection.
- Real networks differ in details of scaling but reasonably agree in scaling relations.

Optimal supply & Structure detection 8 of 79 Single Source

Sources Size-density law

Structure Detection Hierarchy by shuffling Hierarchies & Missing Links

Final words

References

The PoCSverse Optimal supply & Structure 9 of 79

Single Source Distributed

Sources Global redistribution networks

Structure Detection Hierarchy by divisi Hierarchy by shuffling Hierarchies & Missin

Final words

Stream Ordering:

- \triangle Label all source streams as order $\omega = 1$.
- Follow all labelled streams downstream
- & Whenever two streams of the same order (ω) meet, the resulting stream has order incremented by 1 ($\omega + 1$).
- If streams of different orders ω_1 and ω_2 meet, then the resultant stream has order equal to the largest of the two.
- Simple rule:

$$\omega_3 = \max(\omega_1, \omega_2) + \delta_{\omega_1, \omega_2}$$

where δ is the Kronecker delta.

Single Source

Distributed Sources

Structure Detection

Hierarchy by shuffling Hierarchies & Missing Links

Final words References

Reported parameter values: [6]

Parameter:	Real networks:		
R_n	3.0-5.0		
R_a	3.0-6.0		
$R_{\ell} = R_T$	1.5-3.0		
T_1	1.0-1.5		
d	1.1 ± 0.01		
D	1.8 ± 0.1		
h	0.50-0.70		
au	1.43 ± 0.05		
γ	1.8 ± 0.1		
H	0.75-0.80		
β	0.50-0.70		
φ	1.05 ± 0.05		

Optimal supply & Structure

Single Source Distributed

Sources Size-density law

Global redistribution networks Structure Detection

Hierarchy by shuffling Hierarchies & Missing

Final words References

Optimal supply &

Optimal supply &

Structure

detection

Sources

Facility location Size-density law

Structure Detection

Global redistribution

Hierarchy by shuffling

Hierarchies & Missins

Final words

References

Single Source

Structure

History

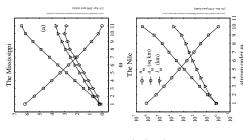
1964: Troon, Scotland: 3rd symposium on energy metabolism. $\alpha = 3/4$ made official ...

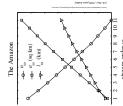
...29 to zip.

Detection Hierarchies & Missing

Structure

Optimal supply & Structure 16 of 79


Single Source


Distributed

Sources

Final words References

Horton's laws in the real world:

Many scaling laws, many connections

scaling relation/parameter: [6]
d
$T_1 = R_n - R_s - 2 + 2R_s/R_n$
$R_T = R_s$
R_n
$R_a = \frac{R_n}{n}$
$R_{\ell} = R_{s}$
$h = \log R_s / \log R_n$
D = d/h
H = d/h - 1
$\tau = 2 - h$
$\gamma = 1/h$
$\beta = 1 + h$
$\varphi = d$

Optimal supply & Structure 11 of 79

Single Source Distributed Sources Size-density law

Structure Detection Hierarchy by shuffling Hierarchies & Missing Links

Final words

Data from real blood networks

Network	R_n	R_r^{-1}	R_ℓ^{-1}	$-\frac{\ln R_r}{\ln R_n}$	$-\frac{\ln R_\ell}{\ln R_n}$	α
West et al.	-	-	-	0.5	$0.3\bar{3}$	0.75
rat (PAT)	2.76	1.58	1.60	0.45	0.46	0.73
cat (PAT)	3.67	1.71	1.78	0.41	0.44	0.79
(Turcotte et al. [21])						
dog (PAT)	3.69	1.67	1.52	0.39	0.32	0.90
pig (LCX)	3.57	1.89	2.20	0.50	0.62	0.62
pig (RCA)	3.50	1.81	2.12	0.47	0.60	0.65
pig (LAD)	3.51	1.84	2.02	0.49	0.56	0.65
human (PAT)	3.03	1.60	1.49	0.42	0.36	0.83
human (PAT)	3.36	1.56	1.49	0.37	0.33	0.94

Optimal supply & Structure detection 12 of 79

Single Source Distributed

Sources Global redistribution

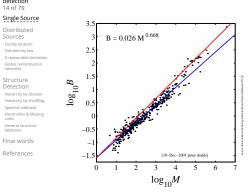
Structure Detection Hierarchy by div Hierarchy by shuffling Hierarchies & Missing Links

Final words References

Animal power

Fundamental biological and ecological constraint:

 $P = c M^{\alpha}$


 $P = \mathsf{basal}$ metabolic rate M =organismal body mass

Some data on metabolic rates

A Heusner's data $(1991)^{[11]}$

391 Mammals

🚵 blue line: 2/3

& red line: 3/4.

AB (B = P)

Optimal supply & Structure 17 of 79

Single Source

Distributed Sources

Size-density law

Structure Hierarchy by shuffling Hierarchies & Missing

Final words

References

Some regressions from the ground up...

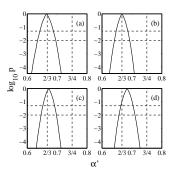
range of MN $\hat{\alpha}$ $\leq 0.1 \text{ kg}$ 167 0.678 ± 0.038 $\leq 1 \text{ kg}$ 276 0.662 ± 0.032 357 0.668 ± 0.019

 $\leq 10 \text{ kg}$ $\leq 25 \text{ kg}$ 366 0.669 ± 0.018 371 0.675 ± 0.018 $\leq 35 \text{ kg}$ $\leq 350 \text{ kg}$ 389 0.706 ± 0.016

 $\leq 3670 \text{ kg}$

391 0.710 ± 0.021

Optimal supply & Structure 18 of 79


Single Source

Distributed Sources Global redistributio

Structure Detection Hierarchy by div Hierarchy by shufflin Hierarchies & Missin

Final words References

Analysis of residuals—p-values—mammals:

- & (a) M < 3.2 kg(b) M < 10 kg(c) M < 32 kg(d) all mammals.
- For a-d, $p_{2/3} > 0.05$ and $p_{3/4} \ll 10^{-4}$.

Optimal supply & Structure detection

Single Source Distributed

Sources Global redistribution

Structure Detection

Final words References

Structure

20 of 79

Single Source

Structure Detection

Hierarchies & Missing Links

Optimal supply &

Structure

Single Source

Sources

Facility location

Structure

Detection

References

Hierarchy by shuffling

Final words

References

Optimal source allocation

Solidifying the basic problem

- Given a region with some population distribution ρ , most likely uneven.
- & Given resources to build and maintain N facilities.
- \bigcirc : How do we locate these N facilities so as to minimize the average distance between an individual's residence and the nearest facility?
- Problem of interested and studied by geographers, sociologists, computer scientists, mathematicians, ...
- See work by Stephan [19, 20] and by Gastner and Newman (2006)^[8] and work cited by them.

Optimal source allocation

Size-density law:

Optimal supply &

Structure

Single Source

Distributed

Facility location

Structure Detection

Hierarchy by shuffling

Hierarchies & Missing Links

Final words

References

Optimal supply &

Structure

24 of 79

Single Source

Distributed

Facility location

Structure Detection

Hierarchy by shuffling

Hierarchies & Missing Links

Final words

detection

Sources

Facility location

Structure Detection

Hierarchy by shufflin

Hierarchies & Missins

Final words

References

Single Source

Sources

In d dimensions:

$$D \propto \rho^{d/(d+1)}$$

- ♣ Why?
- Nery different story to branching networks where there is either one source or one sink.
- Now sources & sinks are distributed throughout region...

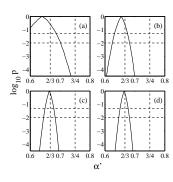
Structure Detection

Optimal supply &

Structure

Single Source

Distributed


Size-density law

Sources

Final words

References

Analysis of residuals—p-values—birds:

- (a) M < 0.1 kg(b) M < 1 kg(c) M < 10 kg(d) all birds.
- For a-d, $p_{2/3} > 0.05$ and $p_{3/4} \ll 10^{-4}$.

Optimal source allocation Optimal supply &

Gastner and Newman (2006) [8]

- Approximately optimal location of 5000 facilities.
- Based on 2000 Census data.
- Simulated annealing + Voronoi tessellation.

Optimal source allocation

One treatment due to Stephan's (1977) [19, 20]: "Territorial Division: The Least-Time Constraint Behind the Formation of Subnational Boundaries" (Science, 1977)

Zipf-like approach: invokes principle of minimal

Also known as the Homer principle.

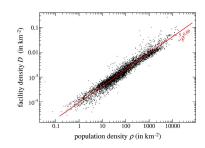
Optimal supply & Structure 28 of 79 Single Source

Distributed

Sources Size-density law

Structure Detection Hierarchy by shufflin Hierarchies & Missing Links

Final words


References

Many sources, many sinks

How do we distribute sources?

- Focus on 2-d (results generalize to higher dimensions)
- Sources = hospitals, post offices, pubs, ...
- & Key problem: How do we cope with uneven population densities?
- & Obvious: if density is uniform then sources are best distributed uniformly.
- Which lattice is optimal? The hexagonal lattice Q1: How big should the hexagons be?
- Q2: Given population density is uneven, what do we do?

Optimal source allocation

From Gastner and Newman (2006) [8]

- Optimal facility density D vs. population density <math>0.
- \red{split} Fit is $D \propto
 ho^{0.66}$ with $r^2 = 0.94$.
- Looking good for a 2/3 power...

Size-density law Optimal supply & Structure

Deriving the optimal source distribution:

- Stronger result obtained by Gusein-Zade (1982). ^[10]
- Basic idea: Minimize the average distance from a random individual to the nearest facility.
- \triangle Assume given a fixed population density ρ defined on a spatial region Ω .
- Formally, we want to find the locations of nsources $\{\vec{x}_1, \dots, \vec{x}_n\}$ that minimizes the cost function

$$F(\{\vec{x}_1,\ldots,\vec{x}_n\}) = \int_{\Omega} \rho(\vec{x}) \, \mathrm{min}_i ||\vec{x}-\vec{x}_i|| \mathrm{d}\vec{x} \,.$$

- Also known as the p-median problem.
- Not easy... in fact this one is an NP-hard problem. [8]

The PoCSverse Optimal supply & Structure

30 of 79 Single Source

Distributed Sources A reasonable derivation Global redistribution networks

Structure Detection Hierarchy by divi

Hierarchies & Missin

Final words

Size-density law

Can (roughly) turn into a Lagrange multiplier story:

 \mathfrak{S} By varying $\{\vec{x}_1,...,\vec{x}_n\}$, minimize

$$G(A) = c \int_{\Omega} \rho(\vec{x}) A(\vec{x})^{1/2} \mathrm{d}\vec{x} - \lambda \left(n - \int_{\Omega} \left[A(\vec{x}) \right]^{-1} \mathrm{d}\vec{x} \, \right)$$

- Involves estimating typical distance from \vec{x} to the nearest source (say i) as $c_i A(\vec{x})^{1/2}$ where c_i is a shape factor for the ith Voronoi cell.
- & Sneakiness: set $c_i = c$.
- Solve and substitute D = 1/A, we find

$$D(\vec{x}) = \left(\frac{c}{2\lambda}\rho\right)^{2/3}.$$

Global redistribution networks

- How do we supply these facilities?
- How do we best redistribute mail? People?
- A How do we get beer to the pubs?
- Gaster and Newman model: cost is a function of basic maintenance and travel time:

$$C_{\mathsf{maint}} + \gamma C_{\mathsf{travel}}$$

distance $\ell_{i,i}$ and number of legs to journey:

$$(1-\delta)\ell_{i,i} + \delta(\#\mathsf{hops})$$

& When $\delta = 1$, only number of hops matters.

Optimal supply & Structure 33 of 79

Single Source

Distributed

Sources

Structure

Detection

Hierarchies & Missing Links

Final words

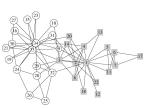
References

Single Source

Distributed Size-density law

Global redistribution netwo

Structure Detection Hierarchy by shuffling Hierarchies & Missing


Final words References

Single Source

Global redistribution netw

References

Structure detection Optimal supply & Structure

▲ Zachary's karate club [25, 16]

Possible substructures:

hierarchies, cliques, rings, ...

Much focus on hierarchies...

All combinations of substructures.

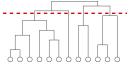
A The issue: how do we elucidate the internal structure of large networks across many scales?

Optimal supply & Structure

Single Source Distributed

Sources Global redistribution networks

Structure Detection


Final words Pafaranca

Hierarchy by division

One class of structure-detection algorithms:

- 1. Compute edge betweenness for whole network.
- 2. Remove edge with highest betweenness.
- 3. Recompute edge betweenness
- 4. Repeat steps 2 and 3 until all edges are removed.
- 5 Record when components appear as a function of # edges removed.

6 Generate dendogram revealing hierarchical structure.

Red line indicates appearance of four (4) components at a certain level.

Hierarchy by division

Structure Detection

Optimal supply &

Structure

Single Source

Distributed

Sources

Final words References

One more thing:

Travel time is more complicated: Take 'distance' between nodes to be a composite of shortest path

$$(1 - \delta)\ell_{ij} + \delta(\#\mathsf{hops}).$$

Hierarchy by division

Top down:

Plus:

- Idea: Identify global structure first and recursively uncover more detailed structure.
- Basic objective: find dominant components that have significantly more links within than without, as compared to randomized version.
- Following comes from "Finding and evaluating" community structure in networks" by Newman and Girvan (PRE, 2004). [16]
- See also
 - 1. "Scientific collaboration networks. II. Shortest paths, weighted networks, and centrality" by Newman (PRE, 2001). [14, 15]
 - 2. "Community structure in social and biological networks" by Girvan and Newman (PNAS, 2002). [9]

Hierarchy by division

37 of 79 Single Source

Distributed Sources Size-density law

Optimal supply &

Structure

Structure Detection

Hierarchy by division Hierarchies & Missing Links

Final words References

Optimal supply &

Structure

Single Source

Global redistributi

Hierarchy by division

Hierarchies & Missin

Final words

References

Structure Detection

Key element:

Recomputing betweenness.

Reason: Possible to have a low betweenness in links that connect large communities if other links carry majority of shortest paths.

When to stop?:

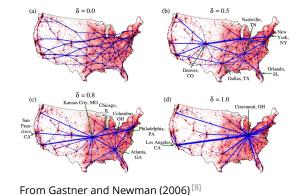
- How do we know which divisions are meaningful?
- Modularity measure: difference in fraction of within component nodes to that expected for randomized version:

$$Q = \sum_i [e_{ii} - (\sum_j e_{ij})^2] = {\rm Tr} E - ||E^2||_1,$$

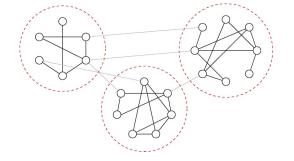
where $e_{i,j}$ is the fraction of edges between identified communities i and j.

Optimal supply & Structure 40 of 79 Single Source

Distributed


Sources

Structure Detection Hierarchy by division


Final words

References

Global redistribution networks

Hierarchy by division Optimal supply &

备 Idea:

Edges that connect communities have higher betweenness than edges within communities.

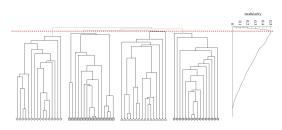
Hierarchy by division

Test case:

- Generate random community-based networks.
- N = 128 with four communities of size 32.
- Add edges randomly within and across communities.
- Example:

 $\langle k \rangle_{\text{in}} = 6$ and $\langle k \rangle_{\text{out}} = 2$.

Optimal supply & Structure


Single Source Distributed

Sources

Structure Detection Hierarchy by division

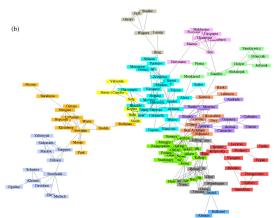
Final words

Hierarchy by division

- Arr Maximum modularity $Q \simeq 0.5$ obtained when four communities are uncovered.
- Further 'discovery' of internal structure is somewhat meaningless, as any communities arise accidentally.

Optimal supply & Structure

Single Source Distributed


Sources

Structure Detection

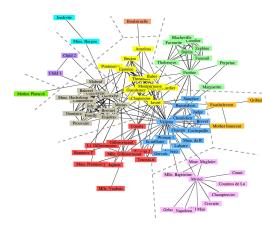
Hierarchy by divisio

Final words References

Scientists working on networks

The PoCSverse Optimal supply & Structure

Single Source


Distributed

Sources

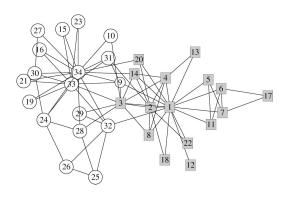
Structure Detection Hierarchy by division

Final words

Les Miserables

Optimal supply & Structure

Single Source


Distributed Sources

Structure Detection Hierarchy by divis

Final words

References

Hierarchy by division

& Factions in Zachary's karate club network. [25]

Optimal supply & Structure

43 of 79

Single Source

Structure Detection

Hierarchy by division

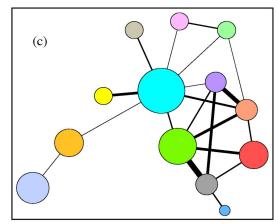
Final words

Optimal supply &

Single Source

Distributed

Sources


Structure

Hierarchy by division

Final words

References

Scientists working on networks

Optimal supply & Structure 46 of 79

Single Source

Distributed Size-density law

Structure Detection Hierarchy by division Hierarchies & Missing Links

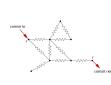
Final words References

Shuffling for structure

- "Extracting the hierarchical organization of complex systems" Sales-Pardo et al., PNAS (2007) [17, 18]
- & Consider all partitions of networks into m groups
- As for Newman and Girvan approach, aim is to find partitions with maximum modularity:

$$Q = \sum_i [e_{ii} - (\sum_j e_{ij})^2] = \mathrm{Tr} E - ||E^2||_1.$$

Optimal supply & Structure 50 of 79

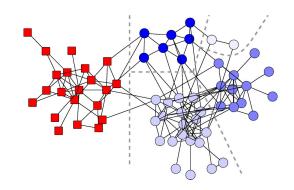

Single Source

Distributed Sources

Structure Detection Hierarchy by shufflin

Final words References

Betweenness for electrons:



- Unit resistors on each edge.
- \Re For every pair of nodes s(source) and t (sink), set up unit currents in at s and out at t.
- Measure absolute current along each edge ℓ , $|I_{\ell,st}|$.
- $\mbox{\&}$ Sum $|I_{\ell,st}|$ over all pairs of nodes to obtain electronic betweenness for edge ℓ .
- (Equivalent to random walk betweenness.)
- & Electronic betweenness for edge between nodes i and j:

$$B_{ij}^{\,\mathrm{elec}} = a_{ij} |V_i - V_j|.$$

Upshot: specific measure of betweenness not too important.

Dolphins!

Optimal supply & Structure detection

Single Source

Sources

Structure Detection Hierarchy by division Hierarchies & Missins

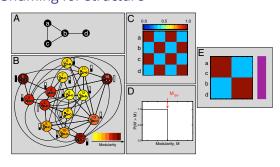
Final words

References

Shuffling for structure

- & Consider partition network, i.e., the network of all possible partitions.
- Defn: Two partitions are connected if they differ only by the reassignment of a single node.
- Look for local maxima in partition network.
- & Construct an affinity matrix with entries A_{ij} .
- $A_{ij} = \mathbf{Pr}$ random walker on modularity network ends up at a partition with i and j in the same group.
- C.f. topological overlap between i and j =# matching neighbors for i and j divided by maximum of k_i and k_i .

Optimal supply & Structure 51 of 79


Single Source Distributed Sources

Structure Detection

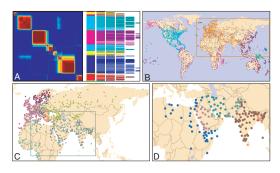
Hierarchy by shuffling

Final words References

Shuffling for structure

A: Base network; B: Partition network; C: Coclassification matrix; **D**: Comparison to random networks (all the same!); E: Ordered coclassification matrix: Conclusion: no structure...

Optimal supply & Structure


Single Source

Distributed Sources

Structure Detection Hierarchy by shuffling

Final words References

Air transportation:

Modules found match up with geopolitical units.

General structure detection

Second eigenvector's components:

0.2 × -0.2 10 20 Optimal supply & Structure 59 of 79

Single Source

Distributed Sources

Structure Detection

Final words

References

Optimal supply &

Structure

61 of 79

Single Source

Distributed

Sources

Structure

References

Hierarchy by shuffling

Hierarchies & Missing Links

Shuffling for structure

- Method obtains a distribution of classification hierarchies.
- Note: the hierarchy with the highest modularity score isn't chosen.
- & Idea is to weight possible hierarchies according to their basin of attraction's size in the partition network.
- Next step: Given affinities, now need to sort nodes into modules, submodules, and so on.
- & Idea: permute nodes to minimize following cost

$$C = \frac{1}{N} \sum_{i=1}^{N} \sum_{j=1}^{N} A_{ij} |i - j|.$$

& Use simulated annealing (slow).

Optimal supply &

Structure 53 of 79 Single Source

Distributed Sources Size-density law Global redistribution networks

Structure Detection Hierarchy by shuffling Hierarchies & Missing Links

Final words

Optimal supply &

Structure

54 of 79

Sources

Single Source

Global redistribution

References

General structure detection

- "Detecting communities in large networks" Capocci *et al.* (2005) [4]
- & Consider normal matrix $K^{-1}A$, random walk matrix $A^{\mathsf{T}}K^{-1}$, Laplacian K-A, and AA^{T} .
- Basic observation is that eigenvectors associated with secondary eigenvalues reveal evidence of structure.
- Build on Kleinberg's HITS algorithm. [13]

Hierarchies and missing links Optimal supply & Structure

57 of 79 Single Source

Optimal supply &

Structure

Single Source

Distributed

Size-density law Global redistribution

Structure

Detection

Final words

References

Hierarchy by shuffling

Sources

Distributed Size-density law

Global redistribution networks

Structure Detection Spectral methods

Final words

Optimal supply &

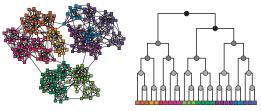
Structure

detection

Sources

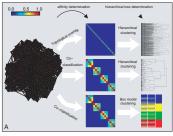
Structure Detection

Spectral methods

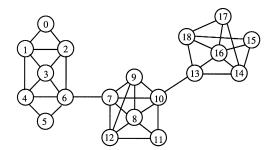

Final words

References

Single Source


References

Clauset et al., Nature (2008) [5]


- Idea: Shades indicate probability that nodes in left and right subtrees of dendogram are connected.
- A Handle: Hierarchical random graph models.
- Plan: Infer consensus dendogram for a given real network.
- Obtain probability that links are missing (big problem...).

Shuffling for structure

General structure detection

Example network:

Hierarchies and missing links

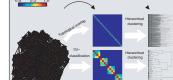
Model also predicts reasonably well

- 1. average degree,
- 2. clustering,
- 3. and average shortest path length.

Table 1 | Comparison of original and resampled networks

Network	$\langle k \rangle_{\rm real}$	$\langle k \rangle_{\rm samp}$	$C_{\rm real}$	C_{samp}	$d_{\rm real}$	d_{samp}
T. pallidum	4.8	3.7(1)	0.0625	0.0444(2)	3.690	3.940(6)
Terrorists	4.9	5.1(2)	0.361	0.352(1)	2.575	2.794(7)
Grassland	3.0	2.9(1)	0.174	0.168(1)	3.29	3.69(2)

Statistics are shown for the three example networks studied and for new networks generated by resampling from our hierarchical model. The generated networks closely match the average degree $\langle k \rangle$, clustering coefficient C and average vertex-vertex distance d in each case, suggesting that they capture much of the structure of the real networks. Parenthetical values indicate standard errors on the final digits.


The PoCSverse Optimal supply & Structure 62 of 79

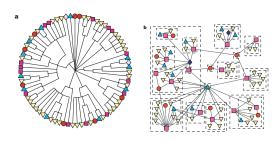
Single Source Distributed Sources

Structure

Hierarchies & Missing Link

References

 $\langle k \rangle = 16$,


🖀 3 tiered hierarchy.

N = 640

Structure Detection Hierarchy by shuffling Hierarchies & Missin

> Final words References

Hierarchies and missing links

- Consensus dendogram for grassland species.
- Copes with disassortative and assortative communities.

General structure detection

Performance for test networks. Single Source Distributed Sources

Final words:

Optimal supply & Structure

Single Source

Distributed

Size-density law

Structure Detection

Hierarchy by shuffling

Final words

Optimal supply &

Structure

68 of 79

Single Source

Distributed

Size-density law

Structure Detection

Hierarchy by shuffling Hierarchies & Missing

Final words

References

Sources

Sources

Science in three steps:

- 1. Find interesting/meaningful/important phenomena involving spectacular amounts of
- 2. Describe what you see.
- 3. Explain it.

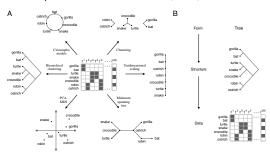
A plea/warning

Beware your assumptions—don't use tools/models because they're there, or because everyone else does...

Structure Detection

Optimal supply & Structure

Single Source


Distributed

Sources

Final words References

General structure detection

"The discovery of structural form" Kemp and Tenenbaum, PNAS (2008) [12]

Optimal supply & Structure

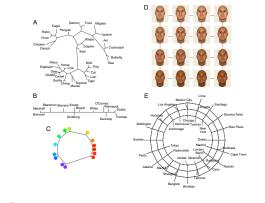
Optimal supply & Structure

Structure

Detection

Hierarchy by shuffling

Hierarchies & Missing Link Final words


65 of 79 Single Source

Distributed

Structure Detection Hierarchies & Missing

Final words

Example learned structures:

Biological features; Supreme Court votes; perceived color differences; face differences; & distances between cities.

More final words:

A real theory of everything:

- 1. Is not just about the small stuff...
- 2. It's about the increase of complexity

Symmetry breaking/ Accidents of history

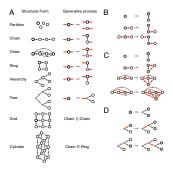
Universality

How probable is a certain level of complexity?

71 of 79 Single Source Distributed

Optimal supply &

Structure

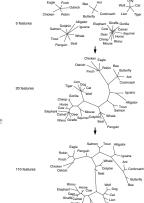

Sources

Hierarchies & Missin Links

Final words

References

General structure detection


- Top down description of form.
- A Node replacement graph grammar: parent node becomes two child nodes.
- B-D: Growing chains, orders, and trees.

Optimal supply & Structure 66 of 79 Single Source Distributed Sources

Structure Detection Hierarchies & Missing General structure detection

References

General structure detection

Effect of adding features on detected form.

> Straight partition simple tree complex tree

Optimal supply & Structure detection

Single Source

Sources

Hierarchy by shuffling Hierarchies & Missing

Structure Detection

General structure detection Final words

References

References I

[1] J. R. Banavar, F. Colaiori, A. Flammini, A. Maritan, and A. Rinaldo.

Topology of the fittest transportation network. Phys. Rev. Lett., 84:4745-4748, 2000. pdf

- [2] J. R. Banavar, A. Maritan, and A. Rinaldo. Size and form in efficient transportation networks. Nature, 399:130–132, 1999. pdf
- S. Bohn and M. O. Magnasco. Structure, scaling, and phase transition in the optimal transport network. Phys. Rev. Lett., 98:088702, 2007. pdf ☑

The PoCSverse Optimal supply & Structure Single Source

Distributed Sources

Structure Detection Hierarchy by div

Hierarchies & Missin

Final words

References II

- [4] A. Capocci, V. Servedio, G. Caldarelli, and F. Colaiori. Detecting communities in large networks. Physica A: Statistical Mechanics and its Applications, 352:669–676, 2005. pdf
- [5] A. Clauset, C. Moore, and M. E. J. Newman. Hierarchical structure and the prediction of missing links in networks. Nature, 453:98–101, 2008. pdf ☑
- P. S. Dodds and D. H. Rothman. Unified view of scaling laws for river networks. Physical Review E, 59(5):4865–4877, 1999. pdf

Optimal supply & Structure

Single Source

Distributed Sources Global redistribution

Structure Detection Hierarchy by shuffling Spectral methods Hierarchies & Missing Links

Final words

References

References V

- [14] M. E. J. Newman. Scientific collaboration networks. II. Shortest paths, weighted networks, and centrality. Phys. Rev. E, 64(1):016132, 2001. pdf
- [15] M. E. J. Newman. Erratum: Scientific collaboration networks. II. Shortest paths, weighted networks, and centrality [Phys. Rev. E 64, 016132 (2001)]. Phys. Rev. E, 73:039906(E), 2006. pdf
- [16] M. E. J. Newman and M. Girvan. Finding and evaluating community structure in networks. Phys. Rev. E, 69(2):026113, 2004. pdf

Optimal supply &

Single Source

Structure

Distributed Sources Facility location

Size-density law Global redistributio

Structure Detection Hierarchy by shuffling Hierarchies & Missing Links

Final words References

References VII

[20] G. E. Stephan. Territorial subdivision. Social Forces, 63:145–159, 1984. pdf

- [21] D. L. Turcotte, J. D. Pelletier, and W. I. Newman. Networks with side branching in biology. Journal of Theoretical Biology, 193:577-592, 1998. pdf 🗹
- [22] G. B. West, J. H. Brown, and B. J. Enquist. A general model for the origin of allometric scaling laws in biology. Science, 276:122–126, 1997. pdf
- [23] Q. Xia. The formation of a tree leaf. Submitted. pdf

Optimal supply & Structure Single Source

Distributed Sources Facility location

Global redistribution networks Structure Detection Hierarchies & Missing

Final words

References

References III

- [7] P. S. Dodds and D. H. Rothman. Geometry of river networks. I. Scaling, fluctuations, and deviations. Physical Review E, 63(1):016115, 2001. pdf ✓
- M. T. Gastner and M. E. J. Newman. Optimal design of spatial distribution networks. Phys. Rev. E, 74:016117, 2006. pdf
- M. Girvan and M. E. J. Newman. Community structure in social and biological networks. Proc. Natl. Acad. Sci., 99:7821–7826, 2002. pdf ☑
- [10] S. M. Gusein-Zade. Bunge's problem in central place theory and its generalizations. Geogr. Anal., 14:246–252, 1982. pdf ✓

References IV

- Size and power in mammals. Journal of Experimental Biology, 160:25–54, 1991. pdf 🖸
- [12] C. Kemp and J. B. Tenenbaum. The discovery of structural form. Proc. Natl. Acad. Sci., 105:10687-10692, 2008. pdf 🖸
- [13] J. M. Kleinberg. Authoritative sources in a hyperlinked environment. Proc. 9th ACM-SIAM Symposium on Discrete Algorithms, 1998. pdf

Optimal supply & Structure

74 of 79 Single Source

Distributed Sources Size-density law

Structure Detection Hierarchy by shuffling Hierarchies & Missing Links

Final words

Optimal supply &

Single Source

Global redistribution

Hierarchy by shuffling

Hierarchies & Missing Links

Final words

References

Structure Detection

Sources

References

[19] G. E. Stephan.

Optimal supply & Structure 77 of 79

Single Source

Distributed Sources Size-density law

Global redistribution networks Structure Detection Hierarchy by shuffling

Hierarchies & Missing Links

References

Final words

References VIII

[24] Q. Xia.

Optimal paths related to transport problems. Communications in Contemporary Mathematics, 5:251-279, 2003. pdf

[25] W. W. Zachary. An information flow model for conflict and fission in small groups. J. Anthropol. Res., 33:452-473, 1977.

Optimal supply & Structure 79 of 79 Single Source

Distributed Sources Size-density law

Global redistribution networks Structure

Hierarchy by shufflin Hierarchies & Missing Links

Final words

References

[11] A. A. Heusner.

References VI

- [17] M. Sales-Pardo, R. Guimerà, A. A. Moreira, and L. A. N. Amaral. Extracting the hierarchical organization of complex systems. Proc. Natl. Acad. Sci., 104:15224-15229, 2007. pdf 🖸
- [18] M. Sales-Pardo, R. Guimerà, A. A. Moreira, and L. A. N. Amaral Extracting the hierarchical organization of complex systems: Correction. Proc. Natl. Acad. Sci., 104:18874, 2007. pdf
 - Territorial division: The least-time constraint behind the formation of subnational boundaries. Science, 196:523-524, 1977. pdf