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Random network generator for N = 3:

<& Get your own exciting generator here (4.

&> As N 7, polyhedral die rapidly becomes a ball...
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Random networks

Pure, abstract random networks:

& Consider set of all networks with NV labelled nodes
and m edges.

Standard random network =
one randomly chosen network from this set.

&
&% To be clear: each network is equally probable.
&
&

Sometimes equiprobability is a good assumption,
but it is always an assumption.

Known as Erdds-Rényi random networks or ER
graphs.

Random networks—basic features:
&> Number of possible edges:

&% Limit of m = 0: empty graph.
& Limit of m = (}): complete or fully-connected
graph.
<& Number of possible networks with N labelled
nodes:
2(1;) ~ elr‘22 N(N—l)'
& Given m edges, there are (( )) different possible

networks.
Crazy factorial explosion for 1 <« m < (%).

Real world: links are usually costly so real
networks are almost always sparse.

&
&

Random networks

How to build standard random networks:
& Given N and m.

&> Two probablistic methods (we'll see a third later
on)

1. Connect each of the (}) pairs with appropriate
probability p.
© Useful for theoretical work.

2. Take N nodes and add exactly m links by selecting
edges without replacement.

& Algorithm: Randomly choose a pair of nodes i and
j, 1 # j, and connect if unconnected; repeat until
all m edges are allocated.

& Best for adding relatively small numbers of links
(most cases).

& 1and 2 are effectively equivalent for large N.
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Random networks
A few more things:
&% For method 1, # links is probablistic:
N 1
(m) :p<2> =p5N(N—1)

&> So the expected or average degree is

_2(m)
="
= 2 paN 1) = Zpx(v -1y =pv 1),

&> Which is what it should be...

&% If we keep (k) constant thenp o< 1/N — 0 as
N — oo.

Random networks: examples for N=500

m =260
(k)=1.04

Random networks: largest components

m =230
m =200
-0 oz j; %f

4

m =260
(k)=1.04

m =250
(k)=1
m =240
(k) =096
m =280 m =500 m = 1000

(ky=1.12 (ky=2 (k)=4

m =300
(k)=12
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Random networks: examples for N=500

Random networks: largest components

33

m =250 m =250

(ky=1 (k) =1

% -
(k) =1

m =250

Ieh=1

Giant component

m =250
(k) =1

!

m =250
(k) =1

%ﬁ%

m =250
(k) =1

%

m =250
(k) =1

_ A

m =250
(k) =1
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Clustering in random networks:

Rand!

Ni:wg:‘;s . ) X
Nutshel For construction method 1, what is the clustering
Pure random coefficient for a finite network?

networks

Consider triangle/triple clustering coefficient: [®!

C, = 3 x #triangles

#triples
Generalized
Random
Networks
) Recall: C, = probability that
L two friends of a node are
References ) also friends.
l[ VPG, Or: C, = probability that a
) .t) triple is part of a triangle.
! For standard random
' networks, we have simply
h that
Ly Cy =p.
raniom -~ Clustering in random networks:
Networks
Nutshell
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So for large random
networks (N — o0),
clustering drops to zero.
Key structural feature of
random networks is that
they locally look like
pure branching networks

No small loops.

References
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170172 Recall P, = probability that a randomly selected
Pure random

networks node has degree k.

Consider method 1 for constructing random
networks: each possible link is realized with
probability p.

Now consider one node: there are ‘N — 1 choose ¥’
ways the node can be connected to k of the other
N — 1 nodes.

Each connection occurs with probability p, each
non-connection with probability (1 — p).

Therefore have a binomial distribution (4%

Generalized
Random

References

P(k;p,N) = (N]; 1)pk(1 N1k,

The PoCSverse

Random Limiting form of P(k;p, N):

Nutshell

190f72 Our degree distribution:

e Pkip, N) = (N 1 pF (1= p) N1k

a What happens as N — oc?

We must end up with the normal distribution
Generalized r|ght?
Random

ork If p is fixed, then we would end up with a Gaussian
with average degree (k) ~ pN — oo.

But we want to keep (k) fixed...

So examine limit of P(k;p, N) whenp — 0 and
N — oo with (k) = p(N — 1) = constant.

o)

N-—-1
This is a Poisson distribution (2" with mean (k).

References

P(k;p, N) =~
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Poisson basics:

Pure random

AP A>0
et P(k;\) = —‘e’)‘
. k! k=0,1,2,3, ...
‘ 0.40 Classic use: probability
Random = 035 ¢ ° A=t that an event occurs k
o3 | T times in a given time
%Ziz \ period, given an
Lo.
Toms average rate of
References 0.10 occurrence.
zsz J e.g.:
e 2 phone calls/minute,
horse-kick deaths.
-
&) ‘Law of small numbers’
The PoCS) H H .
rniom - POISSON basics:
Networks
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Pure random The variance of degree distributions for random
networks

oeti networks turns out to be very important.

Using calculation similar to one for finding (k) we
find the second moment to be:

Generalized

Random

Networks
Config

(K2) = ()2 + (k).

Variance is then

References

0% = (k) = (i)

So standard deviation o is equal to /(k).

Note: This is a special property of Poisson
distribution and can trip us up...
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General random networks Random
Networks
Nutshell
So... standard random networks have a Poisson 270f72
degree distribution Pemmors "

Generalize to arbitrary degree distribution P,. oo s
Also known as the configuration model. © S

Can generalize construction method from ER Generalized
random networks. Networks

Configuration model

Assign each node a weight w from some e
distribution P,, and form links with probability

References

P(link between i and j) o w,w;.

But we'll be more interested in
1. Randomly wiring up (and rewiring) already existing
nodes with fixed degrees.
2. Examining mechanisms that lead to networks with
certain degree distributions.

Random networks: examples for N=1000  fndom
Networks
Nutshell
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=21 =219 =228 =237 =246

5
(k) =3.448 (k) =2.986 (k) =2.306 (k) =2.504 (k) =1.856

References

s 7264 =273 ~v=282 y=291
(k) =1.712 (k)=16 (k) =1862 (k)=1.386 (k) =149
Random networks: largest components pandon
Networks
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~=255 ~v=264 ~=273 ~=28:
(k)y=1.712 (k)=1.6 (k) =1.862 (k)=1

Models

Generalized random networks:
Arbitrary degree distribution P.

Create (unconnected) nodes with degrees
sampled from P,.

Wire nodes together randomly.

Create ensemble to test deviations from
randomness.

Building random networks: Stubs

Phase 1:

|dea: start with a soup of unconnected nodes with
stubs (half-edges):

17t

g % My S e
. connect them.

II ;ﬁ{ {H + H { Must have an even
oo number of stubs.
- Trofft - Hf o ety slow e ana

Building random networks: First rewiring

Phase 2:

Now find any (A) self-loops and (B) repeat edges
and randomly rewire them.

A (B) >‘O<
Being careful: we can't change the degree of any

node, so we can't simply move links around.

Simplest solution: randomly rewire two edges at a
time.
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General random rewiring algorithm
¢ i

i
1
Randomly choose two edges.
(Or choose problem edge and

arandom edge)

Check to make sure edges are
disjoint.

Rewire one end of each edge.
Node degrees do not change.

Works if e, is a self-loop or
repeated edge.

Same as finding on/off/on/off
4-cycles. and rotating them.

Sampling random networks

Phase 2:

Use rewiring algorithm to remove all self and
repeat loops.

Phase 3:
Randomize network wiring by applying rewiring
algorithm liberally.
Rule of thumb: # Rewirings ~ 10 x # edges [“.

Random sampling

Problem with only joining up stubs is failure to
randomly sample from all possible networks.
Example from Milo et al. (2003) )

(@) (b)
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feedforward loop

Sampling random networks

What if we have P, instead of N,?

Must now create nodes before start of the
construction algorithm.

Generate N nodes by sampling from degree
distribution P,.

Easy to do exactly numerically since k is discrete.

Note: not all P, will always give nodes that can be
wired together.

Network motifs

Idea of motifs /) introduced by Shen-Orr, Alon et
al. in 2002.

Looked at gene expression within full context of
transcriptional regulation networks.

Specific example of Escherichia coli.

Directed network with 577 interactions (edges)
and 424 operons (nodes).

Used network randomization to produce
ensemble of alternate networks with same degree
frequency N,.

Looked for certain subnetworks (motifs) that
appeared more or less often than expected

Network motifs

X
l
Y
|
z

o

araC

I

araBAD

Z only turns on in response to sustained activity in
X.

Turning off X rapidly turns off Z.
Analogy to elevator doors.
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Network motifs

single input module (SIM)

Master switch.

Network motifs

dense overlapping regulons (DOR)

Xy Xo Xg o Xp

2y 2, Z3 242

rpo
ada
oxyR
inf

D
hns
rcsA
nhaR

S
%h

cp

\ﬁs

alkA
katG
dps
osmC
nhaA
proP

ftsQAZ

Network motifs

Note: selection of motifs to test is reasonable but
nevertheless ad-hoc.

For more, see work carried out by Wiggins et al. at
Columbia.
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The edge-degree distribution:

The degree distribution P, is fundamental for our
description of many complex networks

Again: P, is the degree of randomly chosen node.

A second very important distribution arises from
choosing randomly on edges rather than on nodes.

Define @, to be the probability the node at a random
end of a randomly chosen edge has degree k.

Now choosing nodes based on their degree (i.e., size):

Normalized form:

0, = kP, _ k’,Pk‘
YooK Pe (R

Big deal: Rich-get-richer mechanism is built into this
selection process.

Probability of randomly
selecting a node of degree k
by choosing from nodes:

! P, =3/7, P, =2/7, Py = 1/7,

.» //,\\ Py = 1/7'

o~ N\ Probability of landing on a
el a node of degree k after

® | randomly selecting an edge

< and then randomly choosing
one direction to travel:
Q, =3/16, Q, = 4/16,
Q3 =3/16, Qg = 6/16.

ob Probability of finding #
outgoing edges = k after
randomly selecting an edge
and then randomly choosing
one direction to travel:
Ry =3/16 R, = 4/16,
R, =3/16, Ry = 6/16.

The edge-degree distribution:

For random networks, Q,, is also the probability
that a friend (neighbor) of a random node has &
friends.

Useful variant on Q,:

R,, = probability that a friend of a random node
has & other friends.
(E4+1)Py _(E+1)Pyy

R, = =
Yo+ )Py (k)

Equivalent to friend having degree k + 1.

Natural question: what's the expected number of
other friends that one friend has?
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The edge-degree distribution:

Given R, is the probability that a friend has k other
friends, then the average number of friends' other
friends is

>, N (k+1) Py
:ZkRk:;Oki( <k)> k

k=0
- <—1> 5" k(k+ 1P

= %i (k+1)? = (k+1)) Pyyq
k=1

(where we have sneakily matched up indices)

Z] —J)P; (using]=k+1)

= 77 () = )

The edge-degree distribution:

Note: our result, { ) ((k2) — (k)), is true for
all random networks |nd pendent ofdegree
distribution.

For standard random networks, recall

(k?) = (k)* + (k).

Therefore:

(k) g = ()2 + (k) — () = (k)

(k)

Again, neatness of results is a special property of
the Poisson distribution.

So friends on average have (k) other friends, and
(k) + 1 total friends...

The edge-degree distribution:
In fact, R, is rather special for pure random
networks ...
Substituting

_®*
o=
into (ki 1)P
+ k+1
Ry =
(k)
we have
R, = (’f<4kr>1) <(1;>”“+;>e—<k> _ Wm'e—w
+1)! !
k k
= <k>' e k) =P,
#samesies.
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Two reasons why this matters
Reason #1:
Average # friends of friends per node is

1 2 — 2 N
7>(<k )= (k) = (k*) = (k).

(k2) = (k) x (k) = <k><

Key: Average depends on the 1st and 2nd moments of
P, and not just the 1st moment.

Three peculiarities:

1. We might guess (ko) =
(k(k —1)).
2. If P, has a large second moment,
then (k,) will be big.
(e.g., in the case of a power-law distribution)
3. Your friends really are different from you... > !
4. See also: class size paradoxes (nod to: Gelman)

(k)((k) — 1) but it's actually

Two reasons why this matters

More on peculiarity #3:

A node’s average # of friends:

k>
Friend's average # of friends:

Comparison:

(k?

2

e (1 WCH

So only if everyone has the same degree
(variance= ¢2 = 0) can a node be the same as its
friends.

~

Intuition: for random networks, the more
connected a node, the more likely it is to be
chosen as a friend.

“Generalized friendship paradox in

Eom and Jo,
Nature Scientific Reports, 4, 4603, 2014, %)

Your friends really are mensters #winners:'

Go on, hurt me: Friends have more coauthors,
citations, and publications.

Other horrific studies: your connections on
Twitter have more followers than you, your sexual
partners more partners than you, ...

The hope: Maybe they have more enemies and
diseases too.

'Some press here (' [MIT Tech Review].

)z<k>i

The PoCSverse
Random
Networks
Nutshell

520f 72

Pure random
networks

Generalized
Random

References

The PoCSverse
Random
Networks
Nutshell
530f72

Pure random

Generalized
Random
Networks

References

The PoCSverse
Random
Networks
Nutshell

54 0f 72

Pure random
networks

Generalized
Random

References

Two reasons why this matters
(Big) Reason #2:

(k) g is key to understanding how well random
networks are connected together.

e.g., we'd like to know what's the size of the largest
component within a network.

As N — oo, does our network have a giant
component?

Defn: Component = connected subnetwork of
nodes such that 3 path between each pair of
nodes in the subnetwork, and no node outside of
the subnetwork is connected to it.

Defn: Giant component = component that
comprises a non-zero fraction of a network as

N — oo.

Note: Component = Cluster

Giant component

0.6

0.4

0.2

kO

Structure of random networks
Giant component:

A giant component exists if when we follow a
random edge, we are likely to hit a node with at
least 1 other outgoing edge.

Equivalently, expect exponential growth in node
number as we move out from a random node.

All of this is the same as requiring (k) z > 1.

Giant component condition (or percolation
condition):

Again, see that the second moment is an essential
part of the story.

Equivalent statement: (k2) > 2(k)
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Spreading on Random Networks

For random networks, we know local structure is
pure branching.

Successful spreading is - contingent on single
edges infecting nodes.

Success Failure:

—

N N

Focus on binary case with edges and nodes either

infected or not.

First big question: for a given network and
contagion process, can global spreading from a
single seed occur?

Global spreading condition
We need to find: "
R = the average # of infected edges that one
random infected edge brings about.
Call R the gain ratio.
Define B,,; as the probability that a node of
degree k is infected by a single infected edge.

o= kP,
R=>" Zk e (k—1) e By
— (k) — -
k=0 — # outgoing Prob. of
prob. of infected infection
connecting to edges

adegree k node

——

= kP,
+3 e 0 * (1-By)
= (k) # i
— 1 outgoing Prob. of
infected no infection
edges

Global spreading condition

Our global spreading condition is then:

&, kP
R — k
I;) (k)

o(k—1)e B, >1.

Case 1-Rampant spreading: If B,; =1 then

SN EPe gy 2 (RE= 1)
Rfk;)m (k—1) w > 1.

Good: This is just our giant component condition
again.
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Case 2—Simple disease-like: If B,; =8 <1 then

> kP,
R = k o
2

k—1)ef>1.

A fraction (1-3) of edges do not transmit infection.

Analogous phase transition to giant component

case but critical value of (k) is increased.
Aka bond percolation®..

Resulting degree distribution Py

B, = 5ki (2)(1 —B) kP,

i=k

Giant component for standard random networks:
Recall (k2) = (k)2 + (k).
Determine condition for giant component:

(k)? + (k) — (k)

Therefore when (k) > 1, standard random
networks have a giant component.

When (k) < 1, all components are finite.

Fine example of a continuous phase transition (4"

We say (k) = 1 marks the critical point of the
system.

Random networks with skewed P,:
e.g if P, =ck Y with2 <~ <3,k >1,then

(k) =c> Kk
k=1

oo
~ / 227 7dz
x=1

o 303’“":0:1 =00 (> (k)).

So giant component always exists for these kinds
of networks.

Cutoff scaling is k=3: if v > 3 then we have to look
harder at (k) .

How about P, = 4y, ?
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Giant component
And how big is the largest component?

Define S, as the size of the largest component.

Consider an infinite ER random network with average
degree (k).

Let's find S, with a back-of-the-envelope argument.

Define § as the probability that a randomly chosen
node does not belong to the largest component.

Simple connection: § =1 — S;.

Dirty trick: If a randomly chosen node is not part of the

largest component, then none of its neighbors are.
So

5= i P, 6"
k=0

Substitute in Poisson distribution...

Giant component

Carrying on:
§ = o P, 5’“* S <k>k 7<k)5k
=) Pdt=) e
k=0 k=0

., ((k)o)*
e $ (2)

= e (klelk)d — o—(k)(1-9)

Now substitute in § = 1 — S; and rearrange to
obtain:
S =1—e 5

Giant component

We can figure out some limits and details for
Sy =1—e RS

First, we can write (k) in terms of S;:

1 1
(k) = S—llnﬁ.
As (k) — 0,5, = 0.
As (k) = o0, S; — 1.
Notice that at (k) = 1, the critical point, S; = 0.
Only solvable for S; > 0 when (k) > 1.
Really a transcritical bifurcation. !
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Giant component

0.8

0.6

0.4

0.2

Giant component
Turns out we were lucky...

&% Our dirty trick only works for ER random networks.

& The problem: We assumed that neighbors have
the same probability ¢ of belonging to the largest
component.

& But we know our friends are different from us...

&% Works for ER random networks because
(k) = (k) r-

&> We need a separate probability 6’ for the chance
that an edge leads to the giant (infinite)
component.

&% We can sort many things out with sensible
probabilistic arguments...

& More detailed investigations will profit from a spot
of Generatingfunctionology. !
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