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Models

Some important models:

1.
. Small-world networks;

. Generalized affiliation networks;
. Scale-free networks;

. Statistical generative models (p*).
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Random network generator for N = 3:

&
&

Get your own exciting generator here (4.
As N 7, polyhedral die rapidly becomes a ball...

Random networks

Pure, abstract random networks:

&

&
&
&
&

Consider set of all networks with NV labelled nodes

and m edges.

Standard random network =
one randomly chosen network from this set.

To be clear: each network is equally probable.

Sometimes equiprobability is a good assumption,

but it is always an assumption.

Known as Erdés-Rényi random networks or ER
graphs.

Random networks—basic features:

&

&
&

&

& &

Number of possible edges:

Limit of m = 0: empty graph.

Limit of m = (§): complete or fully-connected
graph.

Number of possible networks with N labelled

nodes:

Given m edges, there are (( )) different possible
networks.

Crazy factorial explosion for 1 « m < (}).

Real world: links are usually costly so real
networks are almost always sparse.

N-1)
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Random networks

How to build standard random networks:

&
&

Given N and m.

Two probablistic methods (we'll see a third later
on)

. Connect each of the (§') pairs with appropriate

probability p.
& Useful for theoretical work.

. Take N nodes and add exactly m links by selecting

edges without replacement.

&) Algorithm: Randomly choose a pair of nodes i and

j. i # 3, and connect if unconnected; repeat until
all m edges are allocated.

& Best for adding relatively small numbers of links
(most cases).

& 1 and 2 are effectively equivalent for large N.

Random networks
A few more things:

&

&

&
&

For method 1, # links is probablistic:

(m) :p(;v) PNV -1)

So the expected or average degree is

2(m)
(hy = 2
= Zp NN —1)= }%p%N(N —1)=p(N —1).

Which is what it should be...

If we keep (k) constantthen p < 1/N — 0 as
N — oo.

Random networks: examples for N=500

m=

(k)

m

(k)

100
=04

=260

=1.04

m =1000
(k)=2 (k)=4

The PoCSverse
Random
Networks
100f 79

Pure random

Generalized
Random
Networks

References

The PoCSverse
Random
Networks

11 0f79

Pure random
networks

uild lheoren(aHy

Generalized
Random
Networks

References

The PoCSverse
Random
Networks

14 0f 79

Generalized
Random

References



The PoCSverse
Random

Random networks: largest components

m =200 m 20382
(k)=0.8
m ’\00
m =240
(k) =0.96
m =260
(k)=1.04

m 280
=112
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m =1000
(k) =4

m =300
(k)=12
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Random networks: largest components

andom

m =250 m =250 -
(k) =1 (k) =1 ” 250

m =250
m =250
(k) =1 m =250
(k)=1
m =250
(k) =1

Fhpang

Giant component

0.6

0.4

0.2
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Clustering in random networks:
For construction method 1, what is the clustering
coefficient for a finite network?
Consider triangle/triple clustering coefficient: [”!

3 x #triangles

Gz = #triples

) Recall: C, = probability that
L two friends of a node are
also friends.

P Or: C, = probability that a
‘9 triple is part of a triangle.
For standard random

: networks, we have simply
. that
3 CQ =Dp.

Clustering in random networks:

So for large random
networks (N — o0),
clustering drops to zero.
Key structural feature of
random networks is that
they locally look like
pure branching networks

No small loops.

The PoCSverse
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Pure random Recall P, = probability that a randomly selected

networks

node has degree k.

Consider method 1 for constructing random
networks: each possible link is realized with
probability p.

Now consider one node: there are ‘N — 1 choose &'
ways the node can be connected to & of the other
N — 1 nodes.

Each connection occurs with probability p, each
non-connection with probability (1 — p).

Therefore have a binomial distribution (5%
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Limiting form of P(k;p, N):
Our degree distribution:
P(k:p,N) = (N )pF (L —p)N R,
What happens as N — o0?
We must end up with the normal distribution
right?
If p is fixed, then we would end up with a Gaussian
with average degree (k) ~ pN — oc.
But we want to keep (k) fixed...

Pure random

Generalized
Random

vorks

feferences So examine limit of P(k;p, N) whenp — 0 and
N — oo with (k) = p(N — 1) = constant.
N-1-k o
i (k)" (k) ®B)* _ny
P(k;p,N) =~ ol 1 N1 — ] e
This is a Poisson distribution (Z' with mean (k).
LZEE;’%SV” Poisson basics
Networks
21 0f79

Pure random

networks
AP A>0
- P(k; ) = Tre
k! k=0,1,2,3,...
Generalized 0.40 Classic use: probability
fandom 0.3s{ 77 o A=l that an event occurs k
030 | T times in a given time
0B period, given an
5(}.20

average rate of

0.15
References 0.10 occurrence.
gsz Y, e.g.
o 20 phone calls/minute,
horse-kick deaths.
-
D ‘Law of small numbers’
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Poisson basics:
Normalization: we must have
> P(k; (k) =1
k=0

Checking:

Poisson basics:

Mean degree: we must have
(k) = kP(k; (k).

Checking:

In CocoNuTs, we find a different, crazier way of doing
this...

Poisson basics:

The variance of degree distributions for random
networks turns out to be very important.

Using calculation similar to one for finding (k) we
find the second moment to be:

(k2) = (k) + (k).
Variance is then

0 = (k) = (0% = ()% + () — ()2 = (B

So standard deviation o is equal to \/(k).

Note: This is a special property of Poisson
distribution and can trip us up...
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General random networks

So... standard random networks have a Poisson
degree distribution

Generalize to arbitrary degree distribution P,.
Also known as the configuration model.

Can generalize construction method from ER
random networks.

Assign each node a weight w from some
distribution P,, and form links with probability

Pure random
rks

Generalized
Random
Networks

References

P(link between i and j) o w,w;.

But we'll be more interested in
1. Randomly wiring up (and rewiring) already existing
nodes with fixed degrees.
2. Examining mechanisms that lead to networks with
certain degree distributions.
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1 =219
3.448 (k) =2.986

References

=255 v=264

y=273 =28
(k)=1.712 =1

(k) =1.862 (k)
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=246

=228 =237
=2.504 (k) =1.856

5
(k) =2.306 (k)

References

=273
(k) =1.862

=282
(k)=1.386

=255 =26
(k)=1.712 (k)=1
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Generalized random networks:
Arbitrary degree distribution P.

Create (unconnected) nodes with degrees
sampled from P,.

Wire nodes together randomly.

Create ensemble to test deviations from
randomness.
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Random
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Pure random Phase 1:
‘ Idea: start with a soup of unconnected nodes with
stubs (half-edges):

17t

II 1 \I/\I/+ IIII Randomly select stubs

(not nodes!) and
f

T st nave an even
Tttt fH

number of stubs.
Building random networks: First rewiring

References

Initially allow self- and
repeat connections.
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Phase 2:

Now find any (A) self-loops and (B) repeat edges
and randomly rewire them.

A) (B) >Oé
Being careful: we can't change the degree of any
node, so we can't simply move links around.

References

Simplest solution: randomly rewire two edges at a
time.
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General random rewiring algorithm raniom - Sampling random networks o Network motifs Ut tans
. e i Nsmone ki ki
l1 1 Pure random Pure rand Pure random
n ks networks

Definitior

Randomly choose two edges.

(Or choose problem edge and - v s ) )
arandom edge) - What if we have P, instead of N,?

Generalized
Random
N

Check to make sure edges are  cncon Must now create nodes before start of the
disjoint. Networks construction algorithm.

Generate N nodes by sampling from degree
distribution P,,.

Motifs

Rewi d of each ed References Easy to do exactly numerically since k is discrete. References TR References
ewire one end or eacn edge. ) ; TQuwu
Note: not all P, will always give nodes that can be 522P%
Node degrees do not change. 2

wired together.

Works if e, is a self-loop or
repeated edge. Master switch.

Same as finding on/off/on/off
4-cycles. and rotating them.

Sampling random networks rnom Network motifs rncom Network motifs Random
pryssing prictin prpci
Pure random Pure random dom

networks networks )
i ifs8l .
T Ideg of motifs'®! introduced by Shen-Orr, Alon et e dense overlapping regulons (DOR) s
Phase 2: S al. in 2002. som st e
Use rewiring algorithm to remove all self and Generalized Looked‘ at gene expression within full context of Generalized X1 X X3 . X Generalized
repeat loops. Fandor transcriptional regulation networks. : Random’

Specific example of Escherichia coli.
Directed network with 577 interactions (edges)

2, Zp Z3 Zy..Zn

Phase 3:
% and 424 operons (nodes). gestcompaner 2 g € I et componer
i iri i iri erences N rences § 8 ¥E & £¢8E5 e rences
Rland.(')dr’]mzle.tr:etvxlllork wiring by applying rewiring References Used network randomization to produce Reference RS & £ 8¢5 Reference
algorithm liperally. . ensemble of alternate networks with same degree M /
. e ~ 9 Q
Rule of thumb: # Rewirings ~ 10 x # edges >\ frequency N,. g 8 E % é 8
Looked for certain subnetworks (motifs) that —
appeared more or less often than expected
Random sampling rnaom  Network motifs rnaom  Network motifs Random
Networks Networks Networks
41 of 79 45 of 79 48 of 79
Pure random Pure random
networks networks
Problem with only joining up stubs is failure to ortn X a Howta bl s theorn
randomly sample from all possible networks. ciserng “, a i
Example from Milo et al. (2003)!: Generalized ; Jized Generalized
andor Randor . . . andor
® ® Networks Networks Note: selection of motifs to test is reasonable but ~ fetors
- T ‘ nevertheless ad-hoc. e
T el pan N o For more, see work carried out by Wiggins et al. at =
i —— e aragap e Columbia. s componer
pryTap o References References References
E ] Z only turns on in response to sustained activity in

X.
Turning off X rapidly turns off Z.
Analogy to elevator doors.

1 configuration 90 configurations




The edge-degree distribution:
The degree distribution P, is fundamental for our
description of many complex networks
Again: P, is the degree of randomly chosen node.

A second very important distribution arises from
choosing randomly on edges rather than on nodes.

Define Q,, to be the probability the node at a random
end of a randomly chosen edge has degree k.

Now choosing nodes based on their degree (i.e., size):

Normalized form:
kP, kP,

Qk = Z:c/}:() k/Pk/ - W

Big deal: Rich-get-richer mechanism is built into this
selection process.

The edge-degree distribution:

For networks, @, is also the probability that a
friend (neighbor) of a random node has £ friends.

Useful variant on Q,;:

R,, = probability that a friend of a random node
has % other friends.

(k4+1)Pp, _(E+1)Pyy

Ry, = =
P oW Py (k)

Equivalent to friend having degree k + 1.

Natural question: what's the expected number of
other friends that one friend has?

Probability of randomly
selecting a node of degree k
by choosing from nodes:

P, =3/7, Py =2/7,Py=1/1,
Pg=1/T7.

Probability of landing on a
R node of degree k after
randomly selecting an edge
and then randomly choosing
one direction to travel:

A Q, =3/16, Q, = 4/16,

1 Q5 =3/16, Q¢ = 6/16.
Probability of finding #
outgoing edges = k after
randomly selecting an edge
and then randomly choosing
one direction to travel:

Ry, =3/16 R, = 4/16,

Ry, =3/16, Ry = 6/16.
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The edge-degree distribution:

Given R, is the probability that a friend has k other
friends, then the average number of friends’ other
friends is

B =S kR, =3 kBT D e +<1k)>P’€+1

k=0 k=0

1

(k) £

= g7 2 (e 12 = (k1)) Py
k=1

(where we have sneakily matched up indices)

8

k(k+1)Py
1

= % S (2 )P, (usingj=k+1)
=0

1
W ((k(k—1)))

The edge-degree distribution:

Note: our result, (k) , = ﬁ ((k(k —1))), is true for

all random networks, independent of degree
distribution.

For standard random networks, recall
(k%) = (k) + (k).
Therefore:

() = % (02 + () — () = ()

Again, neatness of results is a special property of
the Poisson distribution.

So friends on average have (k) other friends, and
(k) + 1 total friends...

The edge-degree distribution:

In fact, R, is rather special for pure random
networks ...

Substituting

_®*
o=
into (ht1)P
TP
Ry =k
(k)
we have
By = <k<7€.>1> Ez?w;:e,w _ Lk;;ff m'e,<k>
+1)! !
k k
= %e’“” =P,
#samesies.
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Two reasons why this matters

Reason #1:

Pure randorr
networks

Average # friends of friends per node is

B (kg) = (k) x (k)p = W%((’CQ) = (k) = (k%) — (k).

Key: Average depends on the 1st and 2nd moments of
P, and not just the 1st moment.

Three peculiarities:

1. We might guess (k5) = (k)((k) — 1) but it's actually
(k(k—1)).
2. If P, has a large second moment,
then (k,) will be big.
(e.g., in the case of a power-law distribution)
. Your friends really are different from you...[* ©!
. See also: class size paradoxes (nod to: Gelman)

References

H W
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Two reasons why this matters

Pure random
networks

More on peculiarity #3:
A node's average # of friends: (k)

k2)

(k)

Friend's average # of friends: ¢

Generalized .
Fandom Comparison:
:(u‘h,h din practice <k52> <k2> 7 0_2 + <]$>2

Random friends are:
s

w = W =W =

References

So only if everyone has the same degree
(variance= o2 = 0) can a node be the same as its
friends.

Intuition: For networks, the more connected a
node, the more likely it is to be chosen as a friend.
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56 of 79

Pure random
networks

Eom and Jo,
Nature Scientific Reports, 4, 4603, 2014. ]

Generalized
Random
Networks

Your friends really are monsters #winners:'
Go on, hurt me: Friends have more coauthors,
citations, and publications.

Other horrific studies: your connections on
Twitter have more followers than you, are happier
than you "', more sexual partners than you, ...

References

The hope: Maybe they have more enemies and
diseases too.

Research possibility: The Frenemy Paradox.

'Some press here (' [MIT Tech Review].
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The PoCSverse

Random Structure of random networks rniom  Global spreading condition Random

Networks Networks Networks

60 of 79 H . 64 0f 79 67 of 79
Giant component:

Pure random Pure randorr >

networks

Related disappointment: A giant component exists if when we follow a

random edge, we are likely to hit a node with at

— Our global spreading condition is then:

Nod heir friend least 1 other outgoing edge. W — = 1P, st s
odes see their friends’ . ) ) e .
color choices foneralized Equivalently, expect exponential growth in node foneralized Z ) —1)e By, > 1. Generalized

i - Networks number as we move out from a random node. Networks k=0 etworks
Which color is more e

All of this is the same as requiring (k) > 1.
e § Giant component condition (or percolation . "
References condition): References R— Z <
{k2) — (k) b=

) >1
Good: This is just our giant component condition
Again, see that the second moment is an essential again.
part of the story.

popular?’
Again: thinking in edge
space changes everything.

Case 1-Rampant spreading: If B,; =1 then

(k(k—1)) References

—-1) = ® > 1.

P;c ok
(kg =

Thttps://www.washingtonpost.com/graphics/business/ Equivalent statement: (k2) > 2(k)
wonkblog/majority-illusion/
Two reasons why this matters rnom - Spreading on Random Networks wniom - Global spreading condition Random
Networks Networks Networks
. 610 65 of 79 68 of 79
(Big) Reason #2: pure random For random networks, we know local structure is pure random . . _ ure random
networks . networks Case 2—Simple disease-like: If B,; = 3<1 then s
(k) g s key to understanding how well random e pure branching. ‘
networks are connected together. - s Successful spreading is - contingent on single 0 L
e.g., we'd like to know what's the size of the largest ™ edges infecting nodes. g *h>
component within a network. ETJSL?{ - Success Failure: ?3'75;‘7{2”
. s Networks
As N — oo, ;ioes our network have a giant A fraction (1-3) of edges do not transmit infection. B
CDZTnp'OCr;emngonent = connected subnetwork of - \/ \./’(‘) Analogous phase transition to giant component e
: = i o case but critical value of (k) is increased. g component
nodes such that 3 path between each pair of References \ \ References Aka bond bercolation G2 (k) References
nodes in the subnetwork, and no node outside of ond percolation '

the subnetwork is connected to it. Resulting degree distribution 15,€:

Focus on binary case with edges and nodes either

Defn: Giant component = component that infected or not. - > /4 )
comprises a non-zero fraction of a network as First big question: for a given network and P, =p3* Z (k) (1—pB)Fp,.
N — co. contagion process, can global spreading from a =k
Note: Component = Cluster single seed occur?
Giant component LZSES&SV” Global spreading condition L’;EES&“W QZEESESVQ’”
Networks Networks Networks
. We need to find:*) e Giant component for standard random networks: ~ ©°”°

R = the average # of infected edges that one networks
fr— random infected edge brings about.
Call R the gain ratio.

Recall (k2) = (k)2 + (k).
Determine condition for giant component:

1 Define B, as the probability that a node of — k2= k) (0)% + (k) — (k) e
S, o8 degree k is infected by a single infected edge. Random (k) g = W B = (k) Random
o0 lends are o k
0.6 R=Y" kB o (k—1) o By - Therefore when (k) > 1, standard random
=R ) bommie Prbof  mewince networks have a giant component.
04 Egﬂﬁ'eg;ng o gljfggtsed infection When (k) < 1, all components are finite.
0.2 a degree k node Fine example of a continuous phase transition (4.
P We say (k) = 1 marks the critical point of the
+ Z Fe 0 o (1-By) system.
0 1 2 3 4 () # outgoing Prob. of
kO infected no infection

edges



Random networks with skewed P,:
& eg if P, =ckvYwith2 <y <3, k>1,then

o0
(k) =Y K2k
k=1

oo
~ / 22~vdz
=1

x z3’7‘zi1 =00 (> (k).

<& So giant component always exists for these kinds

of networks.

&% Cutoff scaling is k=3: if v > 3 then we have to look

harder at (k) .
& How about Py, = 6, ?

Giant component
And how big is the largest component?

&% Define S, as the size of the largest component.

&% Consider an infinite ER random network with average

degree (k).

& Let's find S; with a back-of-the-envelope argument.
<> Define ¢ as the probability that a randomly chosen

node does not belong to the largest component.
& Simple connection: § =1 — S;.

&% Dirty trick: If a randomly chosen node is not part of the
largest component, then none of its neighbors are.

& So
5= Pys*
k=0

&% Substitute in Poisson distribution...
Giant component
& Carrying on:

=3 Pt =S 0

k=0

2. ((k)o)*
_ w3 @0
k=0

— o~ (R)(k)8 — (k) (1-5)

&% Now substitute in § = 1 — $; and rearrange to

obtain:
S;=1-— e (k)Sy
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Giant component

&

We can figure out some limits and details for
S, =1—e RS

&% First, we can write (k) in terms of S;:
1 1
k) = —I .
k) =g Ing—5

As (k) — 0,5, — 0.
As (k) —» o0, S; — 1.

Only solvable for S; > 0 when (k) > 1.
Really a transcritical bifurcation. [’

PHEHHD®

Giant component

0.6

0.4

0.2

kO

Turns out we were lucky...

&% Our dirty trick only works for ER random networks.

&> The problem: We assumed that neighbors have
the same probability ¢ of belonging to the largest

component.

&> But we know our friends are different from us...

&> Works for ER random networks because
(k) = (k) g-

&% We need a separate probability ¢’ for the chance
p p y

that an edge leads to the giant (infinite)
component.

&% We can sort many things out with sensible
probabilistic arguments...

&> More detailed investigations will profit from a spot

of Generatingfunctionology. ['%!

&> CocoNuTs: We figure out the final size and
complete dynamics.

Notice that at (k) = 1, the critical point, S; = 0.
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