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Random directed networks:

So far, we've largely studied networks with
% undirected, unweighted edges.

/

Now consider directed, unweighted edges.

Nodes have k; and k, incoming and outgoing
edges, otherwise random.

Network defined by joint in- and out-degree
distribution: Py, .

Normalization: 3°7° (S2°_ Py . =1
Marginal in-degree and out-degree distributions:
o0 oo
Py = Py, and Py = > Py,
ko=0 k=0

Required balance:

=Z kak k =Z Zkopk‘,kozuﬂo)
#=0 =0 =0 =0
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Directed network structure:

GWCC = Giant Weakly
Connected Component
(directions removed);
GIN = Giant
In-Component;

GOUT = Giant
Out-Component;

GSCC = Giant Strongly
Connected Component;

DC = Disconnected
Components (finite).

From Bogufi4 and Serano. !'!

When moving through a family of increasingly
connected directed random networks, GWCC
usually appears before GIN, GOUT, and GSCC
which tend to appear together. * ']

Observation:

Directed and undirected random networks are
separate families ...

...and analyses are also disjoint.

Need to examine a larger family of random networks
with mixed directed and undirected edges.

Consider nodes with three types of
edges:

1. k, undirected edges,
2. kjincoming directed edges,
3. k, outgoing directed edges.

Zj:[ku k; ko]T'

Joint degree distribution:
P, wherek = [k, k ko™

As for directed networks, require in- and
out-degree averages to match up:

Otherwise, no other restrictions and connections
are random.

Directed and undirected random networks are
disjoint subfamilies:

H MS
H MS

Undirected: P, = Py, 9y, 00k, .0,

Directed: Py, = 4y, 0Py, 1,-

Define a node by generalized degree:
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Correlations:

Now add correlations (two point or Markovian) C:

1. PW(%| k') = probability that an undirected edge
leaving a degree k' nodes arrives at a degree k
node.

2. PO(E| k') = probability that an edge leaving a
degree &’ nodes arrives at a degree k node is an
in-directed edge relative to the destination node.

3. PO(L|k’) = probability that an edge leaving a
degree &’ nodes arrives at a degree k node is an
out-directed edge relative to the destination node.

Now require more refined (detailed) balance.
Conditional probabilities cannot be arbitrary.
1. PW(%| %) must be related to P (&’ | k).
2. PO(E|E)and PO(k|%’) must be connected.

Correlations—Undirected edge balance:

Randomly choose an edge, and randomly choose
one end.

Say we find a degree k node at this end, and a
degree k’ node at the other end.

Define probability this happens as P (%, k).
Observe we must have PW(k, &) = PU(E k).

Conditional probability
connection:

PO E)

PWE ) =

Correlations—Directed edge balance:

The quantities
ko P(k) kiP (k)
o )
give the probabilities that in
starting at a random end of a
randomly selected edge, we
begin at a degree k node and
then find ourselves travelling:

1. along an outgoing edge, or
2. against the direction of an incoming edge.

We therefore have

= P(O)(‘k}l ‘TC) kl(i:( )

dlr)(‘];, k/) P(k,)

(ko)

Note that P(@1 (%, &) and P@N(%/ k) are in general
not related if k # &’.

PO(R|R)=2
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Global spreading condition: *!
When are cascades possible?:

Directed random
networks

Consider uncorrelated mixed networks first.

Recall our first result for undirected random
networks, that edge gain ratio must exceed 1:

k=0

Lu K (k,—1)eB 1
Yo ° > 1.
<ku> u Fu1

Nutshell

Similar form for purely directed networks:

i i ! ’“-"“ okye By 4 >1.

Both are composed of (1) probability of
connection to a node of a given type; (2) number
of newly infected edges if successful; and (3)
probability of infection.
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Global spreading condition:

Local growth equation:

Mde random

Define number of infected edges leading to nodes
a distance d away from the original seed as f(d).

Infected edge growth equation:

Rf(d).
Applies for discrete time and continuous time
contagion processes.

Now see By, , is the probability that an infected
edge eventually infects a node.

Also allows for recovery of nodes (SIR).

fd+1) =
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Mixed, uncorrelated random netwoks:

Now have two types of edges spreading infection:
directed and undirected.
Gain ratio now more complicated:
1. Infected directed edges can lead to infected
directed or undirected edges.
2. Infected undirected edges can lead to infected
directed or undirected edges.

Nutshell
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Define fY(d) and f©)(d) as the expected number
of infected undirected and directed edges leading
to nodes a distance d from seed.

Gain ratio now has a matrix form:

[ fotata) ] ==] fola |

Two separate gain equations:

kP, P,

FOd+1) = Z { <: ;‘ o (ky—1)e By iy 1 f(d) + (T)k ekyo By 11O
kP P,

fOd+1) =) [ <;f )k ® ko B o 1 fU(d) + <Ik)k o ko ® By, ik, 1 fO(d)

*uPh o (k, — 1) kok
R=Y { e k<15 * By, i1
- ok .
B L kg ® %o ey @ Fo

Spreading condition: max eigenvalue of R > 1.
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Useful change of notation for making results more
general: write PUW (% | %) = ;CP* and

PO ) = %74 where « indicates the starting
node’s degree is irrelevant (no correlations).
Also write B, ;. , toindicate a more general
infection probability, but one that does not
depend on the edge’s origin.

Now have, for the example of mixed, uncorrelated
random networks:

Mixed HdUY\
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Summary of contagion conditions for
uncorrelated networks:

|. Undirected, Uncorrelated—f(d + 1) = f(d):
R=Y"PU(k,|x)
ky

Directed random

° (ku - 1).Bku,*

II. Directed, Uncorrelated—f(d + 1) = f(d):

R= > POk ko %)

Fis ko

ek,e B, .
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IIl. Mixed Directed and Undirected, Uncorrelated—

[ ot | =~ [ foia |

Correlated version:

Now have to think of transfer of infection from
edges emanating from degree k’ nodes to edges
emanating from degree k nodes.

Replace PO(% | ) with PO (k| %) and so on.

Edge types are now more diverse beyond directed
and undirected as originating node type matters.
Sums are now over &’

Summary of contagion conditions for correlated
networks:

IV. Undirected,
Correlated—f;, (d+1) =32,, Ry i fiy(d)

Ry w, =P V(ky | kL) o (ky —1)e By x;

V. Directed,
Correlated—f, ;. (d+ 1) = 2 g i g Ty ()
Rk‘koki’k{, =P ‘)(kn ko \k/ kg) e koo Bk‘kokl’k{,

VI. Mixed Directed and Undirected, Correlated—

FO(d+1) £
{ f(") d+1) ZRW f§j (d)
A% P‘:“)(fe ‘ k/) ok, p(i)@ | k/) o kg kk’

Full generalization:
a=(@,\)

fald+1) =

R is the gain ratio
matrix and has the form:

Rsg = Pygr ®kgar ® By
P, = conditional probability that a type /\’ edge
emanating from a type v’ node leads to a type v
node.
k44 = potential number of newly infected edges
of type A emanating from nodes of type v.
B, = probability that a type v node is eventually
infected by a single infected type )\’ link arriving
from a neighboring node of type »’.
Generalized contagion condition:

max|u|:peo(R)>1
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contagion on random networks can be determined Srecesnin  SUMMary of triggering probabilities for correlated (17 ., ,
with a straightforward physical argument. networks networks: networks [11 M. Bogufid and M. Angeles Serrano. networks
T Mixed random Generalized percolation in random directed
Two good things: networks IV. Undirected, Correlated— Qg(ky) = et networks P
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Py = S, ZPk [1—(1- Qug)*]- K0 Direct, phyiscally motivated derivation of the
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I It found via the eldritch route of References V. Directed, Correlated— Qyig(ki, ko) = References generalized random networks. References
uivalent to resu ounda via e elaritch route o ’ C\ACL199 9N14 ~AECA T
ggnerating functions Sy py PO kG Kiy o) By [1 = (1= Qg (K{, k)] Phys. Rev. E, 83:056122, 2011. pdfZ
Generating functions arguably make some kinds of Suig = Y P(k{, k) [1— (1 - Quig(k{, k4))*] (3] K. D. Harris, J. L. Payne, and P. S. Dodds.
calculations easier (but perhaps we don't care about SR g Direct, physically-motivated derivation of triggering
component sizes that much). probabilities for contagion processes acting on
On the other hand, a plainspoken physical argument corre!ated Arandom networks.
helps us generalize to correlated networks more easily. https://arxiv.org/abs/1108.5398, 2014.
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Summary of triggering probabilities for

Mixed, correlated random networks with
uncorrelated networks:

undirected and directed edges form natural
ot inclusive generalization of purely undirected and o
N Fendom purely directed random networks. N Fondom

Mixed ra Hduv 1

IIl. Mixed Directed and Undirected, Uncorrelated—

W _ () (%’ R — (1= QW ki—1(1 — QL ko]  contagion . . . . - “ontagio
Qurig = ZP (K1) Biy [1 (1= Quig)™ (1 = Qurig) } S Spreading conditions and triggering probabilities o
* I of contagion processes can be determined usinga -
g?.)g = Z POE|) By [1 —(1- Qggi)g)ka@ — Qg)g)ké] Nuts direct, physical approach. Nutshel
feferences These conditions can be generalized to arbitrary feferences
Stig = Z Pk [1 —(1— Qﬁ‘r‘.)g)kﬁ(l _ Qg’i)g)kg] E;;Sfm networks with arbitrary node and edge

More generalizations: bipartite affiliation graphs
and multilayer networks.



