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Leveling up—Scaffolded educational mission:

<& Data Science Undergrad.

<% Graduate Certificate in
Complex Systems and
Data Science

&% Fall, 2015-: MS in Complex
Systems and Data Science

&> Fall, 2018-: PhD in Fhe

Complex Systems and
Data Science

Principles of Complex Systems, Vols. 1, 2, and 3D
https://pdodds.w3.uvm.edu/teaching/ %'
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From the non-cinematic

PoCSverse and the Department

of Advanced Macrodata
Refinement:

Principles of

Complex Systems
Vols. 1,2,and 3D
Season 18, 2022-2023

Tarot Cards
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150,000 lines of BIEX ...
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Exciting details regarding these slides:

& Three servings (all in pdf):
1. Fresh: For in-class Deliveration.
2. On toast: Flattened for page-turning joy.
3. Freeze-dried: Pack-and-go, 3x3 slides per page.

o F ) ) ) :
sxe=back+search—+forward:

<& Web links look like this (4.

&% References in slides link to full citation at end. !

&% Citations contain links to pdfs for papers (if
available).

&> Some books will be linked to on Amazon.
& Brought to you by a frightening melange of

1. Systems are ubiquitous and systems matter.

2. Consequently, much of science is about understanding
how pieces dynamically fit together.

3. 1700 to 2000 = Golden Age of Reductionism:
Atoms!, sub-atomic particles, DNA, genes, people, ...

4. Understanding and creating systems (including new
‘atoms’) is the greater part of science and engineering.

5. Universality (4" systems with quantitatively different

micro details exhibit qualitatively similar macro
behavior (fate, but real and limited)

6. Computing advances make the Science of Complex
Systems possible:

6.1 We can measure and record enormous amounts
of data, research areas continue to transition from
data scarce to data rich.

6.2 We can simulate, model, and create complex
systems in extraordinary detail.
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netework |'netwark|

noun

1 an arrangement of intersecting horizontal and vertical lines.
« a complex system of roads, railroads, or other transportation routes -
a network of railroads.

2 a group or system of interconnected people or things : a trade network.
« a group of people who exchange information, contacts, and
experience for professional or social purposes : a support network.
« a group of broadcasting stations that connect for the simultaneous
broadcast of a program : the introduction of a second TV network | [as adj. ]
network television.
« a number of interconnected computers, machines, or operations :
specialized computers that manage multiple outside connections to a network | a
local cellular phone network.
« a system of connected electrical conductors.

verb [ trans. ]

connect as or operate with a network : the stock exchanges have proven to be
resourceful in networking these deals.
« link (machines, esp. computers) to operate interactively : [as adj. | (
networked) networked workstations.
« [intrans. | [often as n. | ( networking) interact with other people to
exchange information and develop contacts, esp. to further one's
career : the skills of king, b ing, and

Thesaurus deliciousness:

network

noun

1 a network of arteries WEB, lattice, net, matrix, mesh,
crisscross, grid, reticulum, reticulation; Anatomy plexus.

2 a network of lanes MAZE, labyrinth, warren, tangle.

3 a network of friends SYSTEM, complex, nexus, web,
webwork.

Ancestry:

From Keith Briggs's etymologlcal |nvest|gat|on &

&> Opus
reticulatum:

& A Latin origin?

[http://serialconsign.com/2007/11/we-put-net-

network]
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Ancestry:

First known use: Geneva Bible, 1560

‘And thou shalt make unto it a grate like networke of
brass (Exodus xxvii 4).'

From the OED via Briggs:

&> 1658-: reticulate structures in animals

&% 1839-: rivers and canals

<> 1869-: railways

<> 1883-: distribution network of electrical cables
&> 1914-: wireless broadcasting networks

Ancestry:
Net and Work are venerable old words:

< ‘Net first used to mean spider web (King £Ifréd,
888).

& 'Work' appear to have long meant purposeful
action.

Ol High German
werh

picleHigh Geman

oldNorse Micle English

Middle w.n

Middle High Germarn
natzs

Modern Hish German|
ez

The netwark of Germanic et wards

OHNoree
oot
W Sweih Wodern w ah
at

The netwark of ‘work words.

&> ‘Network’ = something built based on the idea of
natural, flexible lattice or web.

& c.f., ironwork, stonework, fretwork.

Key Observation:

&% Many complex systems
can be viewed as complex networks
of physical or abstract interactions.

& Opens door to mathematical and numerical
analysis.

<> Dominant approach of the first decade was of a
theoretical-physics/stat-mechish flavor.

&> Mindboggling amount of work published on
complex networks since 1998 ...

&% ... largely due to your typical theoretical physicist:

& Piranha physicus
& Huntin packs.

&) Feast on new and interesting ideas
(see chaos, cellular automata, ...)

S Cmm o almeme Lttt I o md mc 1O IR

e [swedar] ounan Modam High Geman
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Complex Systems is the Big Story:

Complex Systems

wi
Network Steuckure

& Only a bit networky: Fluids-at-large (the
atmosphere, oceans, ...), organism cells, ...

Popularity (according to Google Scholar)

= | “Collective dynamics of ‘small-world’

Watts and Strogatz,
Nature, 393, 440-442, 1998.[117!

cos []

Times cited: ~ 51,622 (4 (as of May 19, 2023)

Barabasi and Albert,
A Science, 286, 509-511, 1999. (8]

Times cited: ~ 43,853(4' (as of May 19, 2023)

Review articles:

= = = | “Complex Networks: Structure and

_ | Boccalettietal.,
- Physics Reports, 424, 175-308, 2006. [

= “The structure and function of complex

§ networks” (%'

M. E. J. Newman,
SIAM Rev., 45, 167-256, 2003. /7!

Albert and Barabasi,
: Rev. Mod. Phys., 74, 47-97, 2002. (3]

Times cited: ~ 26,636 (as of May 9, 2023)
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Popularity according to textbooks:

Textbooks:

&5 Mark Newman (Physics, Michigan)
“Networks: An Introduction” ('

&% David Easley and Jon Kleinberg (Economics and
Computer Science, Cornell)
“Networks, Crowds, and Markets: Reasoning About a
Highly Connected World" (£

Popularity according to popular books:

The

TIPPING PoinT

The Tipping Point: How Little Things can
: make a Big Difference—Malcolm
Gladwell 43!

Nexus: Small Worlds and the
Groundbreaking Science of
Networks—Mark Buchanan

(T X T E XY XX ]

Popularity according to popular books:

Linked

Linked: How Everything Is Connected to
Everything Else and What It
Means—Albert-Laszlo Barabasi

Six Degrees: The Science of a Connected
Age—Duncan Watts 197!

THE SEIENCEOF
A-CONNECTED AGE

DUNCAN Yy WATTS
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Numerous others ...

Complex Social Networks—F. Vega-Redondo [10°!]

Fractal River Basins: Chance and Self-Organization—I.
Rodriguez-Iturbe and A. Rinaldo [

Random Graph Dynamics—R. Durette
Scale-Free Networks—Guido Caldarelli

Evolution and Structure of the Internet: A Statistical
Physics Approach—Romu Pastor-Satorras and
Alessandro Vespignani

PO H®

Complex Graphs and Networks—Fan Chung

Social Network Analysis—Stanley Wasserman and
Kathleen Faust

Handbook of Graphs and Networks—Eds: Stefan
Bornholdt and H. G. Schuster['°]

& & PP

Evolution of Networks—S. N. Dorogovtsev and J. F. F.
Mendes 2%

More observations

But surely networks aren’t new ...

Graph theory was well established ...

Study of social networks started in the 1930's ...
So why all this ‘new’ research on networks?
Answer: Oodles of Easily Accessible Data.

We can now inform (alas) our theories
with @ much more measurable reality.*

Graph theory missed “becoming": Stories =
Characters + Time

A worthy goal: establish mechanistic explanations.

& & HHHHHD

*If this is upsetting, maybe string theory is for you ...

More observations
<& Internet-scale data sets can be overly exciting.

Witness:

&% The End of Theory: The Data Deluge Makes the
Scientific Theory Obsolete (Anderson, Wired) (£

&% “The Unreasonable Effectiveness of Data,”
Halevy et al. ",

<> c.f. Wigner's “The Unreasonable Effectiveness of
Mathematics in the Natural Sciences” 4!

But:
<% For scientists, description is only part of the battle.
&> We still need to understand.
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Super Basic definitions

Nodes = A collection of entities which have
properties that are somehow related to each
other

&> e.g., people, forks in rivers, proteins, webpages,
organismes, ...

Links = Connections between nodes
&% Links may be directed or undirected.
&% Links may be binary or weighted.

Other spiffing words: vertices and edges.

Super Basic definitions

Node degree = Number of links per node
<% Notation: Node i's degree = k;.
& k;=0,1,2,....

<& Notation: the average degree of a network = (k)
(and sometimes z)

& Connection between number of edges m and

average degree:
2m
(k) = N

& Defn: v, = the set of i's k, neighbors

Super Basic definitions

Adjacency matrix:

&> We can represent a network by a matrix A with
link weight a,; for nodes i and j in entry (i, j).

& eg.,

01110
00101
A=1]1 00 00
01001
01010

&> For numerical work, we always use sparse
matrices.

& For many real networks, A is a function of time.
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Examples

So what passes for a complex network?

&> Complex networks are large (in node number)

Complex networks are sparse (low edge to node

ratio)

evolving

&
&> Complex networks are usually dynamic and
&

Complex networks can be social, economic,
natural, informational, abstract, ...

Examples

Physical networks

< River networks

&> Neural networks
&5 Trees and leaves
& Blood networks

< The internet (pipes)
&> Road networks
<% Power grids

&% Distribution (branching) versus redistribution

(cyclical)

Examples

Interaction networks
The Blogosphere (RIP)
Biochemical networks

Gene-protein
networks

Food webs: who eats
whom

Airline networks
Call networks (AT&T)
The Media

The internet (World
Wide Web)

PHHPH H HHD

datamining.typepad.com(#'
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Examples

Interaction networks:
social networks

<& Snogging

<& Friendships

<& Acquaintances

&5 Boards and directors
<% Organizations

o facebook( twitter (7,

(Bearman et al., 2004)

&% ‘Remotely sensed’ by: email activity, instant
messaging, phone logs (*cough*).

Examples
The Structure of Romantic and Sexual Relations at "JefTerson High School”
ots
q
LTS P
x: % tea, : v
Moy
s tuirtf o ¥L T A o
»
. P R ST et g ;_S_o'-r{‘" -—} P
5 RN ¥, /\
BE e T\
= L)
A T, of ap X
L o P )
& ww —o—e—o
o 1Y '*.

TFach circle represents a student and lines connecting students represent romantic relations occuring within the 6 months
preceding the interview. Numbers under the figure count the number of times that pattern wes observed (ie. we found 63
pairs unconnected 1o anyone else).

Examples

Relational networks
&> Consumer purchases
(Walmart, Target, Amazon, ...)
Thesauri: Networks of words generated by meanings
Knowledge/Databases/Ideas
Metadata—Tagging, Keywords bit.ly (7 flickr (7

OO

Large Language Models

common tags cloud | list

community daily dictionary education enCyClOpedia
english free imported info information internet knowledge

reference research

learning  news resource
resources search tools useful web web2.0  WiKi
wikipedia
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Clickworthy Science:

“Clickstream Data Yields High-Resolution Maps of Science”,
Bollen et al.['8], 2009.

A notable feature of large-scale networks:

Graphical renderings are often just a big mess.

<« Typical hairball
number of nodes N =500
number of edges m = 1000

average degree (k) =4

And even when renderings somehow look good:
“That is a very graphic analogy which aids
understanding wonderfully while being, strictly
speaking, wrong in every possible way”

said Ponder [Stibbons] —Making Money, T. Pratchett.

We need to extract digestible, meaningful aspects.
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Some key aspects of real complex networks:

concurrency
hierarchical scaling
network distances

degree distribution*
assortativity

homophily )
. centrality

clustering o

. efficiency
motifs )

. interconnectedness
modularity
robustness

Plus coevolution of network structure
and processes on networks.

x Degree distribution is the elephant in the room
that we are now all very aware of ...

Properties

1. degree distribution P,

P, is the probability that a randomly selected
node has degree k.

k = node degree = number of connections.

ex 1: Erdés-Rényi random networks have Poisson
degree distributions:

k k
P, = et {8

ex 2: “Scale-free” networks: P, o k=7 = ‘hubs’.
link cost controls skew.
hubs may facilitate or impede contagion.

Properties

Note:

Erd&s-Rényi random networks are a mathematical
construct.

‘Scale-free’ networks are growing networks that
form according to a plausible mechanism.

Randomness is out there, just not to the degree of

a completely random network.
“Becoming": Stories = Characters + Time
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2. Assortativity/3. Homophily:
Social networks: Homophily (4" = birds of a feather

e.g., degree is standard property for sorting:
measure degree-degree correlations.

Assortative network: 4 similar degree nodes
connecting to each other.
Often social: company directors, coauthors, actors.

Disassortative network: high degree nodes
connecting to low degree nodes.

Often techological or biological: internet, WWW,
protein interactions, neural networks, food webs.

Your friends tend to know
each other.
Two measures (explained
on following slides):

1. Watts & Strogatz!'"?]

o - Zjlj.zc?\/’lajljz
1\ Rk -2 )

2. Newman 771

c. — 3 x #triangles
27 #triples

C, is the average fraction of
pairs of neighbors who are
connected.

Fraction of pairs of
neighbors who are
connected is

ZjleENm @y js
ky(k; —1)/2

where k, is node i's degree,
and %V, is the set of ¢'s
neighbors.

Averaging over all nodes, we
have:

1\
Cl T ntai=1
Zjljcz&'f\/',,’ Djydg

*s(h,-1)/2

2.71126.’% @iriz
ki(k;—1)/2
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Triples and triangles

Example network: o )
Nodes i,, i, and i; form a

O & triple around i, if i, is
Y connected to i, and 7.
Nodes i, i5, and i form a
4 triangle if each pair of nodes is
Triangles: connected st
. ee x #ti
o The definition O, = W
measures the fraction of
closed triples
b P
A The 3" appears because for
Triples: eqch triangle, we have 3 closed
. triples.
e /\‘ Social Network Analysis (SNA):
VAN fraction of transitive triples.

Clustering:
Sneaky counting for undirected, unweighted
networks:
If the path i-j-¢ exists then a,;a,, = 1.
Otherwise, a;;a;, = 0.
We want ¢ # ¢ for good triples.

In general, a path of n edges between nodes i,
and i, travelling through nodes i, ig, ...i,,_; exists
<~ a; a a a; =

Qs s Qs s e . a. .=
T1%2 V273 7132y tn-2%n-1" tn-1%n

N

. 1
#triples = 3 (

. 1
#triangles = 6TrA3

Properties

5. motifs:
small, recurring functional subnetworks
e.g., Feed Forward Loop:

Shen-Orr, Uri Alon, et al. 189
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Properties

6. modularity and structure/community
detection:

Clauset et al., 2006 [“): NCAA football

Properties

7. concurrency:
transmission of a contagious element only occurs
during contact
rather obvious but easily missed in a simple model

dynamic property—static networks are not
enough

knowledge of previous contacts crucial
beware cumulated network data
Kretzschmar and Morris, 1996 [¢]

“Temporal networks” become a concrete area of
study for Piranha Physicus in 2013.

Properties

8. Horton-Strahler ratios:

Metrics for branching networks:
Method for ordering streams hierarchically
Number: R,, = N,/N__,
Segment length: R, = (I,,1)/(l.,)
Area/NVolume: R, = (a,.1)/(a,,)
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9. network distances:

(a) shortest path length d, ;:

Fewest number of steps between nodes i and j.
(Also called the chemical distance between i and
JJ)

(b) average path length (d,):
Average shortest path length in whole network.

Good algorithms exist for calculation.
Weighted links can be accommodated.

Properties

9. network distances:

network diameter d,.:

Maximum shortest path length between any two
nodes.

closeness dg = [}, ; di;'/(5)

Average ‘distance’ between any two nodes.
Closeness handles disconnected networks

(dij = 00)

dy = oo only when all nodes are isolated.

Closeness perhaps compresses too much into one
number

Properties

10. centrality:
Many such measures of a node’s ‘importance.’
ex 1: Degree centrality: k.
ex 2: Node i's betweenness
= fraction of shortest paths that pass through i.
ex 3: Edge ¢'s betweenness
= fraction of shortest paths that travel along 4.
ex 4: Recursive centrality: Hubs and Authorities
(Jon Kleinberg )
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Properties

Interconnected networks and robustness (two for
one deal):

“Catastrophic cascade of failures in interdependent
networks” ', Buldyrev et al., Nature 2010.

Branching networks are useful things:

&% Fundamental to material supply and collection

& Supply: From one source to many sinks in 2- or
3-d.

&% Collection: From many sources to one sink in 2- or
3-d.

< Typically observe hierarchical, recursive
self-similar structure

Examples:

& River networks

&% Cardiovascular networks

& Plants

<% Evolutionary trees

&% Organizations (only in theory ...)

Branching networks are everywhere ...

- HydroSHEDS
= Amazon Basin

River network derived
from SRTM elevation data
at 500 m resolution

only
major
riversand 1§
streams are
visualized

River line width

proportional to

upstream basin area
0 500 1000
—

Kilometers
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Branching networks are everywhere ...

An early thought piece: Extension and Integration
“The Development of Drainage Systems: A

Waldo S. Glock,
The Geographical Review, 21, 475-482,
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1931, 145)

Elaboration,
Piracy.

Abstraction,
Absorption.

Initiation,
Elongation

The sequential stages recognized in the evolution of a
drainage system are “extension” and “integration”; the
first, a stage of increasing complexity; the second, of
simplification.
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Allometry

<> Isometry:
dimensions scale
linearly with each
other.

&> Allometry:
dimensions scale
nonlinearly.

Allometric
relationships:

&

o al

&
0o LY

aox LYh =[P

‘Laws’
&2 Hack's law (1957) °%;

0o al

reportedly 0.5 < h < 0.7

&% Scaling of main stream length with basin size:

reportedly 1.0 < d < 1.1
<% Basin allometry:

h/d

LHo<a

D < 2 — basins elongate.

&% Combine above:
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There are a few more ‘laws’: 2!

Relation:

T, = Ty (Rp)*?

l~ L4
ny/nwtl = R'n
7£w+1/€w = RZ

aw+1/a’w = Ra
§w+1/§w = Rs
L, ~ILH
Pla)~a "
P(6) ~ £

Name or description:

Tokunaga's law
self-affinity of single channels
Horton's law of stream numbers

Horton’s law of main stream lengths

Horton's law of basin areas

Horton's law of stream segment lengths

scaling of basin widths
probability of basin areas
probability of stream lengths
Hack's law

scaling of basin areas
Langbein's law

variation of Langbein’s law

Reported parameter values: #"

Parameter:

R, =Ry

Real networks:

R,
R

3.0-5.0
3.0-6.0
1.5-3.0
1.0-1.5
1.1 +£0.01
1.8+ 0.1
0.50-0.70
1.43 +£0.05
1.8+0.1
0.75-0.80
0.50-0.70
1.05 £ 0.05

a

€ ® oo 4 =0 a

Stream Ordering:

1. Label all source streams as order w = 1 and

remove.

2. Label all new source streams as order w = 2 and

remove.

3. Repeat until one stream is left (order = Q)
4. Basin is said to be of the order of the last stream

removed.

5. Example above is a basin of order Q = 3.
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Basic algorithm for extracting networks from
Digital Elevation Models (DEMs):

& Also:

/Users/dodds/work/rivers/1998dems/kevinlakewaster.c

Horton's laws
Self-similarity of river networks

<& First quantified by Horton (1945) >3, expanded by

Schumm (1956) 58]

Three laws:
& Horton's law of stream numbers:

‘nw/n’w+1 - Rn >1 ‘

&% Horton's law of stream lengths:

ZL,qul/Zw = R[ >1

&> Horton's law of basin areas:

‘&L;H»l/ﬁw :Rn, > 1‘

Network Architecture
Tokunaga's law [07.102,103]

&% Property 1: Scale independence—depends only
on difference between orders:

v

r,,=1T,

& Property 2: Number of side streams grows
exponentially with difference in orders:

T,,= Ty (Rp)H vt

&> We usually write Tokunaga's law as:

T, =T, (Rp)F1| where Ry ~ 2
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Connecting exponents

Only 3 parameters are independent:
e.g., take d, R,, and R,
relation: scaling relation/parameter: 3!
0~ L% d
Tk: = Tl (RT)IC71 Tl = Rn - Rs -2+ 2Rs/Rn

nw/nw+1 = Rn Rn
a_‘Lqul/C:lw = Ra Ra = Rn

ew+1/£w = Rl RZ - Rs

{~ah h=InR_/InR,,
a~LP D=d/h

L, ~LH H=d/h—1

Pla)~a " T=2—h

P()~0Y  y=1/h
A~af B=1+h
A~ L% p=d

) JRVAYAVAVAVAVAVAVAN
VAVAVAVAVAVAVAVAVA

(b) ()
VAN
AVAVAVAVAVAVAXAVAVA

— — —

(a) v > 1: Braided (bulk) flow

(b) v < 1: Local minimum: Branching flow

(c) v < 1: Global minimum: Branching flow

&% Note: This is a single source supplying a region.

From Bohn and Magnasco ['¢]

See also Banavar et al. [°!: “Topology of the Fittest
Transportation Network”; focus is on presence or absence
of loops—same story

Single source optimal supply

Optimal paths related to transport (Monge)
problems ("

[ —— apra-0s wake=201Ts

— | “Optimal paths related to transport

Qinglan Xia,
Communications in Contemporary
Mathematics, 5, 251-279, 2003.[11°]
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Growing networks: 7]

FIGURE 3. A maple leaf

&> Top: a = 0.66, 3 = 0.38; Bottom: a = 0.66, 3 = 0.70

Single source optimal supply

An immensely controversial issue ...

& The form of natural branching networks:
Random, optimal, or some
combination? > 1137, 33, 27]

& River networks, blood networks, trees, ...

Two observations:
&% Self-similar networks appear everywhere in nature
for single source supply/single sink collection.

&% Real networks differ in details of scaling but
reasonably agree in scaling relations.

Optimization—Murray's law (£

&5 Murray's law (1926)
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The PoCSverse

NG connects branch radii at o
, g \\ﬂ forks' [72,71,73, 59, 100] Basic definitions
b ¢ “\\ : Examples
S N \/b/,_\‘ 3 — 3 3 Bjsic Properties
NS FI\_.'U Tparent = roffspringl + roffspringzg n‘m‘y - :
\ — ) \ Random
networks

where ryrene = radius of

‘parent’ branch, and

Toffspring1 and Toffspring2 AI'€

radii of the two ‘offspring’

sub-branches.

&% Holds up well for outer branchings of blood
networks °%,

& Also found to hold for trees > %] when xylem is
not a supporting structure (71,

&> See D'Arcy Thompson's “On Growth and Form” for
background and general inspiration °% 190,
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Animal power

Fundamental biological and ecological constraint:

P = basal metabolic rate

M = organismal body mass

Stories—The Fraction Assassin:

Quarterology spreads throughout the land:
The Cabal assassinates 2/3-scaling:
& 1964: Troon, Scotland.
&% 3rd Symposium on Energy Metabolism.

&> « = 3/4 made official ... ... 29 to zip.

&% But the Cabal slipped up by publishing the conference
proceedings ...

&> “Energy Metabolism; Proceedings of the 3rd
symposium held at Troon, Scotland, May 1964,” Ed. Sir
Kenneth Blaxter[13]
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Somehow, optimal river networks are
connected:

& o =drainage
basin area

& (= length of
longest (main)
stream

® L=1L=
longitudinal
length of basin

Mysterious allometric scaling in river
networks

&> 1957: ). T. Hack °Y
“Studies of Longitudinal Stream Profiles in Virginia
and Maryland”
L~ah

h ~ 0.6

&> Anomalous scaling: we would expect h = 1/2 ...
&% Subsequent studies: 0.5 < h < 0.6

&% Another quest to find universality/god ...

& A catch: studies done on small scales.

Large-scale networks:
(1992) Montgomery and Dietrich ©9;

o

Basin length (m)

103
102 p
“'w‘ | 168 104 105 108 107 108 10° 10% ETURT LR

Drainage area (m?)

&

Composite data set: includes everything from
unchanneled valleys up to world's largest rivers.

Estimated fit:

&

L ~1.78%49

&% Mixture of basin and main stream lengths.
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World's largest rivers only:

= 37 of the world’s biggest basins
.
E 10 —
= b~ 0.498 -
= el
% "0, sue
5 e
3| B B m
£ 10 P
o - =
= cJ
= _®a
c B
s
E
10
10' 10° 10° 10’

area a (sq mi)

&% Data from Leopold (1994) (60 32]
&% Estimate of Hack exponent: / = 0.50 4 0.06

Nutrient delivering networks:

&> 1960's: Rashevsky considers blood networks and
finds a 2/3 scaling.

&> 1997: West et al. 3! use a network story to find
3/4 scaling.

\Y
A 2

< ¥
N

Mammal
(o D
——— App———
— >
R e
k=0 1 2 3 4... N
Model Parameters

Geometric argument

&> Allometrically growing regions:

L : v :
2 v W L,

L, L,

&> Have d length scales which scale as
L, x VYiwherey, +7v, +...+7, =1.

&% For isometric growth, ~, = 1/d.

&% For allometric growth, we must have at least two
of the {v,} being different
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Spherical cows and pancake cows:

SSume an 1Somety 4 \.a.‘,'(
Lol - -

W “w o

} S @ [Q ,

Exfremes of qll lomed ru
The (AHCJ[ZL cow S—

Minimal network volume:

Real supply networks are close to optimal:

Figure 1. ) Commuter rail network in the Boston area. The arrow marks
the qssumcd 100( of the network. (b) Star graph. (¢) Minimum spanning tree.
(d) The model of equation (3) applied to the same set of stations.

Gastner and Newman (2006): “Shape and efficiency in
spatial distribution networks” 411

“Rules for Biologically Inspired Adaptive

Tero etal.,
Science, 327, 439-442, 2010. 98!

EL e

CaEaE

Urban deslime in action:
https://www.youtube.com/watch?v=GwKuFREOgmo (%'
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Blood networks

& Then P, the rate of overall energy use in Q, can at
most scale with volume as

PxpV o pM o M(d-1)/d

&% For d = 3 dimensional organisms, we have

&% Including other constraints may raise scaling
exponent to a higher, less efficient value.

<% Exciting bonus: Scaling obtained by the supply
network story and the surface-area law only
match for isometrically growing shapes.

. N X
The Surfoce otrea—2supply netusorl,
mismatch 1o allomelyically qrowing

1=Ymin

SV

L4
L

Hack's law

&% Volume of water in river network can be
calculated by adding up basin areas

&% Flows sum in such a way that

Vhet = Z Apixel i

all pixels
&> Hack's law again:
L~ah
&> Can argue
Lth _ ,1+h
Vnet & Vbasm = Opasin

where h is Hack's exponent.
&% - minimal volume calculations gives

1/2
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Real data:

&

&

&

&

Banavar et al.'s
approachlis
okay because p

really is constant.

The irony: shows
optimal basins
are isometric

Optimal Hack’s
law: ¢ ~ o™ with
h=1/2
(Zzz2z22)

1o
o o
10° ° °© .
o0 e
I
. ° .
2 I Z N
5 )
ERR oo .®
8 ©° o e
< L o .
- %
10¢ o o°
.
. Aa/z
.
.
10 oDF
oT
) elC
o
;
10° 10" 10? 10° 10* 10° 10°

A (pixel units)

Figure 2 Alometric scaling in river networks. Double logarithmic plot of
C 5y Ay versus A for three river networks characterized by different climates,
geology and geographic locations (Dry Fork, West Virginia, 586 km, digital terrain
map (DTM) size 30 x 30m?; Island Creek, Idaho, 260 km?, DTM size 30 x 30m®;
Tirso, ltaly, 2,024km’, DTM size 237 x 237m?). The experimental points are
obtained by binning total contributing areas, and computing the ensemble
average of the sum of the inner areas for each sub-basin within the binned
interval. The figure uses pixel units in which the smallest area element is
assigned a unit value. Also plotted s the predicted scaling relationship with
slope 3/2. The inset shows the raw data from the Tirso basin before any binning
hae haan dnna

Even better—prefactors match up:

20,

19|
18|
17|
16|
15
14
13|

Iog10 water volume V [m3]

o Amazon
¢ Mississippi
s Congo
Nile

6 7 8 9 10 11
2
Iogloareaa[m]

12

13

“Optimal design of spatial distribution networks" (%'

Gastner and Newman,
Phys. Rev. E, 74, 016117, 2006, [40]

&> Approximately optimal location of 5000 facilities.
&> Based on 2000 Census data.
&2 Simulated annealing + Voronoi tessellation.
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Optimal source allocation

0.1

0.01

facility density D (in km2)

L L L L L
0.1 1 10 100 1000

population density p (in km2)

L
10000

&% Optimal facility density pr,. vs. population density
Ppop-

& Fitis pge o psSC with r2 = 0.94.

&% Looking good for a 2/3 power ...

Deriving the optimal source distribution:
&% Basic idea: Minimize the average distance from a
random individual to the nearest facility. !

<& Assume given a fixed population density Ppop
defined on a spatial region Q.

& Formally, we want to find the locations of n
sources {Zy, ..., &, } that minimizes the cost
function

F({#, 7)) = /Q Poop () MiN, | — 7,|di

&% Also known as the p-median problem, and
connected to cluster analysis.

&> Not easy ...in fact this one is an NP-hard
problem. (40!

<& Approximate solution originally due to
Gusein-Zade %,

Global redistribution networks

One more thing:

<& How do we supply these facilities?
How do we best redistribute mail? People?
How do we get beer to the pubs?

Gastner and Newman model: cost is a function of
basic maintenance and travel time:

&
&
&

Crnaint + 7Clravel-

&

Travel time is more complicated: Take ‘distance’
between nodes to be a composite of shortest path
distance ¢;; and number of legs to journey:

(1—0)t;;+ J(#hops).

When § = 1, only number of hops matters.
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Global redistribution

networks

(b) 5=05
- »TZ{QVNM#K'

From Gastner and Newman (2006) (491

Public versus private facilities

Beyond minimizing distances:

&% “Scaling laws between population and facility

densities” by Um et al.,

2009. 104

Proc. Natl. Acad. Sci.,

&> Um et al. find empirically and argue theoretically
that the connection between facility and

population density

Pfac X pgop

does not universally hold with a = 2/3.
& Two idealized limiting classes:

1. For-profit, commercial facilities: o = 1;
2. Pro-social, public facilities: o = 2/3.

&> Um et al. investigate facility locations in the United
States and South Korea.

Public versus private facilities: evidence

>

facility density D (in /km?)

oo

o,

S

S

S

o,

10? 10° 10° 10*
population density p (in /km?)

o,

facility density D (in /km?)
o
b

.3
ON
3
3
3

population density p (in /km?)

&% Left plot: ambulatory hospitals in the U.S.
&% Right plot: public schools in the U.S.

<> Note: break in scaling for public schools.
Transition from o ~ 2/3to . = 1 around

Poop = 100.
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US facility a (sB) R 1190f 318 1230f318 126 0f 318
Ambulatory hospital 1.13(1) 093 The PoCSverse The PoCSverse &5 Recall P, = probablllty that a randomly selected The PoCSverse
Lo Tos vee Basic definitions Basic definitions node has degree k. Basic definitions
Automotive repair 0.99(1) 0.92 . > . . ple:
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) 0 ez s e P(k:p, N) = PP = p)N AR,
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Models

Generalized random networks:
Arbitrary degree distribution P.

Create (unconnected) nodes with degrees
sampled from P,.

Wire nodes together randomly.

Create ensemble to test deviations from
randomness.

Building random networks: Stubs

Phase 1:

|dea: start with a soup of unconnected nodes with
stubs (half-edges):

17t

RS
STkt b

Building random networks: First rewiring

(not nodes!) and
connect them.

Must have an even
number of stubs.

Initially allow self- and
repeat connections.

Phase 2:

Now find any (A) self-loops and (B) repeat edges
and randomly rewire them.

A (B) >Oé
Being careful: we can't change the degree of any

node, so we can't simply move links around.

Simplest solution: randomly rewire two edges at a
time.

Randomly select stubs
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General random rewiring algorithm
¢ i

h

Randomly choose two edges.
(Or choose problem edge and
arandom edge)

Check to make sure edges are
disjoint.

Rewire one end of each edge.
Node degrees do not change.

Works if e, is a self-loop or
repeated edge.

Same as finding on/off/on/off
4-cycles. and rotating them.

Sampling random networks

Phase 2:

Use rewiring algorithm to remove all self and
repeat loops.

Phase 3:
Randomize network wiring by applying rewiring
algorithm liberally.
Rule of thumb: # Rewirings ~ 10 x # edges (%!,

Random sampling

Problem with only joining up stubs is failure to
randomly sample from all possible networks.
Example from Milo et al. (2003) (¢%!:

(@) (b)

1 configuration 90 configurations
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Network motifs

Idea of motifs ¥ introduced by Shen-Orr, Alon et
al. in 2002.

Looked at gene expression within full context of
transcriptional regulation networks.

Specific example of Escherichia coli.

Directed network with 577 interactions (edges)
and 424 operons (nodes).

Used network randomization to produce
ensemble of alternate networks with same degree
frequency N,.

Looked for certain subnetworks (motifs) that
appeared more or less often than expected

Network motifs

feedforward loop

Z only turns on in response to sustained activity in
X.

Turning off X rapidly turns off Z.
Analogy to elevator doors.

The edge-degree distribution:
The degree distribution P, is fundamental for our
description of many complex networks
Again: P, is the degree of randomly chosen node.

A second very important distribution arises from
choosing randomly on edges rather than on nodes.

Define ;. to be the probability the node at a random
end of a randomly chosen edge has degree k.

Now choosing nodes based on their degree (i.e., size):

Normalized form:
- kP, kP
Sk Py (B

Qp

Big deal: Rich-get-richer mechanism is built into this
selection process.

X a 1 ioput X

x S I 1L
X o

Y | L R

|

z

crp

araC

araBAD

The PoCSverse
Complex
Networks
1350f318

The PoCSverse
Basic definitions
Examples

Basic Properties

Random
Major Models

Generating
Functions

Structure
Detection

Big Nutshell

References

The PoCSverse
Complex
Networks

136 0f 318

The PoCSverse
Basic definitions
Examples

Basic Properties

r Models
d Affiliatio

Generating
Functions

Structure
Detection

Big Nutshell

References

The PoCSverse
Complex
Networks

138 0f 318

The PoCSverse
Basic definitions
Examples

Basic Properties

Random

Major Models
4 Affilatic

Generating
Functions

Structure
Detection

Big Nutshell

References



The edge-degree distribution:

& For networks, Q,, is also the probability that a
friend (neighbor) of a random node has % friends.

&% Useful variant on Q:

R, = probability that a friend of a random node
has & other friends.
&
_ kP (kD) Py
2o + 1) Priq (k)

Ry,

<% Equivalent to friend having degree k + 1.

&% Natural question: what's the expected number of
other friends that one friend has?

&% Probability of randomly
selecting a node of degree k
by choosing from nodes:

P, =37, Py =2/7, Py = 1/7,
Py=1/1.

&% Probability of landing on a

Rk node of degree k after

randomly selecting an edge

and then randomly choosing
one direction to travel:

Q, =3/16, Q, = 4/16,

Q3 =3/16, Qg = 6/16.

N )
O &% Probability of finding #
R outgoing edges = k after
./\ 94 randomly selecting an edge
and then randomly choosing
one direction to travel:
R, =3/16 R, = 4/16,
R, =3/16, Ry = 6/16.

Two reasons why this matters
Reason #1:
& Average # friends of friends per node is
1

(ka) = (k) x (k) g = (k) ®

(k%) = (k) = (k) = (k).

&> Key: Average depends on the 1st and 2nd moments of
Py, and not just the 1st moment.

& Three peculiarities:

1. We might guess (k,) = (k)({k) — 1) but it's actually
(k(k—1)).
2. If P, has alarge second moment,
then (k,) will be big.
(e.g., in the case of a power-law distribution)
3. Your friends really are different from you ...[>7- 76!
4. See also: class size paradoxes (nod to: Gelman)
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“Generalized friendship paradox in

Eom and Jo,
Nature Scientific Reports, 4, 4603, 2014, =°]

Your friends really are mensters #winners:'
& Go on, hurt me: Friends have more coauthors,
citations, and publications.

& Other horrific studies: your connections on
Twitter have more followers than you, are happier
than you!'”), more sexual partners than you, ...

&> The hope: Maybe they have more enemies and
diseases too.

&% Research possibility: The Frenemy Paradox.

'Some press here (' [MIT Tech Review].
Spreading on Random Networks

&> For random networks, we know local structure is
pure branching.

&% Successful spreading is - contingent on single
edges infecting nodes.

Success

\é’ 5
Focus on binary case with edges and nodes either

infected or not.

&% First big question: for a given network and
contagion process, can global spreading from a
single seed occur?

Failure:

&

Global spreading condition
<& We need to find: %
R = the average # of infected edges that one
random infected edge brings about.
&% Call R the gain ratio.
&% Define B, as the probability that a node of
degree k is infected by a single infected edge.

oo kP,
R
P —— ~——
k=0 L # outgoing Prob. of
prob. of infected infection
connecting to edges
adegree k node
oo
kP,
U ORI R . Y
= (k) # outgoing Prob. of
IendfggtSEd no infection
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Global spreading condition

&% Our global spreading condition is then:

>, kP,
R:Z’zk;.(mnmkln.
k=0

&> Case 1-Rampant spreading: If B,; =1 then

> kP (k(k — 1))
Z:Q wm STV =T

& Good: This is just our giant component condition
again.

Global spreading condition

& Case 2—Simple disease-like: If B,; = 8< 1 then

KR o,
R7];)<k> (k—1)ef>1.

& A fraction (1-p) of edges do not transmit infection.

&% Analogous phase transition to giant component
case but critical value of (k) is increased.

& Aka bond percolation.

& Resulting degree distribution P, :

Fe=ovy () )0

i=k

Random directed networks:
& So far, we've largely studied networks with
% undirected, unweighted edges.
&> Now consider directed, unweighted edges.
yf & Nodes have k; and k, incoming and outgoing
edges, otherwise random.

&> Network defined by joint in- and out-degree
distribution: Py, .

& Normalization: 35,7 37" Py, ,, =1

&> Marginal in-degree and out-degree distributions:

o0 oo
P =3 Py, and P =3 Py,
ko=0 k=0

<% Required balance:

Ry =D kP, = > Y koPy i, = (ko)
%0 kgm0
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Directed network structure:

GWCC = Giant Weakly
Connected Component
(directions removed);

GIN = Giant
In-Component;

GOUT = Giant
Out-Component;

GSCC = Giant Strongly
Connected Component;

DC = Disconnected
Components (finite).

From Bogufi4 and Serano. ['°!

When moving through a family of increasingly
connected directed random networks, GWCC
usually appears before GIN, GOUT, and GSCC
which tend to appear together. [0 151

Observation:

Directed and undirected random networks are
separate families ...

...and analyses are also disjoint.

Need to examine a larger family of random networks
with mixed directed and undirected edges.

Consider nodes with three types of
edges:

1. k, undirected edges,
2. k;incoming directed edges,
3. k, outgoing directed edges.

Define a node by generalized degree:

k:[ku ki ko]T'

Correlations:

Now add correlations (two point or Markovian) C:

1. PW(%| k') = probability that an undirected edge
leaving a degree %’ nodes arrives at a degree k
node.

2. PO (k| k') = probability that an edge leaving a
degree &’ nodes arrives at a degree % node is an
in-directed edge relative to the destination node.

3. PO(E|E’) = probability that an edge leaving a
degree %’ nodes arrives at a degree k node is an
out-directed edge relative to the destination node.

Now require more refined (detailed) balance.
Conditional probabilities cannot be arbitrary.
1. PW(%| %) must be related to P (&’ | k).
2. PO(k|%) and PO(% | k') must be connected.

The PoCSverse
Complex
Networks

148 of 318

The PoCSverse

Basic definitions

Examples

Generating
Functions

Structure
Detection

Big Nutshell

References

The PoCSverse
Complex
Networks

149 of 318

The PoCSverse
Basic definitions
Examples

Basic Properties

Random

Structure
Detection

Big Nutshell

References

The PoCSverse
Complex
Networks

150 of 318

The PoCSverse

Basic definitions

Examples

Generating
Functions

Structure
Detection

Big Nutshell

References

Correlations—Undirected edge balance:

Randomly choose an edge, and randomly choose
one end.

Say we find a degree k node at this end, and a
degree k' node at the other end.

Define probability this happens as P (%, %)
Observe we must have PU(E, k') = PW(E T

).

Conditional probability
connection:

POGET) = PO EPE

PYOGE E) =

Correlations—Directed edge balance:

The quantities
koP() o\ kiP(R)
(o) (ki)

give the probabilities that in
starting at a random end of a
randomly selected edge, we
begin at a degree % node and
then find ourselves travelling:

1. along an outgoing edge, or

2. against the direction of an incoming edge.

We therefore have
7 DL :
PG Ty = PO Ty LK) (k ) _ pog |y R,
(kg)
Note that P"(%, ') and PEN(%/, k) are in general
not related if k # &’.

Summary of contagion conditions for
uncorrelated networks:

|. Undirected, Uncorrelated—f(d + 1) = f(d):

R=Y " PU(k,|*) o (ky—1)e By, .
ky

II. Directed, Uncorrelated—f(d + 1) = f(d):

R= Y POk ko|*)ekoe By, .
k\!kﬁ

IIl. Mixed Directed and Undirected, Uncorrelated—

{ F9d+1) } _ { F9(d) ]
f(U)(d 4 1) f(o)(d)
_ PO %) o (ky—1) POk |)
R=> { PO %) o kg PO(E| %) ok, :|.Bkuk,,*
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Summary of contagion conditions for correlated
networks:

IV. Undirected,
Correlated—f, (d+1) = Zk; Ry i fry(d)

Rkukg = P(u)<ku ‘ kﬂ) e(ky—1)e Bkuk[.

V. Directed,
Correlated—fi i, (d + 1) = 325 10 Bighories Fiis (d)

Rk‘koki’kg = P(i)(ki’ ko | ki/7 kg)eky e Bk‘kokl’k{,

VI. Mixed Directed and Undirected, Correlated—

Full generalization:

a' =N)

R, 4 is the gain ratio
matrix and has the form:

Ris = Py 9kss Bagr-

P s = conditional probability that a type \” edge
emanating from a type v’ node leads to a type v
node.

k44 = potential number of newly infected edges
of type A emanating from nodes of type v.

B, = probability that a type v node is eventually
infected by a single infected type )\’ link arriving
from a neighboring node of type v’.

Generalized contagion condition:

max|u|:p€o(R)>1

Some claims for social networks:

Social networks yes, but groups, groups, groups
Sufficiently large social groups are:
1. Fandoms.

2. Pyramid Schemes,
3. Or both.

Homo narrativus: Storytellers, believers,
spreaders.

Stories ~ Characters + Time.

Characters are shortcuts to stories.
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For novel diseases:
1. Can we predict the size of an epidemic?
2. How important is the reproduction number R?

R, approximately same for all of the following:
1918-19 “Spanish Flu” ~ 75,000,000 world-wide,
500,000 deaths in US.

1957-58 “Asian Flu” ~ 2,000,000 world-wide,
70,000 deaths in US.

1968-69 “Hong Kong Flu” ~ 1,000,000 world-wide,
34,000 deaths in US.

2003 “SARS Epidemic” ~ 800 deaths world-wide.

Improving simple models

Idea for social networks: incorporate identity

Identity is formed from attributes such as:
Geographic location
Type of employment
Age
Recreational activities

Groups are crucial ...

formed by people with at least one similar
attribute

Attributes < Contexts < Interactions <
Networks. [110]

Generalized context space

occupation age

geography

(Blau & Schwartz "%, Simmel °1], Breiger [°1)
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A toy agent-based model:

“Multiscale, resurgent epidemics in a

Watts et al.,
Proc. Natl. Acad. Sci., 102, 11157-11162,
2005. 1111

Geography: allow people to move between
contexts

Locally: standard SIR model with random mixing
discrete time simulation

B = infection probability

~ = recovery probability

P = probability of travel

Movement distance: Pr(d) « exp(—d/§)

¢ = typical travel distance

A toy agent-based model

Schematic:

Example model output: size distributions

1042 1 683 1
400 R0:3 400 RO=12
§ 300 g 300
Z 200 Z 200
100 100

0
% 02 05 075 1 0 025 05 075 1
W Y

Flat distributions are possible for certain ¢ and P.
Different R,'s may produce similar distributions
Same epidemic sizes may arise from different R,'s
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Model output—resurgence

6000 T T
§ D R,=3 l
4000) E
Z 2000 E
# . .
0 500 1000 1500
t
200 T T
ig E R,=3 D
% 100f 1
P4
#® .
0 500 1000 1500
t
400 T T
g G R0=3 H
% 200F 1
=2
*
0 500 1000 1500
t

Journal entry, 2020/02/21:

Twitter DMs to Sam Scarpino:

Okay: The scientists studying pandemics need to
be able to present some kind set of numbers that
show how bad things are. The whole R, disaster
has been waiting to happen because people have
been ... lazily having fun with math models?
Unconcerned about how to communicate vital
scientific information? Stupid? | don't know.
Maybe a radar plot visualization. | don't know.
“When these three boundaries are crossed, we are
in trouble”

Measles has an R, of 20. We should all have it. Of
course, there's no f¥*king time scale for R, so we
don’t know when that happens.

The Last of Us: Groups.
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Understanding distributed social search

Milgram’s social search experiment

&> Target person =
Boston stockbroker.

& 296 senders from Boston
and Omaha.

& 20% of senders reached
y of stantey Milgram target_

& chain length ~ 6.5.
Popular terms:

& The Small World
Phenomenon;

& “Six Degrees of Separation.”

S3edidoeienss
st PPOS

Tuomas Birass, Pa.D.
[—
http://www.stanleymilgram.com

The model—results

Milgram’s Nebraska-Boston data:

Model parameters:

12
0 & N =108,
~ 8 & z =300, g = 100,
= & b=10,
4 |—| & a=1L,H=2
2]
-

234567 89101112131415
L & <Lrnode|> =~ 6.7
&5 Lyaa = 6.5

Social search—the Columbia experiment

&> 60,000+ participants in 166 countries

&% 18 targets in 13 countries including
&0 aprofessor at an lvy League university,
& an archival inspector in Estonia,
& atechnology consultant in India,
& apoliceman in Australia,
and
& aveterinarian in the Norwegian army.

& 24,000+ chains

We were lucky and contagious:
“Using E-Mail to Count Connections” (4, Sarah Milstein,

New York Times, Circuits Section (December, 2001)
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Jonathan Harris's Wordcount: (%'

A word frequency distribution explorer:

WORDCOUNT
« b
tI Ieofandtoa\‘nnm o135 g s w e e e e e e
1 2 3 4 56

WORDCOUNT
« . wext wono b

spitsbergengylesturboproppahdra

FIND WORD > evRank P REQUESTED WORD: SPITSBERGEN 86800 WORDS IN ARCHIVE
RANK 55089

The long tail of knowledge:

Take a scrolling voyage

ctea by VAL to the citational abyss,

M S starting at the surface with
Citations. 432350 165872 . .
s 155 i the lonely, giant citaceans,

moving down
to the legion of strange,

w sometimes misplaced,
unloved creatures,
" that dwell in

.

2014 2015 2016 2017 2018 2019 2020 2021 Kahneman'’s Google Scholar

“Thing Explainer: Complicated Stuff in

by Randall Munroe (2015). 7%

RANDALL NUNROE

BOAT THAT GOES UNDER THE SEA

Up goer five &
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e ¢ Size distributions:

Networks
172 0f 318

The PoCSverse Brown Corpus (1,015,945 words):

Basic definitions

Examples CCDF: Zipf:
3.

Basic Properties

Branching Networks 3 03

Supply Networks

PPly 25 )
Random x - =
networks = 2 2 0

. 0 15 \ EI
Major Models 2 N i

Generalized Afiliation 1 kY -15

N .

Thresholds 05 B )
Generating 35 2 15 -1 05 0 05 o5 T 15 2 25 3 s
Functions log,, 4 log, , rank i
Structure
Detection
Big Nutshell ="'obj !

ig Nutshel <> The, of, and, to, a, ...= ‘objects

References

<% ‘Size’ = word frequency
&% Beep: (Important) CCDF and Zipf plots are related

comiec Pre-Zipf's law observations of Zipf's law

Networks
173 0f 318

The PoCSverse

Basic definitions

&> 1910s: Word frequency examined re
Stenography (£ (or shorthand or brachygraphy or

Basic Properties T -__T"Q "I _J

Examples

Random & 1910s: Felix Auerbach (4 pointed out the Zipfitude
e of city sizes in
“Das Gesetz der Bevdlkerungskonzentration”

(“The Law of Population Concentration”) !,

Major Models
G

Remctond® & 1924: G. Udny Yule[18];

Structure # Species per Genus (offers first theoretical
Big Nutshell mEChanlsm)

References &= 1926: Lotka l01l:

# Scientific papers per author (Lotka's law)
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Theoretical Work of Yore:

&
&

&

&

1949: Zipf's “Human Behaviour and the Principle
of Least-Effort” is published. 2!

1953: Mandelbrot [62;

Optimality argument for Zipf's law; focus on
language.

1955: Herbert Simon P2 1201;

Zipf's law for word frequency, city size, income,
publications, and species per genus.
1965/1976: Derek de Solla Price 26 &31;
Network of Scientific Citations.

1999: Barabasi and Albert [8;

The World Wide Web, networks-at-large.

Essential Extract of a Growth Model:

Random Competitive Replication (RCR):

1.

2.

Start with 1 elephant (or element) of a particular
flavoratt =1
Attimet =2,3,4, ..., add a new elephant in one of
two ways:
& With probability p, create a new elephant with a
new flavor
= Mutation/Innovation

& With probability 1 — p, randomly choose from all
existing elephants, and make a copy.
= Replication/Imitation

© Elephants of the same flavor form a group

Random Competitive Replication:

Example: Words appearing in a language

&
&

Consider words as they appear sequentially.

With probability p, the next word has not
previously appeared
= Mutation/Innovation

With probability 1 — p, randomly choose one word
from all words that have come before, and reuse
this word

= Replication/Imitation

Note: This is a terrible way to write a novel.
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For example:

o 21 wovd¢ uged

¢ next WQWJ 5
new with pm}e

.

the .
W) () ()
U ound

nexd wovd i€ o

Q{u ook
’/‘;eﬂgu in 6)(1 moire 4/ the
pe w“/v'\n 3"' moire 3 an d

7 2/50 penguin

\/;| libvary

&% Micro-to-Macro story with p and v measurable.

o (2=p) 1
- oy

&> Observe2 <y <ooforo<p<1.
& For p ~ 0 (low innovation rate):

y~2
&> ‘Wild’ power-law size distribution of group sizes,
bordering on ‘infinite’ mean.
& For p ~ 1 (high innovation rate):

N~ 00

/

&% All elephants have different flavors.

&% Upshot: Tunable mechanism producing a family

of universality classes.

“Simon’s fundamental rich-get-richer model

Dodds et al.,
Physical Review E, 95, 052301, 2017.[%°]

B. p=0.01

C. p=0.001 D. p = 0.0001

Copy witls prob 1-¢

prob.  next werd,

L9 9 9
“ 8 8 <4 8h <4
97 7® 3| 7 70
) 6 6|\ 6l
o s, 5 5 504
2 4| 4 4 4
23 3 3 3
G2 2 2 2
2 1| @ =001 1| = 0.001 1] = 0.0001
0 % i 2 3 4 % i 2 3 4 5% i 2 3 45

log,, group number n

log,q group number 1

log, group number n

10g,0 group number n

<& See visualization at paper’s online app-endices (4"
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Arrival variability:

7@

51

§ Egg0)  Rankordered 35
@ g £240) Time-ordered| | & g
o =7 NA =
] 05 i|ce
o 4 Divergence Dys (bits)| o
3 3
2 = 5000 10000
o 3 © Sa
= Bl
g 2 g

! 05|

logygr n00)

0 1 2 3 4 0 05 1 15 2 25 3 35 4 0 2 4 0

log, Group arrival number n log, Group arrival number n

Any one simulation shows a high amount of
disorder.

Two orders of magnitude variation in possible
rank.

Rank ordering creates a smooth Zipf distribution.

Size distribution for the nth arriving group show
exponential decay.

Self-referential citation data:

Citations for papers on “scale-free networks”

“~ 150
log1oS1+1 S

4.5

100

Syt
=978 50

logy f

w
o

0,
logioS1+1

)

Logyo (Su+1)/($n+ 1)

log,, Citation count S, + 1
O

o
o

0 0.5 1 15 2 25
log;o Paper number n

The Quickening(@—Mandelbrot v. Simon:

<% Things there should be only one of:
Theory, Highlander Films.

<% Feel free to play Queen’s It's a Kind of Magic(Z'in

your head (funding remains tight).

8 1 12
Rescaled group size 10~%(n — 1)'77 5,
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We were born to be Princes of the Universe

VS.

Mandelbrot vs. Simon:

<& Mandelbrot (1953): “An Informational Theory of
the Statistical Structure of Languages” [©?!

& Simon (1955): “On a class of skew distribution
functions” 2]

<& Mandelbrot (1959): “A note on a class of skew
distribution functions: analysis and critique of a
paper by H.A. Simon”[©3]

& Simon (1960): “Some further notes on a class of
skew distribution functions” (3!

I have no rival, No man can be my equal

Mandelbrot vs. Simon:

& Mandelbrot (1961): “Final note on a class of skew
distribution functions: analysis and critique of a
model due to H.A. Simon” %4

&% Simon (1961): “Reply to ‘final note’ by Benoit
Mandelbrot” [9°]

&> Mandelbrot (1961): “Post scriptum to ‘final
note™ [©°]

&% Simon (1961): “Reply to Dr. Mandelbrot's post
scriptum” 94

Scale-free networks

&> Real networks with power-law degree distributions

became known as scale-free networks.

& Scale-free refers specifically to the degree
distribution having a power-law decay in its tail:

w ~ k7 for‘large’ k

<> One of the seminal works in complex networks:
“Emergence of scaling in random

Barabdasi and Albert,

> Science, 286, 509-511, 1999, 8]
Times cited: ~ 43,853(4 (as of May 19, 2023)

&> Somewhat misleading nomenclature ...
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“Organization of Growing Random

Krapivsky and Redner,
Phys. Rev. E, 63, 066123, 2001. 7!

Fooling with the mechanism:

& Krapivsky & Redner [°7 explored the general
attachment kernel:

Pr(attach to node i) x A, = k¥

where A, is the attachment kernel and v > 0.

<% KR also looked at changing the details of the
attachment kernel.

‘The rumor spread through the city like wildfire which
had quite often spread through Ankh-Morpork since
its citizens had learned the words “fire insurance”).’

=== ‘TheTruth"d8 (&
ﬂ_ by Terry Pratchett (2000). 82
i

sy
3 "
o

~JoHn
JOHN  omn
. MICHAEL ~ \,w.n
m«m = mcnag.
.b 4
P " MICHAEL

1960: DAVID

From the Atlantic(®'
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MARY MARY

Social Contagion

Some important models:

& Tipping models—Schelling (1971) 8> 86871
& Simulation on checker boards

&) Idea of thresholds
© Polygon-themed online visualization. (Includes

&2 Threshold models—Granovetter (1978)“/]

&% Herding models—Bikhchandani, Hirschleifer,
Welch (1992) 110111

& Social learning theory, Informational cascades,...

Social contagion models

Thresholds
<% Basic idea: individuals adopt a behavior when a
certain fraction of others have adopted

<% ‘Others’ may be everyone in a population, an
individual's close friends, any reference group.

Response can be probabilistic or deterministic.
Individual thresholds can vary

Assumption: order of others’ adoption does not
matter... (unrealistic).

Assumption: level of influence per person is
uniform

(unrealistic).

& HOP
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Social Contagion

Some possible origins of thresholds:

&> Inherent, evolution-devised inclination to
coordinate, to conform, to imitate. [!

&% Lack of information: impute the worth of a good
or behavior based on degree of adoption (social
proof)

& Economics: Network effects or network
externalities

& Externalities = Effects on others not directly
involved in a transaction

&) Examples: telephones, fax machine, TikTok,
operating systems

& Anindividual's utility increases with the adoption
level among peers and the population in general

Threshold models—response functions

1 1

0.8 0.8

0.6 0.6|
a o

0.4] 0.4]

0.2] 0.2]

0 02 04 06 08 1 0 02 04 06 08 1
® ®

& Example threshold influence response functions:
deterministic and stochastic

&> ¢ = fraction of contacts ‘on’ (e.g., rioting)
& Two states: Sand I.

Threshold models

Action based on perceived behavior of others:

A RE: c
__ o8 2 . 08
W g
04 15 05
z & 0
< 04 < <04
& o 05 o2 il
0 0
0 3 i ( 05 1 0 05
K o @

&> Two states: Sand I.

&> ¢ = fraction of contacts ‘on’ (e.g., rioting)
<% Discrete time update (strong assumption!)
& This is a Critical mass model
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Threshold models

Another example of critical mass model:

19 08
0§
s 7
= s
04f----mmes /
05
02 !
0 02 04 06 08 1 02 04 06 08 1
y @

<% Fragility of fixed point at ¢ = 0.
&% Critical slope = 1.

Threshold models

Example of single stable state model:

2.5
0.8
2 S N [ A
0.6} |
= ¥ :
= 1.5 & :
0.4 |
4 :
0.5 0.2} |
0 02 04 0.6 0.8 1 0.2 04 0.6 0.8 1
Yy %

Threshold models—Nutshell

Implications for collective action theory:

1. Collective uniformity - individual uniformity

2. Small individual changes = large global changes

3. The stories/dynamics of complex systems are
conceptually inaccessible for individual-centric
narratives.

4. System stories live in left null space of our
stories—we can't even see them.

5. But we happily impose simplistic,
individual-centric stories—we can't help
ourselves&.
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Many years after Granovetter and Soong's work:

<& “A simple model of global cascades on random
networks”
D. J. Watts. Proc. Natl. Acad. Sci., 2002 106!

&) Mean field model — network model
& Individuals now have a limited view of the world

Also consider:

& “Seed size strongly affects cascades on random
networks” [44]
Gleeson and Cahalane, Phys. Rev. E, 2007.

< “Direct, phyiscally motivated derivation of the
contagion condition for spreading processes on
generalized random networks” 2% Dodds, Harris, and
Payne, Phys. Rev. E, 2011

<& “Influentials, Networks, and Public Opinion
Formation” 08!
Watts and Dodds, J. Cons. Res., 2007.

Threshold model on a network

t=1 t=2 t=3

o /l

&5 All nodes have threshold ¢ = 0.2.

Example random network structure:

& Qerie = Quuin =
critical mass =
global
vulnerable
component

& Qtrig =
triggering
component

& innal =
potential
extent of
spread

&> Q=entire
network

Qerie C Qtrig§ Qerit C Qina; and Qtrig:innaI ca.
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Cascade condition

Back to following a link:

<& Arandomly chosen link, traversed in a random
direction, leads to a degree k node with
probability o kP,

&% Follows from there being k ways to connect to a
node with degree k.

&> Normalization:

&> So

P(linked node has degree k) = %

Cascade condition

Next: Vulnerability of linked node
&% Linked node is vulnerable with probability

1/k
By = /¢ (&))de),

/=0

&% If linked node is vulnerable, it produces k — 1 new
outgoing active links

&% If linked node is not vulnerable, it produces no
active links.

Cascade condition

Putting things together:

<> Expected number of active edges produced by an
active edge:

kP,
(k)

L

= )

(k=1)- By -

success

+ 0-(1—8)

failure

8

T
I

kP,
(k)

M

(k—=1)- By

ko
Il
—
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Cascade condition

So... for random networks with fixed degree
distributions, cacades take off when:

< kP,
:l(lcfl)-ﬂk-m > 1.

k

&> B, = probability a degree k node is vulnerable.
& P, = probability a node has degree k.

Cascade condition

Two special cases:
&% (1) Simple disease-like spreading succeeds: 8, = 3

). FPe
(k—1) <k>>1'

<% (2) Giant component exists: 8 = 1

gl

R

ko
Il
_

SO (k1) FPe
1 l;(k 1) w > 1.

Cascades on random networks

1
“_ Final &% Cascades occur
0.8] cascade size only If size Of
O 06 - max vulnerable
0.4 Fraction of C|USter > 0.
: Vulnerables & System may be
0.2 N Cascad Ny ! ) -
i o i frob,L;S,t yet
1 2 3 4 5 6 7 ragie.
z Hohnfuence &5 ‘lgnorance’
facilitates
spreading.

Example networks
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Expected size of spread

Pleasantness:

&% Taking off from a single seed story is about
expansion away from a node.

& Extent of spreading story is about contraction at a

node.
A

7

Early adopters—degree distributions

t=20 t=1 t=2 t=3
t=0 mj\ t=1 "J/\ t=2 . Aﬂ t=3
t=4 t= t=28 t=10
t=4 Ar‘\ t=6 4 t=8 o t=10
t=12 t=14 t=16 t=18
s t=12 o t=14 o t=16 s t=18
P, . versus k
The multiplier effect:
Top 10% individuals
Cascade size ratio
A B 4 )
Degree|rafio
3
oF 2 g
o Average
B individuals (1: < >
g AERE iy "
< .
2 2 3 4 5 6 T 5 7 s Gain
O Influence My Influence M4

&% Fairly uniform levels of individual influence.
&> Multiplier effect is mostly below 1.
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Extensions come ¢ Cascade windows for group-based cmiec -~ Social contagion Complex ¢

Networks Networks Networks

217 0of 318 networks 220 0f 318 223 0f318

The Pocsverse The Pocsverse “Without followers, evil cannot spread.” -Leonard The Pocsverse

Basic definitions Basic definitions NImOy Basic definitions
“Threshold Models of Social Jrjflygpg@f@' Examples Examples Examples
Watts and DOddS, Basic Properties Single seed Random set seed Coherent group seed Basic Properties Summa ry Basic Properties

The Oxford Handbook of Analytical Suoy e
Sociology, 63, 475-497, 2009. [0 Random

networks

Random
Group networks

Major Models
J Affilation

e e e ‘ ek
” ' ‘Influential vulnerables’ are key to spread. ’
6l 60} Random Random
" "y networks Early adopters are mostly vulnerables. networks
o ) Major Models .
’ Generlzd Aflion Vulnerable nodes important but not necessary. e AT

i mrar Groups may greatly facilitate spread.

Assumption of sparse interactions is good

olds

Degree distribution is (generally) key to a Generating § o e " F Generating Generating
. Functions g2 w 50 50 Functions iti H Functions
network's function e 3 . m e iﬂeems that cajcade Condg'on N Zg'c’ba' one.

. Detecti 82" ) “ ) Detectior Detect
still, random networks don't represent all e E e lost extreme/unexpected cascades occur in e
networks Big Nutshell % Ea 20| 2| Big Nutshell h|gh|y con nected networks Big Nutshell

et O b G ey e ds ey e e References ‘Influentials’ are posterior constructs e
Major element missing: group structure ’ ’ ’ P :
Many potential influentials exist.
Lo . L . ™ . . .
Group structure—Ramified random omie Multiplier effect for group-based networks: cme ™ Social contagion Compiex
N; k N ks N ks
networks tevert, tewerk, o teverk,
The PoCSverse ) The PoCSverse Im p||cat| ons The PoCSverse
Degree ratio
Basic definitions . | Basic definitions X . Basic definitions
Examples A B ; Cascade Examples Focus on the influential vulnerables. eramples
Basic Properties o 2 size ratio Basic Properties Create entities that can be transmitted Basic Properties
s 0° o ) e successfully through many individuals rather than 0000
Random 02) R w\lr ) Random broadcast from one ‘influential.’ Random
networks Gain networks networks
Major Models Major Models Only simple ideas can spread by word-of-mouth. Major Models
Remaris " e (Idea of opinion leaders spreads well...) Remer 1
Thresholds il
Generating Generating Want enough individuals who will adopt and Generating
Functions Functions H Functions
display.
Structure Cascade Structure X X i , X Structure
Detection /e rato< 1 Detection Displaying can be passive = free (yo-yo's, fashion), Detection
. . . Big Nutshell Big Nutshell or active = harder to achieve (political messages; Big Nutshel
D :'lnttergroup connecslon protljaaglll.ltty References References even so: buttons and hats). References
= intragroup connection probability. . . . )
e group P y Multiolier al | below 1 Entities can be novel or designed to combine with
ultiplier almost always below 1. others, e.g. block another one.

1 HH H The PoCSverse HYH H The PoCSverse The PoCSverse
ngerghzgd affiliation model networks compiex Assortativity in group-based networks compler “Flavor network and the principles of food ~ Sorpi.
with triadic closure 219.0f 318 08 2220f 318 pairing’ & 226 of 318

The PoCSverse The PoCSverse | S | =-—-—--= The PoCSverse
Basic definitions Average 1 . Basic definitions Ahn et al"_ . m Basic definitions
Examples ) . Examples Nature Scientific Reports, 1, 196, 2011. amples
06 Cascade size 05
Connect nodes with probability o e=¢ B bropertes : X oLl Bose Properes A e oo oo Bose broperes
Where . Random L g L 2PY 0 4 8 12 Random Random
a = homophily parameter networks 0.4 ° LI k networks networks
and Major Models b ®e e00e0®e0,y Major Models Major Models
d = distance between nodes (height of lowest - 02] e Degreeldistribution Tl
common ancestor) Generating v / for initiglly infected node  cenerating Generating
. . . . Functions Functions Functions
7, = intergroup probability of friend-of-friend ) i
tion Detection 0 Detection Detection
connec tectio ectior
7 = intragrou robabiliw of friend-of-friend Big Nutshell 0 5 10 15 20 Big Nutshell Big Nutshell
c?)nnectict)gn PP References Local influence K References R

The most connected nodes aren’t always the most
‘influential.’

Degree assortativity is the reason.




“Flavor network and the principles of food

Ahn et al,,
Nature Scientific Reports, 1, 196, 2011. "]

Categories

" Prevalence
0%

Shared
compounds

Figore 2| ingredient, the node
» recipes.

Category, and node size relects the

h

the full network in our subsequent measuremens.

“Recipe recommendation using ingredient

Teng, Lin, and Adamic,
Proceedings of the 3rd Annual ACM Web

Science Conference, 1, 298-307, 2012. 7]

- ,0|IV! 0|I
ic.

whnesg ar.
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!ﬁ“ﬁ.rn
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e
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ar lic Fdeev

Wcr}fmm
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Figure 2: Ingredient complement network. Two ingredients share an edge if ‘they occur together’ more than
would be expected by chance and if their pointwise mutual information exceeds a threshold.

“The Product Space Conditions the

Hidalgo et al.,
Science, 317, 482-487, 2007. %

fishing

The PoCSverse
Complex
Networks

227 of 318

The PoCSverse
Basic definitions
Examples

Basic Properties
ranching Networks

Supply Net

Random
networks

Major Models

Generalized Affliation

Generating
Functions

Structure
Detection

Big Nutshell

References

The PoCSverse
Complex
Networks

228 0f 318

The PoCSverse
Basic definitions
Examples

Basic Properties

Random
networks

Major Models

Generating
Functions

Structure
Detection

Big Nutshell

References

The PoCSverse
Complex
Networks

229 of 318

The PoCSverse
Basic definitions
Examples

Basic Properties

Branching Net

Supply Net

Random
networks

Major Models

Generalized Affliation

Generating
Functions

Structure
Detection

Big Nutshell

References

Networks and creativity:

<& Guimera et al., Science
2005: “8] “Team
Assembly Mechanisms
Determine
Collaboration Network

Structure and Team
Performance”

&% Broadway musical

industry

<& Scientific collaboration

in Social Psychology,

Economics, Ecology,

Lty e sird gent s elected o he paol o nencomas s spent become ncumbent &
(i b
el

yelow

o colbors T
claion of the network of colaborations accring o the model for p ~ 03, g - 05, and m - 3

and Astronomy.

“The human disease network” ('
Gohetal.,
Proc. Natl. Acad. Sci.,

2007. 14¢!

104, 8685-8690,

00000000

Garcia-Pérez, Serrano, and Bogufi4,
https://arxiv.org/abs/1402.3612, 2014. 3%
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Generatingfunctionology "

&% ldea: Given a sequence ag, a,as, ..., associate
each element with a distinct function or other
mathematical object.

<& Well-chosen functions allow us to manipulate
sequences and retrieve sequence elements.

Definition:
&% The generating function (g.f.) for a sequence {a,,}
is
= Z a,xz"
n=0

&% Roughly: transforms a vector in R into a
function defined on R!.

&% Related to Fourier, Laplace, Mellin, ...

Simple examples:
Rolling dice and flipping coins:
& pfk@) = Pr(throwing a k) = 1/6 where k = 1,2, ..., 6.

Z p(@) E_

& pl@M — Pr(head) = 1/2, p'®™ = Pr(tail) = 1/2.

F(coin)(I) :pgoin)xo +p(1coin)x1 — %(1 + x)

&% A generating function for a probability distribution
is called a Probability Generating Function (p.g.f.).

<& We'll come back to these simple examples as we
derive various delicious properties of generating
functions.

Useful pieces for probability distributions:

<> Normalization:

& First moment:

&% kth element of sequence (general):

1 d*

P = k! dzk

(:v-i—x +a3+at+25+26).
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Random bipartite networks:
We'll follow this rather well cited (4" paper:

Newman, Strogatz, and Watts,
Phys. Rev. E, 64, 026118, 2001. [

date lﬁ

apple banana

ontel
c °uP¢

aspavogus beet, cucimber "“3‘{2‘3’; eggplant
g peekroot Cucumbe

damdelion
§een

ospavajud

eggplant

Example of a bipartite affiliation network and the

induced networks:
o 949 Qg

TE9 (4

NN

Center: A small story-trope bipartite graph. ¢!

Induced trope network and the induced story
network are on the left and right.

The dashed edge in the bipartite affiliation
network indicates an edge added to the system,
resulting in the dashed edges being added to the
two induced networks.

Juh
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Basic story:

An example of two inter-affiliated types:

R = stories,

@ =tropes@.
Stories contain tropes, tropes are in stories.
Consider a story-trope system with Ng = # stories
and Ng = # tropes.
mgg ¢ = Number of edges between f and 9.
Let's have some underlying distributions for
numbers of affiliations: P,EB) (a story has k tropes)
and P,iv) (a trope is in k stories).
Average number of affiliations: (k)gg and (k)q.

(k)gg = average number of tropes per story.
(k)q = average number of stories containing a
given trope.

Must have balance: Ng; - (k)gg = mgg o = Ng - (k)g-

Spreading through bipartite networks:

View as bouncing back and forth between the two
connected populations. 28]

Actual spread may be within only one population
(ideas between between people) or through both

(failures in physical and communication networks).

The gain ratio for simple contagion on a bipartite
random network = product of two gain ratios.

Usual helpers for understanding network’s
structure:

Randomly select an edge connecting afHito a ©.
Probability the [ contains k other tropes:

)
pE _ (kA HPE (k+1)PE

'k T “Ng . =
> M8+ 1P (e

Probability the @ is in k other stories:

4 Q
RO _ k+1)PY,  (k+1)PY,
k T <Ng . @ :
S G+ P, (ke
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Networks of [ and @ within bipartite structure:

Piﬁ)k = probability a random [ is connected to k&

stories by sharing at least one Q.

Pi(ﬁj) « = probability a random 9 is connected to k

tropes by co-occurring in at least one .

Rfﬁ;? = probability a random edge leads to a

which is connected to & other stories by sharing at

least one 9.
Riﬁ,—:) = probability a random edge leads to a @

which is connected to & other tropes by
co-occurring in at least one .

Goal: find these distributions 0.

Another goal: find the induced distribution of
component sizes and a test for the presence or
absence of a giant component.

Unrelated goal: be 10% happier/weep less.

Unstoppable spreading: Is this thing connected?

Always about the edges: when following a random
edge toward a [, what's the expected number of new
edges leading to other stories via tropes?

We want to determine (k) r g,ind = F}’%,V,H‘(l) (and
ind
leaf%m(l) for the trope side of things).

We compute with joy:

d d
(%) r.@,ind = EFRWﬂ) (z) = @FR/E‘ (Fro(x))

ind, k
x=1 x=

(1)F!

= Fioo (VF s (Fao (1) = Fro (D Ffum (1) = 2225

R®

Note symmetry.

$happiness++;

In terms of the underlying distributions:

(k(k —1))gg (k(k—1))g
(kg (K)o

(k) r.@.ind =

We have a giant component in both induced networks
when

(k) rg,ind = (k) r,g,ind > 1

See this as the product of two gain ratios.
#excellent #physics

We can mess with this condition to make it
mathematically pleasant and pleasantly inscrutable:

k=0 k'

K\ PE P = 0.

M8

kk! (kk' — k —
0
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o F}qu‘(l) Fg(ﬂ)(l)
e (1)
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Nutshell

Generating functions allow us to strangely
calculate features of random networks.

They're a bit scary and magical.

Generating functions can be used to study
contagion.

But: For essential results like possibility and
probability of global spread, more direct,
physics-bearing calculations are possible.

Good real thing: Bipartite affiliation structures.
Groups, groups, groups, ...

& H® &

&
&

Structure detection

& Theissue:
how do we
elucidate the
internal structure of
large networks
across many scales?

A Zachary's karate club 119 791

&% Possible substructures:
hierarchies, cliques, rings, ...

& Plus:

All combinations of substructures.
&% Much focus on hierarchies (pyramids) ......

Santo Fortunato,
Physics Reports, 486, 75-174, 2010. %]
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Hierarchy by division
Top down:

&% ldea: Identify global structure first and recursively
uncover more detailed structure.

&% Basic objective: find dominant components that
have significantly more links within than without,
as compared to randomized version.

&> We'll first work through “Finding and evaluating
community structure in networks” by Newman
and Girvan (PRE, 2004). 7]

& See also

1. “Scientific collaboration networks. Il. Shortest
paths, weighted networks, and centrality” by
Newman (PRE, 2001). 17> 78]

2. "Community structure in social and biological
networks” by Girvan and Newman (PNAS,
2002). 14!

Hierarchy by division

&% Idea: Edges that connect communities have higher
betweenness than edges within communities.

Hierarchy by division

One class of structure-detection algorithms:
1. Compute edge betweenness for whole network.
2. Remove edge with highest betweenness.
3. Recompute edge betweenness
4. Repeat steps 2 and 3 until all edges are removed.

5 Record when
components appear as
a function of # edges
removed.

6 Generate dendogram

revealing hierarchical
structure.

Red line indicates appearance
of four (4) components at a
certain level.
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Betweenness for electrons:

<% Unit resistors on each
edge.

For every pair of nodes
s (source) and ¢ (sink),
set up unit currents in

! at s and out at ¢.

J— N, &

A

Measure absolute
current along each
edge (, |1, .l

& Sum |I, _,| over all pairs of nodes to obtain
electronic betweenness for edge ¢.

&% (Equivalent to random walk betweenness.)

<% Contributing electronic betweenness for edge
between nodes i and j:

Belec

ij,st — aijl‘/;l,st - th,stl'

Electronic betweenness

<% Define some arbitrary voltage reference.
&% Kirchhoff's laws: current flowing out of node i
must balance:

PO
7(V‘ - Vi) =0;5— 044
j=1 Ri; !

< Between connected nodes, R,; =1 =a,; = 1/a,;.
< Between unconnected nodes, R, ; = oo = 1/a;;.
&> We can therefore write:

N
Zaij(vi - Vj) =0, — 05y
=1

<& Some gentle jiggery-pokery on the left hand side:
Zj a;; (Vi =V;) =V, Z] Qg5 — Zj a;;V;
=Viki =% 05V = 2, [ki0:,V; — a5V
=[(K-A)V];

Electronic betweenness
& Write right hand side as [1*), ,, =4, —d,,, where
I% holds external source and sink currents.
&> Matrixingly then:

(K—A)V =T,

L = K— Ais a beast of some utility—known as the
Laplacian.

Solve for voltage vector V by LU decomposition
(Gaussian elimination).

&

&

<> Do not compute an inverse!

&% Note: voltage offset is arbitrary so no unique

solution.

& Presuming network has one component, null
space of K— A is one dimensional.

&

In fact, N(K—A) = {cI,c € R} since (K—A)T = 0.
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Alternate betweenness measures:

Random walk betweenness:

& Asking too much: Need full knowledge of network
to travel along shortest paths.

&> One of many alternatives: consider all random

walks between pairs of nodes i and j.

Walks starts at node i, traverses the network

randomly, ending as soon as it reaches j.

Record the number of times an edge is followed

by a walk.

Consider all pairs of nodes.

Random walk betweenness of an edge = absolute

difference in probability a random walk travels

one way versus the other along the edge.

Equivalent to electronic betweenness (see also

diffusion).

O &

&

Hierarchy by division

&% Factions in Zachary's karate club network.!''°!

Hierarchy by division

i ~ i
o o1 \ -
— —

an a

——=a" - i

g H ;

—f—a" G .

g7 g% N

an H :

i 8o H

H 8 H

g:’ a2 I 15

H gn B

a: 5¢ o

8: =N

as K =

an .

8

Fm

z
% H "
" B
shortest path
shortest path random walk without recalculation

&% Third column shows what happens if we don't
recompute betweenness after each edge removal.
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Scientists working on networks (2004)

(b)
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Dolphins!

Les Miserables

N '

~ Moo= == Blacheville
~ Jie Berzon) . ! Favourite kiolier

I
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' Champercier
| Cravatte

&> More network analyses for Les Miserables here (4

and here.

Hierarchies and missing links
Clauset et al., Nature (2008) [2°]

&% ldea: Shades indicate probability that nodes in left
and right subtrees of dendogram are connected.

& Handle: Hierarchical random graph models.

&% Plan: Infer consensus dendogram for a given real

network.

&% Obtain probability that links are missing (big
problem...).
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“Uncovering the overlapping community

#® | pallaetal,
Nature, 435, 814-818, 2005. [81]

Department of
Biological Physics

‘\Zoom’

‘Zoony

Hobby

Scientific

community Family

“Link communities reveal multiscale

Ahn, Bagrow, and Lehmann,
Nature, 466, 761-764, 2010. %]

Libbighl ol b
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SCience,‘scier!!ist\s \'" >. _~7 , Weight Wit Outfox’ -
Ly Gravity e APPle \ <D Clever, wit
General structure detection
& “The discovery of structural form”
Kemp and Tenenbaum, PNAS (2008) >4
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&% Biological features; Supreme Court votes; perceived
color differences; face differences; & distances
between cities.

Nutshell:

Overview Key Points:

&% The field of complex networks came into existence
in the late 1990s.
Explosion of papers and interest since 1998/99.

&R

&% Hardened up much thinking about complex
systems.

&% Specific focus on networks that are large-scale,
sparse, natural or people-made, evolving and
dynamic, and (crucially) measurable.

&> Three main (blurred) categories:

1. Physical (e.g., river networks),
2. Interactional (e.g., social networks),
3. Abstract (e.g., thesauri).

&% To solve network problems: “Follow the edges.”

More Allegations:

<& The map is not the territory.

& Sometimes the map is not the territory because
the territory does not exist.

&% “But it might one day!” yelled Captain Survivor
Bias IV while holding up two pineapples to gauge
the distance between waves.

&% And the mapper is never the map.

& (Scientific truths shouldn't be named after
individuals.)
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Rather silly but great example of real
science:

“How Cats Lap: Water Uptake by Felis catus”" £

A Study of Cat Lapping
Adult cats and dogs are unable to
create suction in their mouths and
must use their tongues to drink. A
dog will scoop up liquid with the
back of its tongue, but a cat will
only touch the surface with the
smooth tip of its tongue and pull
a column of liquid into its mouth.

Amusing interview here (4

Warnings:

& &P

& &

Networks aren't everything.

Famous models of networks aren't everything in
networks.

Mathematical tractability #+ meaningfulness or
viable existence in reality

Even when networks are core to a system, the
best level of analysis may involve some scale of
grouping/averaging.

Groups, groups, groups.

And pyramids (~ hierarchies)

utat
Comp h:‘:‘om.‘

Meodels
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Basic Science =~ Describe + Explain:

Lord Kelvin (possibly):

& “To measure is to know.”

& “If you cannot measure it,
you cannot improve it.”

Bonus:

hoax.”

more precise
measurement.”

& “Beards will always be cool.”

The Pyramid (' knows what you did.

Mass surveillance by story.

The absolute basics:

Modern basic science in three steps:
1. Find interesting/meaningful/important

phenomena, optionally involving spectacular

amounts of data.
2. Describe what you see.
3. Explain it.

If you succeed at 1-3:
4. Create.
5. Share.

Always:
6. Be good people.

& “X-rays will prove to be a

& “There is nothing new to be
discovered in physics now,
All that remains is more and
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