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Contagion models

Some large questions concerning network
contagion:

1. For a given spreading mechanism on a given
network, what's the probability that there will be
global spreading?

2. If spreading does take off, how far will it go?

3. How do the details of the network affect the
outcome?

4. How do the details of the spreading mechanism
affect the outcome?

5. What if the seed is one or many nodes?

&5 Next up: We'll look at some fundamental kinds of
spreading on generalized random networks.
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Basic Contagion

Spreading mechanisms

Global spreading
condition

&> General spreading
mechanism:
State of node ¢
depends on history of

i and ¢'s neighbors’

—
states.

\ < Doses of entity may be
stochastic and

history-dependent.
<& May have multiple,
interacting entities
spreading at once.
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Spreading on Random Networks

Basic Contagion

&% For random networks, we know local structure is Models 2o
pure branching.

&% Successful spreading is - contingent on single
edges infecting nodes.

Success

v

Global spreading
condition

Social Contagion
Models

Failure:

—> —> References
&% Focus on binary case with edges and nodes either
infected or not.
&% First big question: for a given network and
contagion process, can global spreading from a
single seed occur?
Global spreading condition Contagion
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<> We need to find: !
R = the average # of infected edges that one bl spreading
random infected edge brings about. condition

&% Call R the gain ratio.

&% Define B, as the probability that a node of
degree k is infected by a single infected edge.

Basic Contagion
Models

Social Contagion
Models

s kP,
R— Z (k‘ _ ]_) ° Bkl References
= W " n
=0 L # outgoing Prob. of
prob. of infected infection
connecting to edges
a degree k node
o0
kP,
+Z <k> . 9 o (1-By,)
k=0 # outgoing Prob. of
infected no infection

edges

Global spreading condition

&% Our global spreading condition is then:

>, kP,
R:Zik;“‘@*l)‘l}kl“-
k=0

&> Case1: If B,; =1 then

LSRRy gtk 1)
R_kzzo<k> (k—1) w > 1.

& Good: This is just our giant component condition
again.

Global spreading condition
&> Case2: If By, =B<1 then

o(k—1)ep3>1.

& Afraction (1-3) of edges do not transmit infection.

&% Analogous phase transition to giant component

case but critical value of (k) is increased.
<% Aka bond percolation.

& Resulting degree distribution P, :

Pe=oty () o

i=k

Insert assignment question (&

& We can show Fi(z) = Fp(Bz +1— ).

Global spreading condition

Cases 3,4, 5, ... Now allow B, to depend on k

Asymmetry: Transmission along an edge depends
on node’s degree at other end.

Possibility: B, increases with k... unlikely.
Possibility: B, is not monotonicin k... unlikely.
Possibility: B,,; decreases with k... hmmm.

B,,; \is a plausible representation of a simple
kind of social contagion.

The story:

More well connected people are harder to
influence.

b HHHPSD P
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Global spreading condition

Example: By, = 1/k.

= kP, =, kP, 1
R:I;%;o(k—l)oBklka;(k 1) <1c)k'E

Since R is always less than 1, no spreading can
occur for this mechanism.

Decay of B,,, is too fast.

Result is independent of degree distribution.

Global spreading condition

Example: By, = H(+ — &)
where 0 < ¢ < 1is a threshold and H is the
Heaviside function @\

Infection only occurs for nodes with low degree.

Call these nodes vulnerables:
they flip when only one of their friends flips.

= kP, < kP, 1
R= I; e 1)eB = ;;1 e (% - qS)

L3

B 1 ER
_;;<k 1) W

where |-] means floor.

Global spreading condition

The uniform threshold model global spreading
condition:

(

As ¢ — 1, all nodes become resilient and » — 0.

As ¢ — 0, all nodes become vulnerable and the
contagion condition matches up with the giant
component condition.

Key: If we fix ¢ and then vary (k), we may see two
phase transitions.

Added to our standard giant component
transition, we will see a cut off in spreading as
nodes become more connected.

1)
— kPk
Rfl;(kq). " > 1.
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Virtual contagion: Corrupted Blood (4, a 2005 virtual

Social Contagion

Some important models (recap from CSYS 300)

Tipping models—Schelling (1971) 1" 12131
Simulation on checker boards.
Idea of thresholds.

Threshold models—Granovetter (1978) ¢!

Herding models—Bikhchandani et al. (1992) " 2!
Social learning theory, Informational cascades,...

Threshold model on a network

Original work:

“A simple model of global cascades on

Duncan J. Watts,
Proc. Natl. Acad. Sci., 99, 5766-5771,
2002.[15]

Mean field Granovetter model — network model
Individuals now have a limited view of the world
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Threshold model on a network
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Interactions between individuals now represented
by a network

Network is sparse
Individual ¢ has k,; contacts

Global spreading
dition

Influence on each link is reciprocal and of unit
weight

Each individual i has a fixed threshold ¢,
Individuals repeatedly poll contacts on network
Synchronous, discrete time updating

Individual i becomes active when
number of active contacts a; > ¢,k;

Activation is permanent (Sl)

References
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Vulnerables: Models

Global spreading
condition

Recall definition: individuals who can be activated
by just one contact being active are vulnerables.

The vulnerability condition for node i: 1/k;, > ¢,.
Means # contacts k; < [1/¢,].

Key: For global spreading events (cascades) on
random networks, must have a global component
of vulnerables !

For a uniform threshold ¢, our global spreading
condition tells us when such a component exists:

Social Contagion
Models

Network version

References

13
kP,

R= ko(k—1)>1.
2T kD>



Example random network structure:

Qe = critical
mass = global
vulnerable
component
Qtrig =
triggering
component
innal =
potential
extent of
spread

Q = entire
network

Qi C Qtrig? Qerit C Qfinals and QtringfinaI c Q.

Global spreading events on random
networks !

1

e Top curve: final fraction
o8 “« infected if successful.
06 ‘\ Middle curve: chance of
y \\ starting a global

\ spreading event
0s A\ (cascade).
L)
5 . R Bottom curve: fractional
1 2 3 & 8 "% size of vulnerable
z subcomponent. [1°]
z= (k)

Global spreading events occur only if size of vulnerable
subcomponent > 0.

System is robust-yet-fragile just below upper
boundary 34 14]

‘Ilgnorance’ facilitates spreading.

Cascades on random networks

Ocﬂ‘»gﬂ;{,"o? Q{\\m‘

Above lower phase

Just below upper
transition

phase transition
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Cascades on random networks

= a

3 .

o0 . Time taken for cascade

by to spread through

> o [15]

g, — network. N
Two phase transitions.

z
(n.b., z= (k)

Largest vulnerable component = critical mass.

Now have endogenous mechanism for spreading
from an individual to the critical mass and then
beyond.

Cascade window for random networks

25|
20 no cascades

N 15|

5| cascades

fo5 o1 015 02 025
¢

(n.b., z= (k)

Outline of cascade window for random networks.

Cascade window for random networks

w
o
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NN
o Ul

no cascades

[4)]

influence z
B
o

cascades

0.15 0.2 0.25
@ = uniform individual threshold

CSo  w

05 0.1

References

Social Contagion

Granovetter's Threshold model—recap

Assumes deterministic
response functions

¢, = threshold of an
5 individual.
= #(¢,) = distribution of
=04 f f
g thresholds in a population.
) F(¢,) = cumulative

distribution = fdf;o f(¢l)de;

¢, = fraction of people
‘rioting’ at time step ¢.

Social Sciences—Threshold models

At time ¢ + 1, fraction rioting = fraction with
by < ¢y

. s
f(¢.)do, = F(¢.)ly" = F(¢:)

¢t+1 =

= Iterative maps of the unit interval [0, 1].

Social Sciences—Threshold models

Action based on perceived behavior of others.

1 2. 1
A B C
. 08| 2 ~. 08
W
; 0.6 U; 15 lﬁ' 0.6|
< 04 < 1 < 04
s
T 02 05| 02 ii
% o 1 0 05 1 ] 05 1
D o @

Two states: Sand |
Recover now possible (SIS)
¢ = fraction of contacts ‘on’ (e.g., rioting)

Discrete time, synchronous update (strong
assumption!)

This is a Critical mass model
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Social Sciences—Threshold models

2.5
0.8
22N g4 b
0.6
= 7
= 1.5 &
0.4}
1
05 0.2}
0 0.2 04 0.6 0.8 1 0 02 04 0.6 08 1
y %

Example of single stable state model

Social Sciences—Threshold models

Implications for collective action theory:
1. Collective uniformity - individual uniformity
2. Small individual changes = large global changes

Next:
Connect mean-field model to network model.
Single seed for network model: 1/N — 0.

Comparison between network and mean-field
model sensible for vanishing seed size for the
latter.

All-to-all versus random networks

all-to—all networks random networks
1

T
B
0.8
N\
i O osf |
. \
10 B \
%051 02 \
\
i 0 N
a 1 [k
) D
0.8
O 0.6
v e
= A/
02 ~ %051 02
4 9
o — o
0 g 05 ER 0
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Threshold contagion on random networks

Three key pieces to describe analytically:

1. The fractional size of the largest subcomponent of
vulnerable nodes, S, ;.

2. The chance of starting a global spreading event,

Ptrig = Strig'
3. The expected final size of any successful spread,
S.

n.b., the distribution of S is almost always
bimodal.

Example random network structure:

chit = Qvuln =
critical mass =
global
vulnerable
component
Qt_rig = .
triggering
component
innal =
potential
extent of
spread

Q = entire
network

Qerie C Qtrig? Qerie C Qpinal; @nd Qtringﬂnal c

Threshold contagion on random networks

First goal: Find the largest component of
vulnerable nodes.

Recall that for finding the giant component's size,
we had to solve:

Fo(x) =zFp (F,(z)) and F,(z) = aFg (F,(z))

We'll find a similar result for the subset of nodes
that are vulnerable.
This is a node-based percolation problem.

For a general monotonic threshold distribution
f(¢), a degree k node is vulnerable with probability

1/k
B :/o f(¢)d¢~
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Threshold contagion on random networks

We now have a generating function for the probability
that a randomly chosen node is vulnerable and has
degree k:

FgUIn)(I> = Z PkBklmk'
k=0

The generating function for friends-of-friends
distribution is similar to before:

(vuln) o~ kP k-1
Fp (z) = Z WBmi
k=0

|
£ FY" ()
Fr(1)

Detail: We still have the underlying degree distribution
involved in the denominator.

Threshold contagion on random networks

Functional relations for component size g.f.'s are
almost the same ...

F;fvuln)(x) —1_ Fguln)(l) +IF1(;/uIn) (Févuln)(i))
—_—

central node
is not
vulnerable

Févuln)($> - 1— Fg”'n)(l) +xF}(%/uIn) (F:)VUIH)(I))
first node

is not
vulnerable

Can now solve as before to find

Svuln =1- F;VU|n)(1)-

Threshold contagion on random networks

Second goal: Find probability of triggering largest
vulnerable component.

Assumption is first node is randomly chosen.

Same set up as for vulnerable component except
now we don't care if the initial node is vulnerable
or not: o

F}rtrlg)(m) _ xFP (Flgvuln)(x))

Févuln)(w) —1_ Fl(%/uln)(l) + wF}(%/uIn) (Fl(jvuln)(l.))

Solve as before to find Py = Sy = 1 — F"®(1).
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Physical derivation of possibility and probability Contogion Contogion " Triggering probability for single-seed global Contagion "

. 49 of 86 52 of 86 i . 55 of 86
of global spreading: oot Contason Global spreading is possible if the fractional size Sy, ot Contason spreading events: oot Contason
Lo ) - ) Models of the largest component of vulnerables is “giant”. Models light adi h | bl Models
Possibility: binary indicator of phase. Global spreading Global spreading Global spreading Slight a .Justment to the vulnerable component Global spreading
events are either possible or can never happen. condition Interpret S, as the probability a randomly chosen condition calculation. condition
. o Social Contagion node is vulnerable and that infecting it leads to a global al Contagion B (trig) h Social Contagion
For random networks, global spreading possibility is Models spreading event: s Stig =1— Fr = (1) where Models

understood as meaning a giant component of -

. (trig) _ (vuln)
vulnerable nodes exists. S = Zpk e By e [l—(1-Quph] >0 F (1) =1-Fp (F"M(1)).

Next: what's the probability that a randomly infected
node will cause a global spreading event?

We play these cards: F5"""(1) = 1 — Qg and

Amounts to having Qg > 0. References Fp(z) = % P,z to arrive at References
k=0 c

References
Call this Pyq. . ) ) )
Probability of global spreading differs only in that we -
As usual, it's all about edges and we need to first don't care if the initial seed is vulnerable or not: 18 =1+ Z P (1 — Qs )"
determine the probability that an infected edge leads trig =k trig
to a global spreading event. Pyig = Strig = Z Py e [1— (1 - Qyig)"]
Call this Qg More scruffing around brings happiness:
Later: Generalize to more complex networks involving As for Suun, Prig is non-zero when Qg > 0. oo k
assortativity of all kinds. Stig= Y Px {1 - (1 - ng) ] .
k=0
h ver: h ver H H H H . h ver:
. . Contagon Connection to generating function results: Contagon . Connection to simple gain ratio argument: e onerse
Probability an infected edge leads to a global 50 0f 86 53 of &6 _ ] N 56 0f &6
spreading event: bodels e We found that F""' (1)—the probability that arandom  veder - %%S{é gz;h:hv;egdaitr;gtlizb;I>spirjeadmg condition bodels e
ng must satisfying a one-step recursion relation. Giobal spreacing edge leads to a finite vulnerable component—satisfies Giobal spreacing N Globalspreacing
. . . kP, . §
Follow an infected edge and use three pieces: ;?&T\ Contagion F{()vuln)(l) —1_ F](;uln)u) +1- F (vuln) (F/(]vuln)(l)) . :V;ﬁr;’dae\‘gnnmgmn R= Z k 1) ° Bkl > 1. \@(ar\ Contagion
. Probability of reaching a degree k node is B B B,
Qr = k<P>'° Theory We set F("“'” (1) = 1 — Qyie and deplo Theory Theory
) ) B eor trig ploy eory : eory
2. The node reached is vulnerable with probability odg possi bty vuln oo find Spreacing pos We would very much like to see that R > 1 matches up sy
B Fy = Yo Bt tofin With Qyig > 0.
k1- :
3. At least one of the node’s outgoing edges leads to feterences = kP, = kP, o1 feterences It really would be just so totally awesome. reterences
a global spreading event = 1 - probability no edges 1-Quig = 1— ) —2Bii+ Y — B (1— Qui ) ) . -
dc%so =1 Fi (1— Smg)kq. P Yy g Quig I;J (k) ~k1 kzzo (k) ~k1 ( ng) Must come from our basic edge triggering probability
equation:
Put everything together and solve for Qg:
i : kP,
P Some breathless algebra it all matches: ng _ Z <k>k eB,, e [ (1— ng)k—l} .
Quig = —E e By e [1—(1— Qg '] & k=1
w2 [ Ca Qug =3 e B [1-(1-Qug)" ], _ ,
When does this equation have a solution 0 < Qg < 17
We need to find out what happens as Q;; — 0.
Good things about our equation for Q,,: e Pocouerse Fractional size of the largest vulnerable U Contaioncee
51 of 86 component. 54 of 86 57 of 86
LP hv(\; ‘uumgmn ‘ ;ﬂka\d[ ‘Lkzav'my_ on Fs;vsd: ﬁormg on
Qtrig = Z <T;C‘Bk1’[1 - (1 - Qtrig)kil] = f(ng§ ka Bkl) Global spreading The generating function approach gave Global spreading , X Global spreading
% condition Syun =1 — F.frvu'n)(l) where c What we're do|ng: condition
Social Contagion Social Contagion Possibility of Social Contagion
Models | | | 1 Models oss1bility of a Models
Quig = 0 is always a solution. B FAN (1) =1 — FMIN (1) 4o i (Fr()vu n)(l)) : R Global Spreading Event o
. . . . . Theory Thsnry
3p<re5d|ng<olccurs if a second solution exists for which Again using F"™ (1) = 1 — Quig along with Sprea Microsopic phyficﬁllg C i
trig S 1. L. motivate
e Fguln)( ) = Zk:o PkBlclmk' we have: Descrlptlon derivations

Given P, and B, we can use any kind of root finder
to solve for Qg but ...

References References References

oo oo k}
1= Sun=1=Y PuBui+ Y PuBi (1-Qup)
k=0 k=0

The function f increases monotonically with Q. Probability of a

. . . Global Spreading Event
We can therefore use an iterative cobwebbing

approach to find the solution:
n+1)
Qirngr f<Qtr|g7 ka Bkl)

Start with a suitably small seed ng > 0 and iterate
while rubbing hands together.

Excited scrabbling about gives us, as before:

Syuin = ZPkBkl [1* (1- Qug) } :



& For Qg — 07, equation tends towards

Qtrig = Xk: % e B, e [/H’ (/](+(k - 1)Qtrig + )]

kP,
= Qtrig = ; <T>k e By e(k— 1)Qtrig

kP,
1= o(k—1)e By,
= ;(’@ ( ) k

&> Only defines the phase transition points (i.e., R = 1).
&% Inequality?

& Again take Qy;y — 07, but keep next higher order term:

B N )

k

kP,

= Qug = Y ke e [tk 10— (7 1) 22

KBy g e—1)eBy, =145 i k_lQ-
:>Zk: <k> ( ) k1 Zk: <k> kl( 2 ) trig

& We have Quig > 0if 32, Sk e (k—1) e By > 1.

&% Repeat: Above is a mathematical connection between
two physically derived equations.

& From this connection, we don't know anything about a
gain ratio R or how to arrange the pieces.

Threshold contagion on random networks

&% Third goal: Find expected fractional size of spread.

<> Not obvious even for uniform threshold problem.

&% Difficulty is in figuring out if and when nodes that
need > 2 hits switch on.

&% Problem solved for infinite seed case by Gleeson
and Cahalane:
“Seed size strongly affects cascades on random
networks,” Phys. Rev. E, 2007. ]

<% Developed further by Gleeson in “Cascades on
correlated and modular random networks,” Phys.
Rev. E, 2008.[®!
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Meme species:

Periodic Table of Advice Animals Know Your Meme

& More here at http://knowyourmeme.com'

Expected size of spread
Idea:

<& Randomly turn on a fraction ¢, of nodes at time ¢t = 0

&% Capitalize on local branching network structure of
random networks (again)

&> Now think about what must happen for a specific node
1 to become active at time ¢:

e ¢ =0: 7 is one of the seeds (prob = ¢)

e t =1: i was not a seed but enough of i's friends
switched on at time ¢ = 0 so that ¢'s threshold is now
exceeded.

e ¢ = 2: enough of ¢'s friends and friends-of-friends
switched on at time ¢ = 0 so that #'s threshold is now
exceeded.

e ¢t = n: enough nodes within n hops of 5 switched on at
t = 0 and their effects have propagated to reach .

Expected size of spread

@ =active, ¢ = 1/3
t=0 %
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Expected size of spread

@ -=activeat t=0
O =activeatt=1
@ =activeart=2
@ =activeat t=3
@ =activeatt=4

Expected size of spread

Notes:

&% Calculations presume nodes do not become
inactive (strong restriction, liftable)

Not just for threshold model—works for a wide
range of contagion processes.

We can analytically determine the entire time
evolution, not just the final size.

We can in fact determine
Pr(node of degree k switches on at time ¢).

Even more, we can compute: Pr(specific node i
switches on at time ¢).

Asynchronous updating can be handled too.

& & & & &

Expected size of spread

Pleasantness:

& Taking off from a single seed story is about
expansion away from a node.

&% Extent of spreading story is about contraction at a

node.
A

7
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Expected size of spread
Notation:
¢+ = Pr(a degree k node is active at time ).
Notation: By; = Pr (a degree k node becomes
active if j neighbors are active).
Our starting point: ¢, o = ¢q.
(%)g (1= ¢o)*~7 = Pr(j of a degree k node’s
neighbors were seeded at time ¢ = 0).
Probability a degree k node was a seed at¢t =0 is
¢, (as above).
Probability a degree k node was not a seed at¢ =0
is (1—¢q).
Combining everything, we have:

k

1 =09+ (1 *C)())Z (7-)@0‘(1 —bg)* I By -

5=0

Expected size of spread

For general ¢, we need to know the probability an
edge coming into a degree k node at time t is
active.

Notation: call this probability 6,.

We already know 6, = ¢.

Story analogous to ¢ = 1 case. For specific node i:
k1

¢i,t+1 =¢o+ (1— O()) Z <kj)9r](1 - 9t>k’7'jquj'

=0

Average over all nodes with degree & to obtain
expression for ¢, ;:

o k

k . N
by1 = bot+(1—00) E Py § <J)9g<1*9t)k I By;-
k=0

j=0 \J

So we need to compute 6,... massive excitement...

Expected size of spread

First connect 6, to 6,:

0y = ¢o+
X kP2 (k1Y ; .
k=1 j=o\ J

kP,

= @Q,, = Pr (edge connects to a degree k node).

Z";:; piece gives Pr (degree node k activates if j
of its k — 1 incoming neighbors are active).

¢o and (1 — ¢,) terms account for state of node at
timet=0.

See this all generalizes to give 6, in terms of ¢,...
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Expected size of spread

Two pieces: edges first, and then nodes

o= &
exogenous

<k B 1)9tj<1 - et)kflijkj
J

social effects

k

®o +(1*<Z50>2:Pk2: <I;>6tj<179t)k7jBk:j‘

exogenous k=0 j=0

social effects

Comparison between theory and
simulations

1
Pure random networks
with simple threshold
responses

0.
) R = uniform threshold
(our ¢,); z = average
degree; p=¢;q=0;
° N = 105.
! R $o =10"3,0.5x 1072,
- | 14 and 1072,
o8 P Cascade window is for
0 | : $o = 1072 case.
0 2 4 6 8 10 . .
z Sensible expansion of
From Gleeson and cascade window as ¢,
Cahalane ! increases.

Notes:
Retrieve cascade condition for spreading from a
single seed in limit ¢, — 0.
Dependsonmap 0,,, = G(0,; ¢).
First: if self-starters are present, some activation is
assured:

kP,
(k)

G(0:¢9) = > e By, > 0.
k=1
meaning B,,, > 0 for at least one value of k£ > 1.
If = 0 is a fixed point of G (i.e., G(0; ¢,) = 0) then
spreading occurs for a small seed if
2 kP,

G’ (0; =
(0; 6o) kZ:O w

Insert assignment question (%"

e(k—1)e B, >1.
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Notes:

In words:

If G(0; ¢o) > 0, spreading must occur because
some nodes turn on for free.

If G has an unstable fixed point at = 0, then
cascades are also always possible.

Non-vanishing seed case:

Cascade condition is more complicated for ¢, > 0.

If G has a stable fixed pointat § = 0, and an
unstable fixed point for some 0 < 6, < 1, then for
0y > 0., spreading takes off.

Tricky point: G depends on ¢, so as we change
¢o, We also change G.

General fixed point story:

1 P 1 7 1

Glo: )

Ot = Gl fn)
G,

.

0 1 0 1 0 1
o 0 0

Given 0 (= ¢g), 0 will be the nearest stable fixed
point, either above or below.

n.b., adjacent fixed points must have opposite stability
types.

Important: Actual form of G depends on ¢,,.
Important: ¢, can only increase monotonically so ¢

must shape G so that ¢, is at or above an unstable
fixed point.

First reason: ¢, > ¢,.
Second: G’(0; o) >0,0< 0 < 1.

Interesting behavior:

Now allow thresholds
to be distributed
according to a
Gaussian with mean R.
R=0.2,0.362, and
0.38; 0 = 0.2.
1 ¢o = 0 but some nodes
have thresholds < 0 so
effectively ¢, > 0.
0 Now see a (nasty)

z discontinuous phase
transition for low (k).

From Gleeson and
Cahalane ]
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Interesting behavior:

(@)

5+ 5, <= Plots of stability points

‘ foro, , = G(0,; ¢0).

<& n.b.: 0is not a fixed
point here: 6, =0
always takes off.

<& Top to bottom: R =
0.35,0.371, and 0.375.

<% Saddle node
bifurcations appear
and merge (b and c).

From Gleeson and
Cahalane!”!

What's happening:

&% Fixed points slip above and below the 6, ; = 6,
line:

)
;m
D)
D)

0
)

g 2%
)
D)

Time-dependent solutions

Synchronous update

<% Done: Evolution of ¢, and 6, given exactly by the
maps we have derived.

Asynchronous updates

&> Update nodes with probability a.

&> As a — 0, updates become effectively
independent.

<& Now can talk about ¢(¢) and 6(¢).
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Nutshell:

&% Solid dive into understanding contagion on generalized
random networks.

&= Threshold model leads to idea of vulnerables and a
critical mass. [16: 8

& Generating function approaches provided first
breakthroughs and gave possibility and probability of
spreading. [10: 16

<& Later: A probabilistic, physical method solved the
whole story for a fractional seed—final size, dynamics,

[7.6]

&> Much can be generalized for more realistic kinds of
networks: degree-correlated, modular, bipartite, ...

&% The single seed contagion condition and triggering
probability can be fully developed using a physical
story. [ ]

&> Many connections to other kinds of models: Voter
models, Ising models, ...
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