Branching Networks II

Last updated: 2023/08/22, 11:48:23 EDT

Principles of Complex Systems, Vols. 1, 2, & 3D CSYS/MATH 6701, 6713, & a pretend number, 2023–2024 | @pocsvox

Prof. Peter Sheridan Dodds | @peterdodds

Computational Story Lab | Vermont Complex Systems Center Santa Fe Institute | University of Vermont

The PoCSverse Branching Networks II 1 of 86

Horton ⇔ Tokunaga

Reducing Horton
Scaling relations

Fluctuations

Models

Nutshell

These slides are brought to you by:

The PoCSverse Branching Networks II

2 of 86

Horton ⇔ Tokunaga

Reducing Horton
Scaling relations

Fluctuations

Models

Nutshell

These slides are also brought to you by:

Special Guest Executive Producer

☑ On Instagram at pratchett the cat

The PoCSverse Branching Networks II 3 of 86

Horton ⇔ Tokunaga

Reducing Horton
Scaling relations

Fluctuations

Models

Nutshell

Outline

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

References

The PoCSverse Branching Networks II 4 of 86

Horton ⇔ Tokunaga

Reducing Horton
Scaling relations

Fluctuations

Models

Nutshell

Piracy on the high χ 's:

"Dynamic Reorganization of River Basins"

Willett et al., Science, **343**, 1248765, 2014. [21]

$$\begin{split} \frac{\partial z(x,t)}{\partial t} &= U - KA^m \left| \frac{\partial z(x,t)}{\partial x} \right|^n \\ z(x) &= z_{\rm b} + \left(\frac{U}{KA_0^m} \right)^{1/n} \chi \\ \chi &= \int_{x_{\rm b}}^x \left(\frac{A_0}{A(x')} \right)^{m/n} {\rm d}x' \end{split}$$

Piracy on the high χ 's:

The PoCSverse Branching Networks II 7 of 86

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations
Fluctuations

Models

Nutshell

References

https://www.youtube.com/watch?v=FnroL1_-l2c?rel=0@

More: How river networks move across a landscape (Science Daily)

Can Horton and Tokunaga be happy?

Horton and Tokunaga seem different:

- In terms of network achitecture, Horton's laws appear to contain less detailed information than Tokunaga's law.
- Oddly, Horton's laws have four parameters and Tokunaga has two parameters.
- R_n , R_a , R_ℓ , and R_s versus T_1 and R_T . One simple redundancy: $R_\ell = R_s$. Insert assignment question \square
- To make a connection, clearest approach is to start with Tokunaga's law ...
- Known result: Tokunaga → Horton [18, 19, 20, 9, 2]

The PoCSverse Branching Networks II 10 of 86

Horton ⇔ Tokunaga

Reducing Horton
Scaling relations

Fluctuations

Models

Nutshell

Let us make them happy

We need one more ingredient:

Space-fillingness

A network is space-filling if the average distance between adjacent streams is roughly constant.

Reasonable for river and cardiovascular networks

For river networks:

Drainage density ρ_{dd} = inverse of typical distance between channels in a landscape.

In terms of basin characteristics:

$$\rho_{\rm dd} \simeq \frac{\sum {\rm stream\ segment\ lengths}}{{\rm basin\ area}} = \frac{\sum_{\omega=1}^{\Omega} n_{\omega} \bar{s}_{\omega}}{a_{\Omega}}$$

The PoCSverse Branching Networks II 11 of 86

Horton ⇔ Tokunaga

Reducing Horton
Scaling relations

Fluctuations

Models

Nutshell

More with the happy-making thing

Start with Tokunaga's law: $T_k = T_1 R_T^{k-1}$

- Start looking for Horton's stream number law: $n_{\omega}/n_{\omega+1}=R_n$.
- Estimate n_{ω} , the number of streams of order ω in terms of other $n_{\omega'}$, $\omega' > \omega$.
- & Observe that each stream of order ω terminates by either:

- 1. Running into another stream of order ω and generating a stream of order $\omega+1$...
 - $lackbox{1}{} 2n_{\omega+1}$ streams of order ω do this
- 2. Running into and being absorbed by a stream of higher order $\omega' > \omega$...
 - $ightharpoonup n_{\omega'}T_{\omega'-\omega}$ streams of order ω do this

The PoCSverse Branching Networks II 12 of 86

Horton ⇔ Tokunaga

Reducing Horton
Scaling relations

Fluctuations

Models

Nutshell

More with the happy-making thing

Putting things together:

$$n_{\omega} = \underbrace{2n_{\omega+1}}_{\text{generation}} + \sum_{\omega'=\omega+1}^{\Omega} \underbrace{T_{\omega'-\omega}n_{\omega'}}_{\text{absorption}}$$

 \Leftrightarrow Use Tokunaga's law and manipulate expression to find Horton's law for stream numbers follows and hence obtain R_n .

Solution:

$$R_n = \frac{(2+R_T+T_1) \pm \sqrt{(2+R_T+T_1)^2 - 8R_T}}{2}$$

(The larger value is the one we want.)

The PoCSverse Branching Networks II 13 of 86

Horton ⇔ Tokunaga

Reducing Horton
Scaling relations

Fluctuations

Models

Nutshell

Finding other Horton ratios

Connect Tokunaga to R_s

- $\ensuremath{\mathfrak{S}}$ Now use uniform drainage density $\rho_{\mathrm{dd}}.$
- Assume side streams are roughly separated by distance $1/\rho_{\rm dd}$.
- \clubsuit For an order ω stream segment, expected length is

$$\bar{s}_\omega \simeq \rho_{\mathrm{dd}}^{-1} \left(1 + \sum_{k=1}^{\omega-1} T_k\right)$$

 $\red {\mathbb R}$ Substitute in Tokunaga's law $T_k = T_1 R_T^{k-1}$:

$$\bar{s}_{\omega} \simeq \rho_{\mathrm{dd}}^{-1} \left(1 + T_1 \sum_{k=1}^{\omega-1} R_T^{\;k-1} \right) \propto R_T^{\;\omega}$$

The PoCSverse Branching Networks II 14 of 86

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

Horton and Tokunaga are happy

Altogether then:

$$\Rightarrow \bar{s}_{\omega}/\bar{s}_{\omega-1} = R_T \Rightarrow R_s = R_T$$

$$R_{\ell} = R_s = R_T$$

And from before:

$$R_n = \frac{(2+R_T+T_1)+\sqrt{(2+R_T+T_1)^2-8R_T}}{2}$$

The PoCSverse Branching Networks II 15 of 86

Horton ⇔ Tokunaga

Reducing Horton
Scaling relations

Fluctuations

Models

Nutshell

Horton and Tokunaga are happy

Some observations:

 $\red seems$ Seems that R_a must as well ...

Suggests Horton's laws must contain some redundancy

 \clubsuit We'll in fact see that $R_a = R_n$.

Also: Both Tokunaga's law and Horton's laws can be generalized to relationships between non-trivial statistical distributions. [3, 4]

The PoCSverse Branching Networks II 16 of 86

Horton ⇔ Tokunaga

Reducing Horton
Scaling relations

Fluctuations

Models

Nutshell

Horton and Tokunaga are happy

The other way round

Note: We can invert the expresssions for R_n and R_ℓ to find Tokunaga's parameters in terms of Horton's parameters.

$$R_T = R_\ell,$$

$$T_1 = R_n - R_\ell - 2 + 2R_\ell / R_n.$$

The PoCSverse Branching Networks II 17 of 86

Horton ⇔ Tokunaga

Reducing Horton
Scaling relations

Fluctuations

Models

Nutshell

Horton and Tokunaga are friends

From Horton to Tokunaga [2]

Assume Horton's laws hold for number and length

- Start with picture showing an order ω stream and order $\omega-1$ generating and side streams.
- Scale up by a factor of R_ℓ , orders increment to $\omega+1$ and ω .
- $\red{ \begin{tabular}{ll} \& & Maintain drainage \\ density by adding new \\ order <math>\omega-1$ streams

The PoCSverse Branching Networks II 18 of 86

Horton ⇔ Tokunaga

Reducing Horton
Scaling relations

Fluctuations

Models

Nutshell

Horton and Tokunaga are friends

...and in detail:

- Must retain same drainage density.
- Add an extra $(R_{\ell}-1)$ first order streams for each original tributary.
- Since by definition, an order $\omega+1$ stream segment has T_{ω} order 1 side streams, we have:

$$T_k = (R_\ell - 1) \left(1 + \sum_{i=1}^{k-1} T_i\right).$$

 $\ensuremath{\&}$ For large ω , Tokunaga's law is the solution—let's check ...

The PoCSverse Branching Networks II 19 of 86

Horton ⇔ Tokunaga

Reducing Horton
Scaling relations

Fluctuations

Models

Nutshell

Horton and Tokunaga are friends

Just checking:

$$T_k = (R_\ell-1)\left(1+\sum_{i=1}^{k-1}T_i\right)$$

$$\begin{split} T_k &= (R_\ell - 1) \left(1 + \sum_{i=1}^{k-1} T_1 R_\ell^{i-1} \right) \\ &= (R_\ell - 1) \left(1 + T_1 \frac{R_\ell^{k-1} - 1}{R_\ell - 1} \right) \\ &\simeq (R_\ell - 1) T_1 \frac{R_\ell^{k-1}}{R_\ell - 1} = T_1 R_\ell^{k-1} \quad \text{...yep.} \end{split}$$

The PoCSverse Branching Networks II 20 of 86

Horton ⇔ Tokunaga

Reducing Horton
Scaling relations

Fluctuations

Models

Nutshell

Horton's laws of area and number:

In bottom plots, stream number graph has been flipped vertically.

 \clubsuit Highly suggestive that $R_n \equiv R_a \dots$

The PoCSverse Branching Networks II 21 of 86

Horton ⇔ Tokunaga

Reducing Horton
Scaling relations

Fluctuations

Models

Nutshell

Measuring Horton ratios is tricky:

The PoCSverse Branching Networks II 22 of 86

Horton ⇔ Tokunaga

Reducing Horton
Scaling relations

Fluctuations

Models

Nutshell

References

How robust are our estimates of ratios?

Rule of thumb: discard data for two smallest and two largest orders.

Mississippi:

ω range	R_n	R_a	R_{ℓ}	R_s	R_a/R_n
[2, 3]	5.27	5.26	2.48	2.30	1.00
[2, 5]	4.86	4.96	2.42	2.31	1.02
[2, 7]	4.77	4.88	2.40	2.31	1.02
[3, 4]	4.72	4.91	2.41	2.34	1.04
[3, 6]	4.70	4.83	2.40	2.35	1.03
[3, 8]	4.60	4.79	2.38	2.34	1.04
[4, 6]	4.69	4.81	2.40	2.36	1.02
[4, 8]	4.57	4.77	2.38	2.34	1.05
[5, 7]	4.68	4.83	2.36	2.29	1.03
[6, 7]	4.63	4.76	2.30	2.16	1.03
[7, 8]	4.16	4.67	2.41	2.56	1.12
mean μ	4.69	4.85	2.40	2.33	1.04
std dev σ	0.21	0.13	0.04	0.07	0.03
σ/μ	0.045	0.027	0.015	0.031	0.024

The PoCSverse Branching Networks II 23 of 86

Horton ⇔ Tokunaga

Reducing Horton
Scaling relations

Fluctuations

Models Nutshell

Amazon:

ω range	R_n	R_a	R_{ℓ}	R_s	R_a/R_n
[2, 3]	4.78	4.71	2.47	2.08	0.99
[2, 5]	4.55	4.58	2.32	2.12	1.01
[2, 7]	4.42	4.53	2.24	2.10	1.02
[3, 5]	4.45	4.52	2.26	2.14	1.01
[3, 7]	4.35	4.49	2.20	2.10	1.03
[4, 6]	4.38	4.54	2.22	2.18	1.03
[5, 6]	4.38	4.62	2.22	2.21	1.06
[6, 7]	4.08	4.27	2.05	1.83	1.05
mean μ	4.42	4.53	2.25	2.10	1.02
std dev σ	0.17	0.10	0.10	0.09	0.02
σ/μ	0.038	0.023	0.045	0.042	0.019

The PoCSverse Branching Networks II 24 of 86 Horton ⇔

Reducing Horton
Scaling relations

Fluctuations

Tokunaga

Models Nutshell

Reducing Horton's laws:

Rough first effort to show $R_n \equiv R_a$:

 $a_{\Omega} \propto \text{sum of all stream segment lengths in a order}$ Ω basin (assuming uniform drainage density)

$$a_\Omega \simeq \sum_{\omega=1}^\Omega n_\omega \bar{s}_\omega/
ho_{\mathsf{dd}}$$

$$\propto \sum_{\omega=1}^{\Omega} \underbrace{R_n^{\;\Omega-\omega} \cdot \hat{1}}_{\substack{n_{\omega} \\ n_{\omega}}} \underbrace{\bar{s}_1 \cdot R_s^{\;\omega-1}}_{\bar{s}_{\omega}}$$

$$=\frac{R_n^{\Omega}}{R_s}\bar{s}_1\sum_{\omega=1}^{\Omega}\left(\frac{R_s}{R_n}\right)^{\omega}$$

The PoCSverse Branching Networks II 25 of 86

Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

Reducing Horton's laws:

Continued ...

$$\begin{split} & \mathbf{a_{\Omega}} \propto \frac{R_n^{\Omega}}{R_s} \bar{s}_1 \sum_{\omega=1}^{\Omega} \left(\frac{R_s}{R_n}\right)^{\omega} \\ & = \frac{R_n^{\Omega}}{R_s} \bar{s}_1 \frac{R_s}{R_n} \frac{1 - (R_s/R_n)^{\Omega}}{1 - (R_s/R_n)} \\ & \sim \frac{R_n^{\Omega-1}}{s_1} \bar{s}_1 \frac{1}{1 - (R_s/R_n)} \text{ as } \Omega \nearrow \end{split}$$

 $\mbox{\&}$ So, a_{Ω} is growing like $R_{n}^{\ \Omega}$ and therefore:

$$R_n \equiv R_a$$

The PoCSverse Branching Networks II 26 of 86

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

Reducing Horton's laws:

The PoCSverse Branching Networks II 27 of 86

Horton ⇔ Tokunaga

Reducing Horton
Scaling relations

Fluctuations

Models

Nutshell

References

Not quite:

...But this only a rough argument as Horton's laws do not imply a strict hierarchy

Need to account for sidebranching.

Insert assignment question

Equipartitioning:

Intriguing division of area:

- $\ensuremath{\mathfrak{S}}$ Observe: Combined area of basins of order ω independent of ω .
- Not obvious: basins of low orders not necessarily contained in basis on higher orders.
- Story:

$$R_n \equiv R_a \Rightarrow \boxed{n_\omega \bar{a}_\omega = \mathrm{const}}$$

Reason:

$$n_\omega \propto (R_n)^{-\omega}$$

$$\bar{a}_\omega \propto (R_a)^\omega \propto n_\omega^{-1}$$

The PoCSverse Branching Networks II 28 of 86

Reducing Horton

Tokunaga

Scaling relations

Fluctuations

Models

Nutshell

Equipartitioning:

Some examples:

The PoCSverse Branching Networks II 29 of 86

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

Neural Reboot: Fwoompf

The PoCSverse Branching Networks II 30 of 86

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations Models

Nutshell

NULSHEII

The story so far:

- Natural branching networks are hierarchical, self-similar structures
- A Hierarchy is mixed
- Noting Tokunaga's law describes detailed architecture: $T_k = T_1 R_T^{k-1}$.
- We have connected Tokunaga's and Horton's laws
- \clubsuit Only two Horton laws are independent ($R_n = R_a$)
- $\red{ }$ Only two parameters are independent: $(T_1,R_T)\Leftrightarrow (R_n,R_s)$

The PoCSverse Branching Networks II 31 of 86

Tokunaga

Reducing Horton

Scaling relations

Models

Nutshell

A little further ...

- Ignore stream ordering for the moment
- $\ensuremath{\mathfrak{S}}$ Pick a random location on a branching network p.
- \clubsuit Each point p is associated with a basin and a longest stream length
- Q: What is probability that the p's drainage basin has area a? $P(a) \propto a^{-\tau}$ for large a
- Q: What is probability that the longest stream from p has length ℓ ? $P(\ell) \propto \ell^{-\gamma}$ for large ℓ
- $\ref{Roughly observed: } 1.3 \lesssim \tau \lesssim 1.5 \text{ and } 1.7 \lesssim \gamma \lesssim 2.0$

The PoCSverse Branching Networks II 32 of 86

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Models

Nutshell

Probability distributions with power-law decays

- We see them everywhere:
 - Earthquake magnitudes (Gutenberg-Richter law)
 - City sizes (Zipf's law)
 - Word frequency (Zipf's law) [22]
 - Wealth (maybe not—at least heavy tailed)
 - Statistical mechanics (phase transitions) [5]
- A big part of the story of complex systems
- Arise from mechanisms: growth, randomness, optimization, ...
- Our task is always to illuminate the mechanism ...

The PoCSverse Branching Networks II 33 of 86

Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models Nutshell

Connecting exponents

- We have the detailed picture of branching networks (Tokunaga and Horton)
- $lap{Plan: Derive } P(a) \propto a^{-\tau} \text{ and } P(\ell) \propto \ell^{-\gamma} \text{ starting with Tokunaga/Horton story}^{[17, 1, 2]}$
- \clubsuit Let's work on $P(\ell)$...
- & Our first fudge: assume Horton's laws hold throughout a basin of order Ω.
- (We know they deviate from strict laws for low ω and high ω but not too much.)
- Next: place stick between teeth. Bite stick. Proceed.

The PoCSverse Branching Networks II 34 of 86

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Models

Nutshell

Finding γ :

The complementary cumulative distribution turns out to be most useful:

$$P_{>}(\ell_*) = P(\ell > \ell_*) = \int_{\ell=\ell_*}^{\ell_{\mathrm{max}}} P(\ell) \mathrm{d}\ell$$

$$P_>(\ell_*) = 1 - P(\ell < \ell_*)$$

Also known as the exceedance probability.

The PoCSverse Branching Networks II 35 of 86

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

Finding γ :

 $\mbox{\ensuremath{\&}}$ Given $P(\ell) \sim \ell^{-\gamma}$ large ℓ then for large enough ℓ_*

$$\begin{split} P_>(\ell_*) &= \int_{\ell=\ell_*}^{\ell_{\text{max}}} P(\ell) \, \mathrm{d}\ell \\ &\sim \int_{\ell=\ell_*}^{\ell_{\text{max}}} \frac{\ell^{-\gamma} \, \mathrm{d}\ell}{\ell^{-(\gamma-1)}} \\ &= \frac{\ell^{-(\gamma-1)}}{-(\gamma-1)} \bigg|_{\ell=\ell_*}^{\ell_{\text{max}}} \\ &\propto \ell_*^{-(\gamma-1)} \quad \text{for } \ell_{\text{max}} \gg \ell_* \end{split}$$

The PoCSverse Branching Networks II 36 of 86

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

Finding γ :

Aim: determine probability of randomly choosing a point on a network with main stream length $> \ell_*$

 $\red {\Bbb A}$ Assume some spatial sampling resolution Δ

 $\red \Longrightarrow$ Landscape is broken up into grid of $\Delta \times \Delta$ sites

 \clubsuit Approximate $P_{>}(\ell_*)$ as

$$P_{>}(\ell_{*}) = \frac{N_{>}(\ell_{*}; \Delta)}{N_{>}(0; \Delta)}.$$

where $N_>(\ell_*;\Delta)$ is the number of sites with main stream length $>\ell_*$.

& Use Horton's law of stream segments: $\bar{s}_{\omega}/\bar{s}_{\omega-1}=R_s$...

The PoCSverse Branching Networks II 37 of 86

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

-iuctuations

Models Nutshell

Finding γ :

 \clubsuit Set $\ell_* = \bar{\ell}_{\omega}$ for some $1 \ll \omega \ll \Omega$.

$$P_{>}(\bar{\ell}_{\omega}) = \frac{N_{>}(\bar{\ell}_{\omega}; \Delta)}{N_{>}(0; \Delta)} \simeq \frac{\sum_{\omega' = \omega + 1}^{\Omega} n_{\omega'} \bar{s}_{\omega'} / \cancel{\Delta}}{\sum_{\omega' = 1}^{\Omega} n_{\omega'} \bar{s}_{\omega'} / \cancel{\Delta}}$$

& Δ 's cancel

 \red{lambda} Denominator is $a_{\Omega}
ho_{\mathrm{dd}}$, a constant.

🙈 So ...using Horton's laws ...

$$P_{>}(\bar{\ell}_{\omega}) \propto \sum_{\omega'=\omega+1}^{\Omega} n_{\omega'} \bar{s}_{\omega'} \simeq \sum_{\omega'=\omega+1}^{\Omega} \frac{(1 \cdot R_{n}^{\Omega-\omega'})(\bar{s}_{1} \cdot R_{s}^{\omega'-1})}{(\bar{s}_{1} \cdot R_{s}^{\omega'-1})}$$

The PoCSverse Branching Networks II 38 of 86

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

Finding γ :

We are here:

$$P_{>}(\bar{\ell}_{\omega}) \propto \sum_{\omega'=\omega+1}^{\Omega} (1 \cdot R_n^{\Omega-\omega'}) (\bar{s}_1 \cdot R_s^{\omega'-1})$$

Cleaning up irrelevant constants:

$$P_{>}(\bar{\ell}_{\omega}) \propto \sum_{\omega'=\omega+1}^{\Omega} \left(\frac{R_s}{R_n}\right)^{\omega'}$$

- $\ \& \$ Change summation order by substituting $\omega'' = \Omega \omega'$.
- Sum is now from $\omega''=0$ to $\omega''=\Omega-\omega-1$ (equivalent to $\omega'=\Omega$ down to $\omega'=\omega+1$)

The PoCSverse Branching Networks II 39 of 86

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

Finding γ :

$$P_{>}(\bar{\ell}_{\omega}) \propto \sum_{\omega''=0}^{\Omega-\omega-1} \left(\frac{R_s}{R_n}\right)^{\Omega-\omega''} \propto \sum_{\omega''=0}^{\Omega-\omega-1} \left(\frac{R_n}{R_s}\right)^{\omega''}$$

$$P_{>}(\bar{\ell}_{\omega}) \propto \left(\frac{R_n}{R_s}\right)^{\Omega-\omega} \propto \left(\frac{R_n}{R_s}\right)^{-\omega}$$

again using $\sum_{i=0}^{n-1} a^i = (a^n-1)/(a-1)$

The PoCSverse Branching Networks II 40 of 86

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

Finding γ :

Nearly there:

$$P_>(\bar{\ell}_\omega) \propto \left(\frac{R_n}{R_s}\right)^{-\omega} \\ = e^{-\omega \ln(R_n/R_s)}$$

 $\stackrel{\sim}{\otimes}$ Need to express right hand side in terms of $\bar{\ell}_{\omega}$.

8

$$\bar{\ell}_{\omega} \propto R_{\ell}^{\,\omega} = R_{s}^{\,\omega} = e^{\,\omega {\rm ln} R_{s}}$$

The PoCSverse Branching Networks II 41 of 86

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

Finding γ :

Therefore:

$$P_>(\bar{\ell}_\omega) \propto e^{-\omega \ln(R_n/R_s)} = \left(e^{\omega \ln R_s}\right)^{-\ln(R_n/R_s)/\ln(R_s)}$$

$$\propto \overline{\ell}_{\omega} - \ln(R_n/R_s) / \ln R_s$$

$$= \bar{\ell}_{\omega}^{-(\ln R_n - \ln R_s)/\ln R_s}$$

$$= \bar{\ell}_{\omega}^{-\ln R_n/\ln R_s + 1}$$

$$=\bar{\ell}_{\omega}^{-\gamma+1}$$

The PoCSverse Branching Networks II 42 of 86

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

Finding γ :

And so we have:

$$\gamma = \ln\!R_n/\!\ln\!R_s$$

Proceeding in a similar fashion, we can show

$$\tau = 2 - \mathrm{ln}R_s/\mathrm{ln}R_n = 2 - 1/\gamma$$

Insert assignment question

- Such connections between exponents are called scaling relations
- & Let's connect to one last relationship: Hack's law

The PoCSverse Branching Networks II 43 of 86

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

Hack's law: [6]

$$\ell \propto a^h$$

- \clubsuit Typically observed that $0.5 \lesssim h \lesssim 0.7$.
- & Use Horton laws to connect h to Horton ratios:

$$ar{\ell}_\omega \propto R_s^{\,\omega}$$
 and $ar{a}_\omega \propto R_n^{\,\omega}$

Observe:

$$\bar{\ell}_{\omega} \propto e^{\omega \ln R_s} \propto \left(e^{\omega \ln R_n}\right)^{\ln R_s/\ln R_n}$$

$$\propto (R_n^{\,\omega})^{\ln R_s/\ln R_n} \, \propto \bar{a}_\omega^{\ln R_s/\ln R_n} \Rightarrow \boxed{ \frac{\hbar = \ln R_s/\ln R_n}{\hbar}}$$

The PoCSverse Branching Networks II 44 of 86

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

We mentioned there were a good number of 'laws': [2]

The PoCSverse Branching Networks II 45 of 86

Relation:

 $a \sim L^D$

Name or description:

 $T_k = T_1(R_T)^{k-1}$ Tokunaga's law uations $\ell \sim L^d$ self-affinity of single channels els $n_{\omega}/n_{\omega+1}=R_n$ Horton's law of stream numbers hell

Horton's law of main stream lengths $\ell_{\omega+1}/\ell_{\omega} = R_{\ell}$ Horton's law of basin areas

 $\bar{a}_{\omega+1}/\bar{a}_{\omega} = R_a$

 $\bar{s}_{\omega,+1}/\bar{s}_{\omega}=R_{s}$ Horton's law of stream segment lengths $L_{\perp} \sim L^{H}$ scaling of basin widths

 $P(a) \sim a^{-\tau}$ probability of basin areas $P(\ell) \sim \ell^{-\gamma}$ probability of stream lengths

> $\ell \sim a^h$ Hack's law

> > scaling of basin areas

 $\Lambda \sim a^{\beta}$ Langbein's law

variation of Langbein's law $\lambda \sim L^{\varphi}$

acing Horton

ng relations

rences

Connecting exponents

Only 3 parameters are independent: e.g., take d, R_n , and R_s

0.	
relation:	scaling relation/parameter: [2]
$\ell \sim L^d$	d
$T_k = T_1(R_T)^{k-1}$	$T_1 = R_n - R_s - 2 + 2R_s/R_n$
	$R_T = \frac{R_s}{}$
$n_{\omega}/n_{\omega+1} = R_n$	R_n
$\bar{a}_{\omega+1}/\bar{a}_{\omega} = R_a$	$R_a = \frac{R_n}{}$
$\bar{\ell}_{\omega+1}/\bar{\ell}_{\omega} = R_{\ell}$	$R_{\ell} = \frac{R_s}{r}$
$\ell \sim a^h$	$h = \ln R_s / \ln R_n$
$a \sim L^D$	D = d/h
$L_{\perp} \sim L^H$	H = d/h - 1
$P(a) \sim a^{- au}$	$\tau = 2 - h$
$P(\ell) \sim \ell^{-\gamma}$	$\gamma = 1/h$
$\Lambda \sim a^{\beta}$	$\beta = 1 + h$
$\lambda \sim L^{arphi}$	$\varphi = d$

The PoCSverse Branching Networks II 46 of 86

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

Scheidegger's model

Directed random networks [11, 12]

$$P(\searrow) = P(\swarrow) = 1/2$$

- Functional form of all scaling laws exhibited but exponents differ from real world [15, 16, 14]
- Useful and interesting test case

The PoCSverse Branching Networks II 47 of 86

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

A toy model—Scheidegger's model

Random walk basins:

Boundaries of basins are random walks

The PoCSverse Branching Networks II 48 of 86

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

Scheidegger's model

The PoCSverse Branching Networks II 49 of 86

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

Scheidegger's model

Prob for first return of a random walk in (1+1) dimensions (from CSYS/MATH 300):

$$P(n) \sim \frac{1}{2\sqrt{\pi}} \; n^{-3/2}.$$

and so $P(\ell) \propto \ell^{-3/2}$.

3 Typical area for a walk of length n is $\propto n^{3/2}$:

$$\ell \propto a^{2/3}$$
.

 \Rightarrow Find $\tau = 4/3$, h = 2/3, $\gamma = 3/2$, d = 1.

Arr Note $\tau = 2 - h$ and $\gamma = 1/h$.

 $\Re R_n$ and R_ℓ have not been derived analytically.

The PoCSverse Branching Networks II 50 of 86

Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

Equipartitioning reexamined:

Recall this story:

The PoCSverse Branching Networks II 51 of 86

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

Equipartitioning

What about

$$P(a) \sim a^{-\tau}$$

Since $\tau > 1$, suggests no equipartitioning:

$$aP(a) \sim a^{-\tau+1} \neq \text{const}$$

Arr P(a) overcounts basins within basins ...

while stream ordering separates basins ...

The PoCSverse Branching Networks II 52 of 86

Tokunaga

Reducing Horton

Scaling relations Fluctuations

Models

Nutshell

Fluctuations

Moving beyond the mean:

Both Horton's laws and Tokunaga's law relate average properties, e.g.,

$$\bar{s}_{\omega}/\bar{s}_{\omega-1} = R_s$$

- Natural generalization to consider relationships between probability distributions
- Yields rich and full description of branching network structure
- & See into the heart of randomness ...

The PoCSverse Branching Networks II 53 of 86

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models Nutshell

A toy model—Scheidegger's model

Directed random networks [11, 12]

$$P(\searrow) = P(\swarrow) = 1/2$$

Flow is directed downwards

The PoCSverse Branching Networks II 54 of 86

Horton ⇔ Tokunaga

Reducing Horton Scaling relations

Fluctuations

Models

Nutshell

$$\label{eq:alpha} {\color{blue} \widehat{\otimes}} \ \bar{a}_{\omega} \propto (R_a)^{\omega} \Rightarrow N(a|\omega) = (R_n^2)^{-\omega} F_a(a/R_n^{\omega})$$

Scaling collapse works well for intermediate orders

All moments grow exponentially with order

The PoCSverse Branching Networks II 55 of 86

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models Nutshell

How well does overall basin fit internal pattern?

Actual length = 4920 km (at 1 km res)

Predicted Mean length = 11100 km

Predicted Std dev = 5600 km

Actual length/Mean length = 44 %

Okay.

The PoCSverse Branching Networks II 56 of 86

Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models Nutshell

Comparison of predicted versus measured main stream lengths for large scale river networks (in 10^3 km):

34						
	basin:	ℓ_Ω	$ar{\ell}_{\Omega}$	σ_ℓ	$\ell_\Omega/ar\ell_\Omega$	$\sigma_\ell/ar\ell_\Omega$
	Mississippi	4.92	11.10	5.60	0.44	0.51
	Amazon	5.75	9.18	6.85	0.63	0.75
	Nile	6.49	2.66	2.20	2.44	0.83
	Congo	5.07	10.13	5.75	0.50	0.57
	Kansas	1.07	2.37	1.74	0.45	0.73
		a_{Ω}	$ar{a}_{\Omega}$	σ_a	$a_\Omega/ar{a}_\Omega$	$\sigma_a/ar{a}_\Omega$
	Mississippi	a_{Ω} 2.74	$ar{a}_{\Omega}$ 7.55	σ_a 5.58	$a_\Omega/ar{a}_\Omega$ 0.36	$\sigma_a/ar{a}_\Omega$ 0.74
	Mississippi Amazon				/	a, 22
		2.74	7.55	5.58	0.36	0.74
	Amazon	2.74 5.40	7.55 9.07	5.58 8.04	0.36 0.60	0.74
	Amazon Nile	2.74 5.40 3.08	7.55 9.07 0.96	5.58 8.04 0.79	0.36 0.60 3.19	0.74 0.89 0.82

The PoCSverse Branching Networks II 57 of 86

Horton ⇔ Tokunaga

Reducing Horton
Scaling relations

Fluctuations

Nutshell

Combining stream segments distributions:

Stream segments sum to give main stream lengths

 $\ell_{\omega} = \sum_{1}^{\mu = \omega} s_{\mu}$

 $P(\ell_{\omega})$ is a convolution of distributions for the s_{ω}

The PoCSverse Branching Networks II 58 of 86

Horton ⇔ Tokunaga

Reducing Horton
Scaling relations

Fluctuations

Models

Nutshell

 \Re Sum of variables $\ell_{\omega} = \sum_{\mu=1}^{\mu=\omega} s_{\mu}$ leads to convolution of distributions:

$$N(\ell|\omega) = N(s|1)*N(s|2)*\cdots*N(s|\omega)$$

$$N(s|\omega) = \frac{1}{R_n^{\omega} R_{\ell}^{\omega}} F\left(s/R_{\ell}^{\omega}\right)$$

$$F(x) = e^{-x/\xi}$$

Mississippi: $\xi \simeq 900$ m.

The PoCSverse Branching Networks II 59 of 86

Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

Next level up: Main stream length distributions must combine to give overall distribution for stream length

Interesting ...

The PoCSverse Branching Networks II 60 of 86

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations
Fluctuations

Models

Nutshell

Number and area distributions for the Scheidegger model [3]

 $P(n_{1,6})$ versus $P(a_6)$ for a randomly selected $\omega=6$ basin.

The PoCSverse Branching Networks II 61 of 86

Horton ⇔ Tokunaga

Reducing Horton
Scaling relations

Fluctuations

Models

Nutshell

Scheidegger:

8

Observe exponential distributions for $T_{\mu,\nu}$

 $\red solution Scaling collapse works using <math>R_s$

The PoCSverse Branching Networks II 62 of 86

Horton ⇔ Tokunaga

Reducing Horton
Scaling relations

Fluctuations

Models

Nutshell

Mississippi:

🙈 Same data collapse for Mississippi ...

The PoCSverse Branching Networks II 63 of 86

Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

So

$$P(T_{\mu,\nu}) = (R_s)^{\mu-\nu-1} P_t \left[T_{\mu,\nu}/(R_s)^{\mu-\nu-1} \right]$$

where

$$P_t(z) = \frac{1}{\xi_t} e^{-z/\xi_t}.$$

$$\boxed{P(s_{\mu}) \Leftrightarrow P(T_{\mu,\nu})}$$

Exponentials arise from randomness.

& Look at joint probability $P(s_{\mu}, T_{\mu, \nu})$.

The PoCSverse Branching Networks II 64 of 86

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

Network architecture:

Inter-tributary lengths exponentially distributed

Leads to random spatial distribution of stream segments

The PoCSverse Branching Networks II 65 of 86

Horton ⇔ Tokunaga

Reducing Horton
Scaling relations

Fluctuations

Models

Nutshell

Follow streams segments down stream from their beginning

Probability (or rate) of an order μ stream segment terminating is constant:

$$\tilde{p}_{\mu} \simeq 1/(R_s)^{\mu-1} \xi_s$$

- Probability decays exponentially with stream order
- Inter-tributary lengths exponentially distributed
- ⇒ random spatial distribution of stream segments

The PoCSverse Branching Networks II 66 of 86

Tokunaga

Reducing Horton
Scaling relations

Fluctuations Models

Nutshell

Joint distribution for generalized version of Tokunaga's law:

$$P(s_{\mu},T_{\mu,\nu}) = \tilde{p}_{\mu} \binom{s_{\mu}-1}{T_{\mu,\nu}} p_{\nu}^{T_{\mu,\nu}} (1-p_{\nu}-\tilde{p}_{\mu})^{s_{\mu}-T_{\mu,\nu}-1}$$

where

- $p_{
 u} = {
 m probability} \ {
 m of absorbing an order} \ {
 m $
 u$ side stream}$
- $\widetilde{p}_{\mu}=$ probability of an order μ stream terminating
- $\red s$ Approximation: depends on distance units of s_{μ}
- In each unit of distance along stream, there is one chance of a side stream entering or the stream terminating.

The PoCSverse Branching Networks II 67 of 86

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models Nutshell

Now deal with this thing:

$$P(s_{\mu},T_{\mu,\nu}) = \tilde{p}_{\mu} \binom{s_{\mu}-1}{T_{\mu,\nu}} p_{\nu}^{T_{\mu,\nu}} (1-p_{\nu}-\tilde{p}_{\mu})^{s_{\mu}-T_{\mu,\nu}-1}$$

 \Longrightarrow Set $(x,y)=(s_{\mu},T_{\mu,\nu})$ and $q=1-p_{\nu}-\tilde{p}_{\mu}$ approximate liberally.

🙈 Obtain

$$P(x,y) = Nx^{-1/2} [F(y/x)]^x$$

where

$$F(v) = \left(\frac{1-v}{q}\right)^{-(1-v)} \left(\frac{v}{p}\right)^{-v}.$$

The PoCSverse Branching Networks II 68 of 86

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models Nutshell

 \Leftrightarrow Checking form of $P(s_{\mu}, T_{\mu, \nu})$ works:

Scheidegger:

The PoCSverse Branching Networks II 69 of 86

Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

 \Leftrightarrow Checking form of $P(s_{\mu}, T_{\mu, \nu})$ works:

Scheidegger:

The PoCSverse Branching Networks II 70 of 86

Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

 \Leftrightarrow Checking form of $P(s_{\mu}, T_{\mu, \nu})$ works:

Scheidegger:

The PoCSverse Branching Networks II 71 of 86

Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

 \Leftrightarrow Checking form of $P(s_{\mu}, T_{\mu, \nu})$ works:

Mississippi:

The PoCSverse Branching Networks II 72 of 86

Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

Models

Random subnetworks on a Bethe lattice [13]

- Dominant theoretical concept for several decades.
- Bethe lattices are fun and tractable.
- Led to idea of "Statistical inevitability" of river network statistics [7]
- But Bethe lattices unconnected with surfaces.
- In fact, Bethe lattices ≃ infinite dimensional spaces (oops).
- 🚳 So let's move on ...

The PoCSverse Branching Networks II 74 of 86

Horton ⇔ Tokunaga

Reducing Horton
Scaling relations

Fluctuations

Models

Nutshell

Scheidegger's model

Directed random networks [11, 12]

$$P(\searrow) = P(\swarrow) = 1/2$$

The PoCSverse Branching Networks II 75 of 86

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

Optimal channel networks

Rodríguez-Iturbe, Rinaldo, et al. [10]

$$\dot{\varepsilon} \propto \int \mathrm{d}\vec{r} \; (\mathrm{flux}) \times (\mathrm{force}) \sim \sum_i a_i \nabla h_i \sim \sum_i a_i^\gamma$$

Landscapes obtained numerically give exponents near that of real networks.

But: numerical method used matters.

And: Maritan et al. find basic universality classes are that of Scheidegger, self-similar, and a third kind of random network [8]

The PoCSverse Branching Networks II 76 of 86

Horton ⇔ Tokunaga

Reducing Horton
Scaling relations

Fluctuations

Models

Nutshell

Theoretical networks

Summary of universality classes:

network	h	d
Non-convergent flow	1	1
Directed random	2/3	1
Undirected random	5/8	5/4
Self-similar	1/2	1
OCN's (I)	1/2	1
OCN's (II)	2/3	1
OCN's (III)	3/5	1
Real rivers	0.5-0.7	1.0-1.2

 $h\Rightarrow \ell \propto a^h$ (Hack's law). $d\Rightarrow \ell \propto L^d_\parallel$ (stream self-affinity).

The PoCSverse Branching Networks II 77 of 86

Horton ⇔ Tokunaga

Reducing Horton
Scaling relations

Fluctuations

Models

Nutshell

Nutshell

Branching networks II Key Points:

Horton's laws and Tokunaga's law all fit together.

For 2-d networks, these laws are 'planform' laws and ignore slope.

Abundant scaling relations can be derived.

 $\mbox{\ensuremath{\belowdex}{\ensuremath{\ensuremath{\belowdex}{\ensuremath{\ensuremath{\belowdex}{\ensuremath{\ens$

Laws can be extended nicely to laws of distributions.

Numerous models of branching network evolution exist: nothing rock solid yet ...?

The PoCSverse Branching Networks II 78 of 86

Horton ⇔ Tokunaga

Reducing Horton
Scaling relations

Fluctuations

Models

Nutshell

References I

[1] H. de Vries, T. Becker, and B. Eckhardt. Power law distribution of discharge in ideal networks.

Water Resources Research, 30(12):3541–3543, 1994. pdf ☑

- [2] P. S. Dodds and D. H. Rothman. Unified view of scaling laws for river networks. Physical Review E, 59(5):4865–4877, 1999. pdf
- [3] P. S. Dodds and D. H. Rothman.
 Geometry of river networks. II. Distributions of component size and number.
 Physical Review E, 63(1):016116, 2001. pdf

The PoCSverse
Branching
Networks II
79 of 86
Horton

Horton ⇔ Tokunaga

Reducing Horton
Scaling relations

Fluctuations

Models

Nutshell

References II

[4] P. S. Dodds and D. H. Rothman.
Geometry of river networks. III. Characterization of component connectivity.
Physical Review E, 63(1):016117, 2001. pdf

[5] N. Goldenfeld. Lectures on Phase Transitions and the Renormalization Group, volume 85 of Frontiers in Physics. Addison-Wesley, Reading, Massachusetts, 1992.

[6] J. T. Hack.
Studies of longitudinal stream profiles in Virginia and Maryland.

Holitod States Goological Survey Professional

United States Geological Survey Professional Paper, 294-B:45–97, 1957. pdf ☑

The PoCSverse Branching Networks II 80 of 86

Horton ⇔ Tokunaga

Reducing Horton
Scaling relations

Fluctuations

Models

Nutshell

References III

[7] J. W. Kirchner. Statistical inevitability of Horton's laws and the apparent randomness of stream channel networks. Geology, 21:591-594, 1993. pdf

A. Maritan, F. Colaiori, A. Flammini, M. Cieplak, [8] and J. R. Banavar. Universality classes of optimal channel networks. Science, 272:984-986, 1996. pdf

S. D. Peckham. [9] New results for self-similar trees with applications to river networks. Water Resources Research, 31(4):1023-1029,

1995.

The PoCSverse Branching Networks II 81 of 86

Tokunaga

Reducing Horton Scaling relations

Fluctuations

Models Nutshell

References IV

[10] I. Rodríguez-Iturbe and A. Rinaldo. Fractal River Basins: Chance and Self-Organization. Cambridge University Press, Cambrigde, UK, 1997.

[11] A. E. Scheidegger.

A stochastic model for drainage patterns into an intramontane trench.

Bull. Int. Assoc. Sci. Hydrol., 12(1):15–20, 1967. pdf ☑

[12] A. E. Scheidegger.

Theoretical Geomorphology.

Springer-Verlag, New York, third edition, 1991.

The PoCSverse Branching Networks II 82 of 86

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

References V

[13] R. L. Shreve.
Infinite topologically random channel networks.
Journal of Geology, 75:178–186, 1967. pdf ☑

[14] H. Takayasu.
Steady-state distribution of generalized aggregation system with injection.

Physcial Review Letters, 63(23):2563–2565, 1989.
pdf

[15] H. Takayasu, I. Nishikawa, and H. Tasaki. Power-law mass distribution of aggregation systems with injection. Physical Review A, 37(8):3110–3117, 1988. The PoCSverse
Branching
Networks II
83 of 86
Horton ⇔
Tokunaga
Reducing Horton
Scaling relations

Fluctuations

Models Nutshell

References VI

[16] M. Takayasu and H. Takayasu. Apparent independency of an aggregation system with injection. Physical Review A, 39(8):4345–4347, 1989. pdf

[17] D. G. Tarboton, R. L. Bras, and I. Rodríguez-Iturbe.
Comment on "On the fractal dimension of stream networks" by Paolo La Barbera and Renzo Rosso.
Water Resources Research, 26(9):2243–4, 1990.
pdf

[18] E. Tokunaga.

The composition of drainage network in Toyohira River Basin and the valuation of Horton's first law.

Geophysical Bulletin of Hokkaido University,

15:1–19, 1966. pdf

■

The PoCSverse Branching Networks II 84 of 86

Horton ⇔ Tokunaga

Reducing Horton
Scaling relations

Fluctuations

Models Nutshell

References VII

[19] E. Tokunaga.

Consideration on the composition of drainage networks and their evolution.

Geographical Reports of Tokyo Metropolitan University, 13:G1–27, 1978. pdf

[20] E. Tokunaga.

Ordering of divide segments and law of divide segment numbers.

Transactions of the Japanese Geomorphological Union, 5(2):71–77, 1984.

[21] S. D. Willett, S. W. McCoy, J. T. Perron, L. Goren, and C.-Y. Chen.

Dynamic reorganization of river basins.

Science, 343(6175):1248765, 2014. pdf

The PoCSverse Branching Networks II 85 of 86

Horton ⇔ Tokunaga

Reducing Horton
Scaling relations

Fluctuations

Models

Nutshell

References VIII

[22] G. K. Zipf. Human Behaviour and the Principle of Least-Effort. Addison-Wesley, Cambridge, MA, 1949. The PoCSverse Branching Networks II 86 of 86

Horton ⇔ Tokunaga

Reducing Horton
Scaling relations

Fluctuations

Models

Nutshell

