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Piracy on the high x's:

s Willett et al.,

{ P ]
Divide migration X Divide stationan Y
c Steady state
5 Victim
K]
g
3
w Area I
X
D
Divide migrati —
8
3
3
i \
istan

B | Science, 343, 1248765, 2014211

A Disequilibrium _— N BSieadystate
g~
3 s
oF —————— Victim
—

= | "Dynamic Reorganization of River

Oz(x,t) L0z (%)
ot S o Ox
z(w) g ( U ) 1/n !
B R AT


https://pdodds.w3.uvm.edu//research/papers/others/everything/willett2014a.pdf
https://pdodds.w3.uvm.edu//research/papers/others/everything/willett2014a.pdf
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Piracy on the high x's:

https://www.youtube.com/watch?v=FnroL1_-12c?rel=0&

(Science Daily)
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Can Horton and Tokunaga be happy?

In terms of network achitecture, Horton's laws
appear to contain less detailed information than
Tokunaga's law.

Oddly, Horton's laws have four parameters and
Tokunaga has two parameters.

R,, R, R, and R_ versus T; and R;. One simple
redundancy: R, = R,.
Insert assignment question (4’

To make a connection, clearest approach is to
start with Tokunaga's law ...

Known result: Tokunaga — Horton '8 19.20.9, 21
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Let us make them happy

We need one more ingredient:

A network is space-filling if the average distance
between adjacent streams is roughly constant.

Reasonable for river and cardiovascular networks

For river networks:
Drainage density pqq = inverse of typical distance
between channels in a landscape.

In terms of basin characteristics:

Q £
> stream segment lengths > 1,5,
basin area = o

Pdd =
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Start looking for Horton's stream number law: Reducing Horton
”w/nw+1 = Rn- Scaling relations
Estimate N the number of streams of order w in Fluctuations

del

terms of other n,,, w’ > w. it

Nutshell

Observe that each stream of order w terminates
by either:

References

1. Running into another stream of order w
and generating a stream of order w + 1
» 2n,,. , streams of order w do this

2. Running into and being absorbed by a
stream of higher order w’ > w ...

» n T, . streams of order w do this

w
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2 Scaling relations
V= 2nw+1 =+ E : Tw’fwnw’ Fluctuations
< 2 ~— e’
i w/'=w+1 i
generation absorption Models
Nutshell

Use Tokunaga’s law and manipulate expression to  references
find Horton's law for stream numbers follows and
hence obtain R,,.

Insert assignment question (%'

Solution:

i g (2+Rp+Ty)++/(2+Rp+T1)2—8Ry
g 2

(The larger value is the one we want.)


https://pdodds.w3.uvm.edu/teaching/courses/2023-2024pocsverse/assignments/

Finding other Horton ratios

Now use uniform drainage density pyq4-

Assume side streams are roughly separated by
distance 1/pqgq.

For an order w stream segment, expected length is
w—1
5, ol (1 +) Tk)
k=1
Substitute in Tokunaga's law T}, = T, R&1:

w—1
Sw ™ Pad (1 s R%“) o R
k=1
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Horton and Tokunaga are happy

Altogether then:
&

:>§w/’§w71 :RT = Rs :RT

& Recall R, = R, so

(R, =R, = Ry

&> And from before:

o 2+ Rr+Ty)++Q2+Rr+T,)2 -8Ry

& 2
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Horton and Tokunaga are happy

R, and R, depend on T; and R.
Seems that R, must as well ...

Suggests Horton's laws must contain some
redundancy

We'll in fact seethat R, = R,,.

Also: Both Tokunaga's law and Horton's laws can
be generalized to relationships between
non-trivial statistical distributions. > !
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Horton and Tokunaga are happy

Note: We can invert the expresssions for R,, and
R, to find Tokunaga's parameters in terms of
Horton's parameters.

RT = Ré,

Suggests we should be able to argue that Horton's
laws imply Tokunaga's laws (if drainage density is
uniform) ...
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Horton and Tokunaga are friends e
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Assume Horton's laws
hold for number and

Scaling relations

Fluctuations

Iength Models
Start with picture Nutshell
ShOWing an Order w References

stream and order w —1
generating and side
streams.

Scale up by a factor of
R,, orders increment
tow+1and w.

Maintain drainage
density by adding new
order w — 1 streams




Horton and Tokunaga are friends

Must retain same drainage density.

Add an extra (R, — 1) first order streams for each
original tributary.

Since by definition, an order w + 1 stream segment
has T,, order 1 side streams, we have:

k—1
T, = (R, — 1) <1+2Ti> .
=t

For large w, Tokunaga's law is the solution—let’s
check ...
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Horton and Tokunaga are friends

Substitute Tokunaga's law T; = Ty R ' =T, R,/

k—1
TRl 1) <1+ZTZ->

into

(]

Tk:(Re—1)<

= (R, —1) (1+T1

(R, —1)

- Rﬂk_l
LR

k—1
el

R/l

L+ DT R
=1k

)

..yep.

)
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The Mississippi ¥ The Nile ‘ The Amazon
10 A 10 Horton <
k™ o
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In bottom plots, stream number graph has been
flipped vertically.

Highly suggestive that R,, = R

a



Measuring Horton ratios is tricky:

How robust are our estimates of ratios?

Rule of thumb: discard data for two smallest and
two largest orders.
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Mississippi:

w range R

n

2,3 527
2,5]  4.86
2,7 477
3,4 472
3,6]  4.70
3,8]  4.60
[4,6]  4.69
[4,8] 457
5,77  4.68
6,7  4.63
7,8 4.6

mean u  4.69
stddevo 0.21

RCL
5.26
4.96
4.88
4.91
4.83
4.79
4.81
4.77
4.83
4.76
4.67
4.85
0.13

R,
2.48
242
2.40
2.41
2.40
2.38
2.40
2.38
2.36
2.30
2.41
2.40
0.04

RS
2.30
2.31
2.31
2.34
2.35
2.34
2.36
2.34
2.29
2.16
2.56
2.33
0.07

o/p 0.045 0.027 0.015 0.031

R,/R,
1.00
1.02
1.02
1.04
1.03
1.04
1.02
1.05
1.03
1.03
1.12
1.04
0.03

0.024
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Amazon:;

w range

mean u
std dev o

o/

R,
4.78
4.55
4.42
4.45
4.35
4.38
4.38
4.08
4.42
0.17

0.038 0.023 0.045 0.042

R,
4.71
4.58
4.53
4.52
4.49
4.54
4.62
4.27
4.53
0.10

R,
2.47
2.32
2.24
2.26
2.20
2.22
2.22
2.05
2.25
0.10

R,
2.08
2.12
2.10
2.14
2.10
2.18
2.21
1.83
2.10
0.09

R,/R,
0.99
1.01
1.02
1.01
1.03
1.03
1.06
1.05
1.02
0.02

0.019
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Reducing Horton's laws:

ag o< sum of all stream segment lengths in a order
Q basin (assuming uniform drainage density)

So:
Q
aq = E nwsw/pdd
w=1
Q no
o E e s MBI
w=1 7 Sch
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Reducing Horton's laws:

So, ag, is growing like R.$* and therefore:
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Reducing Horton's laws: The Botovkse
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do not imply a strict hierarchy References

Need to account for sidebranching.
Insert assignment question (£



https://pdodds.w3.uvm.edu/teaching/courses/2023-2024pocsverse/assignments/

Equipartitioning: E?Ei%?fg“e
Networks I
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Reducing Horton

Observe: Combined area of basins of order w Scaling relations
independent of w. Fluctuations

3 5 3 Model
Not obvious: basins of low orders not necessarily Nj;i;

contained in basis on higher orders.
Story:

References

R =R

n

Reason:
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Mississippi basin partitioning Amazon basin partitioning ToRUNgEd
s 3 Reducing Horton
L]
0.4 0.4 O Scaling relations
= 7 Fluctuations
mqo.e...o°. ° ....o
T L]
3 Models
©
04 Nutshell
0.2 é References
AT R S E Y T g 0 [ 1532 T 38450 6 7EL 8 O IO
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Nile basin partitioning
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Scaling laws

Natural branching networks are hierarchical,
self-similar structures

Hierarchy is mixed

Tokunaga's law describes detailed architecture:
T R

We have connected Tokunaga’'s and Horton's laws
Only two Horton laws are independent (R,, = R,,)

Only two parameters are independent:
(T17 RT) = (er Rs)

The PoCSverse
Branching
Networks Il

31 of 86

Horton <
Tokunaga

Reducing Horton
Scaling relations
Fluctuations
Models

Nutshell

References




Scaling laws

Ignore stream ordering for the moment
Pick a random location on a branching network p.

Each point p is associated with a basin and a
longest stream length

Q: What is probability that the p's drainage basin
has area a? P(a) x a~ " forlargea

Q: What is probability that the longest stream
from p has length ¢? P(/) oc ¢~ for large ¢

Roughly observed: 1.3 <7< 1.5and 1.7 < v < 2.0
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Scaling laws

We see them everywhere:

Earthquake magnitudes (Gutenberg-Richter law)
City sizes (Zipf's law)

Word frequency (Zipf's law) [**!

Wealth (maybe not—at least heavy tailed)
Statistical mechanics (phase transitions) !

A big part of the story of complex systems

Arise from mechanisms: growth, randomness,
optimization, ...

Our task is always to illuminate the mechanism ...
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Scaling laws

We have the detailed picture of branching
networks (Tokunaga and Horton)

Plan: Derive P(a) x a~™ and P({) o< £~7 starting
with Tokunaga/Horton story '/ 2]
Let's work on P(/) ...

Our first fudge: assume Horton's laws hold
throughout a basin of order Q.

(We know they deviate from strict laws for low w
and high w but not too much.)

Next: place stick between teeth. Bite stick.
Proceed.

The PoCSverse
Branching
Networks Il

34 of 86

Horton <
Tokunaga

Reducing Horton
Scaling relations
Fluctuations
Models

Nutshell

References




Scaling laws

Often useful to work with cumulative
distributions, especially when dealing with
power-law distributions.

The complementary cumulative distribution turns
out to be most useful:

BB / " e

=

*

Also known as the exceedance probability.
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Scaling laws

The connection between P(x) and P_(z) when
P(z) has a power law tail is simple:

Given P(¢) ~ ¢~ large ¢ then for large enough ¢,

P(8,) = /e ™ by ae

ey N DT i ap e s
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Aim: determine probability of randomly choosing e
: 2 - caling relations
a point on a network with main stream length > ¢, =~ g

Fluctuations
Assume some spatial sampling resolution A Models
Landscape is broken up into grid of A x A sites Sl

Appl’OXimate P> (e*) as References

- oD

where N_ (¢,; A) is the number of sites with main
stream length > /..

Use Horton's law of stream segments:
§w/§w_1 = RS cee
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N> (gw; A) i Zw’*uﬂrl nw’sw’//ﬁ Models
N> (O, A) ZS /8 //A Nutshell

References

P>(zw> i

A’s cancel
Denominator is ag pqq, @ CONStant.
So ...using Horton's laws ...

Q

Q
D muss 3 (LRE)GRYTY

w'=w+l w/'=w+1




Scaling laws

We are here:

Q
Pa o NI (L RIE VG e 1)
w/'=w+1

Cleaning up irrelevant constants:

Rl S

w/'=w+1 U

Change summation order by substituting

Ww =0 -

Sumis now fromw” =0tow” =Q —w—1
(equivalentto w’ = Q downto w’ =w + 1)
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Scaling laws

again using Zzol SRR RS G SR )
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Nea rly there: Scaling relations

Fluctuations

= R —w Models
P>(€w) X (n) - €_w|n<R”/RS) Nutshell

References

Need to express right hand side in terms of 7.
Recall that ¢, ~ ¢; R¥ 1.

LA R B R




Scaling laws
Finding ~:
&% Therefore:

P>(Z ) ©€ e_wln(Rn/Rs) — (ewlnRs)_In(Rn/Rs)/'n(Rs)

(0.8 ZUJ 7In(Rn/Rs)/|nRs

Lt z;(lan—MRS)/InRS

>—InR,/InR_+1
—l

& » B

P 1
=077
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And so we have: Scaling relations

Fluctuations

‘ 'y — Ian/InRS Models
Nutshell
Proceeding in a similar fashion, we can show References

‘Tzz—InRs/lan :2_1/7‘

Insert assignment question (4"

Such connections between exponents are called
scaling relations

Let's connect to one last relationship: Hack's law
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h Scaling relations

{xa

Fluctuations

Typically observed that 0.5 < h < 0.7. Models
Use Horton laws to connect ~ to Horton ratios: Nutshell

References

¢ oeR“and g od B2

Observe:

T e eoulnRS x (emen)InRS/lnR"

w

InR,/InR,, —InR,/InR
x (R%) / el s/

n

"= \ h=InR,/INR,,




We mentioned there were a good number s
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Relation: Name or description: i
Icing Horton
_ k-1 Tok I | ng relations
Tk - Tl (RT> 0 Unaga S law uations
¢~ L% self-affinity of single channels &
ng/ny1 = R, Horton's law of stream numbers hel
l,.1/t, =R, Horton'slaw of main stream lengths rences

a,.1/a, =R, Horton'slaw of basin areas
Sepi1/50 = RS Horton’s law of stream segment lengths
L, ~ LH scaling of basin widths
P(a) ~a~™ probability of basin areas
P(¢) ~ ¢~ probability of stream lengths
¢ ~a™ Hack's law
a ~ LP scaling of basin areas
A ~a? Langbein's law
A~ L¥ variation of Langbein’s law




Connecting exponents

relation:
{~ L2
Ty, =Ty (Rp)*1

nw/nw+l = Rn
&w+1/&w = Ra
Ew—‘—l/gw = RZ
0~ al
a~LP
L, ~LH
P(a) ~a™7
P(f) ~ £
A~aP
A~ L%

scaling relation/parameter: !

d
T,=R,—R.,—2+2R_/R,
RT:RS

Rn

RCL:RW,

R, =R,
h=InR,/InR,,
D=d/h
H=d/h—1
T=2—h
v=1/h
B=1+h
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Scheidegger's model

Directed random networks

g . ‘F’Wﬁfj\&
A }"“‘..-:: i}xgj ll:?__{' }}E}
:::,x x _ %\{(y

SN
&93:-"{‘1:3”“ (.{;\
,-wg} f‘\}{m SOANC AN
&
P(N\) =P()=1/2

<= Functional form of all scaling laws exhibited but
exponents differ from real world !> 16141

<% Useful and interesting test case
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A toy model—Scheidegger's model

Boundaries of basins are random walks

area a
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Scaling relations

1 Fluctuations
Pl ~ 1 32 Models
( ) 2ﬁ Nutshell
and SO P(f) X 673/2_ References

Typical area for a walk of length n is oc n3/2:

¢ a?/3.

Findr=4/3,h=2/3,7y=3/2,d = 1.

Noter =2—hand~y=1/h.
R, and R, have not been derived analytically.
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Equipartitioning

What about
Pla)i~ian" ?

Since 7 > 1, suggests no equipartitioning:

aPla)~ a7l £ const

P(a) overcounts basins within basins ...

while stream ordering separates basins ...
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Fluctuations

Both Horton’s laws and Tokunaga's law relate
average properties, e.g.,

gw/gw—l = Rs

Natural generalization to consider relationships
between probability distributions

Yields rich and full description of branching
network structure

See into the heart of randomness ...
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A toy model—Scheidegger's model

Directed random networks

&

BN = Bi) = 1/2

&> Flow is directed downwards
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171 ! The PoCSverse
Generalizing Horton's laws BincHie
Networks Il
<z 55 of 86
Ew X (R£>w = N(g'w) == (RnRE)inE(E/RzJ) ?oli’tom =
okunaga
5 2\
aw X (Ra)w = N((Z|(JJ> = (Rn) wFa (G/Rﬁ) Reducing Horton
Mississippi: length distributions Mississippi: length distributions Deuud il
10° 10° Fluctuations
G S = I SR i o e R I = S o e Ve e e e - o b T T B T
4 Models
e e
Nutshell

6

References

N(I o)

=4

10

0 100 200 300 o
I (km) IR

Scaling collapse works well for intermediate
orders
All moments grow exponentially with order
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Generalizing Horton's laws Branctine &
Networks Il
Comparison of predicted versus measured main i

Horton <
stream lengths for large scale river networks (in 103 TOhCheES
km): Reducing Horton

Scaling relations

basin: lq L oo Lo/l 04/l Fluctuations
Mississippi  4.92 11.10 5.60 0.44 0.51 Mesiels
Amazon 575 9.18 6.85 0.63 0.75 sl
Nile 6.49 266 220 244 0.83 Referehces
Congo 5.07 10.13 5.75 0.50 0.57
Kansas 1.07 237 174 045 0.73

g a9 Ou /0 0,/0q

Mississippi  2.74 7.55 5.58 0.36 0.74
Amazon 540 9.07 8.04 0.60 0.89
Nile 3.08 096 0.79 3.19 0.82
Congo 3.70 10.09 8.28 0.37 0.82
Kansas 0.14 049 042 0.28 0.86
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Generalizing Horton's laws

Sum of variables ¢, = >~ " s, leads to
convolution of distributions:

N({f|lw) =

Mississippi: stream segments

Rn =4.69, R: {B?

N(s|1) * N(s]|2) - % N(s|w)

N(slw) = F (s/Ry)

G
R Ry

F(z) = e /&
Mississippi: £ =~ 900 m.
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The PoCSverse

Generalizing Horton's laws Bk
Boorss
2 = = i Horton <
Next level up: Main stream length distributions Tokunaga
must combine to give overall distribution for Reducing Horton

Scaling relations

stream length

Fluctuations

: Mississippi: length distributions Models
2 wmﬁ%% w=3 Nutshell
References
0
10 Pl
% Another round of
& convolutions %/
10 :
Interesting ...
10




Generalizing Horton's laws

Number and
area
distributions for
the Scheidegger
model %!

P(n, ¢) versus
P(ag) for a
randomly
selected w =6
basin.
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Generalizing Tokunaga's law

Scheidegger:
<1,
4
% (b)
A>
=Y
a
B
g -1
15}
S o,
g - Y #5820
ODI:II:IE\
"% o1 02 03 04 05 06

-1
T“’V (RI ©)

Observe exponential distributions for T, ,
Scaling collapse works using R,
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Generalizing Tokunaga’s law The PoCSverse

Branching
Networks Il
63 of 86

Horton <
: 5 3 4 Tokunaga
Mississippi:

Reducing Horton

2.5
@ @ 35 Scaling relations
a) .
Ko ‘@@) (b) Fluctuations
T i g e R AR e S B B e e R e P Ve S P A R (e T e il SR L i
% =8 % 5
0. odels
=] B S
; 15t v o} Sl Nutshell
= Vo So a
fang = Vo = %@ References
=) v 164 o
o 1 Vo &0 2 =i PR
o s 0 = g ©
B e o % o o 0 2
o 00 M0 g = 15 @O%ODC@ [ecloNe
0.5] w om o g! &% o
o ooo@ool — 1
o YoV
0 20 40 60 0.5
0 L 2 3 5 4 5
ks T ®e)

Same data collapse for Mississippi ...




Generalizing Tokunaga's law

So
P<Tp,,u) = <R3>M7V71Pt [T,u,v/<Rs)M7V71]
where :
Pz)i= =25,
t

P(s,) < P(T, ,)

K,V

Exponentials arise from randomness.
Look at joint probability P(s,,, T, , ).

» v
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Generalizing Tokunaga's law

Inter-tributary
lengths
exponentially
distributed

Leads to random
spatial
distribution of
stream segments

The PoCSverse
Branching
Networks Il

65 of 86

Horton <
Tokunaga

Reducing Horton
Scaling relations
Fluctuations
Models

Nutshell

References




Generalizing Tokunaga's law

Follow streams segments down stream from their
beginning

Probability (or rate) of an order p stream segment
terminating is constant:

Pu = L/(R)P L,

Probability decays exponentially with stream
order

Inter-tributary lengths exponentially distributed
= random spatial distribution of stream segments
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Generalizing Tokunaga's law Biinchine &
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67 of 86

Horton <

Joint distribution for generalized version of ey
Tokunaga,s IaW' Reducing Horton

Scaling relations

Fluctuations

L S T 1 TJ, v ~ £25 il
P(S;,HT/,L,V) = py,( ,_I;—, )pl/} : (1—py—pu)s“ Aoats Models
12214

Nutshell
Where References
p, = probability of absorbing an order v side
stream

p,, = probability of an order p stream terminating
Approximation: depends on distance units of s,

In each unit of distance along stream, there is one
chance of a side stream entering or the stream
terminating.




Generalizing Tokunaga's law

Now deal with this thing:

e 1IN g i
P(SHJTN,U) :pp( % )pV : (1_py_pp,)SH

nv

Set (xvy) = (S,uaT,u,u) and 9= 1 — Py _ﬁul
approximate liberally.

Obtain
Plz,y) = Ne M2 [F(y/z)]”

no-(5)" ")

where

a3

wy

v

— 1
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Generalizing Tokunaga's law

Checking form of P(s,,,T,, ,) works:

Scheidegger:

1

0.8]

0.6

0.4

0.2

@

0.2

0.4
v=T

Y

0.6
/1 C]
u

0.8

15

vi= T 118
TR
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Generalizing Tokunaga's law

Checking form of P(s,,,T,, ,) works:

Scheidegger:

Hy

Ioglop(lf)/ T
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Generalizing Tokunaga’s law The PoCSverse
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Checking form of P(s,,,T,, ,) works: g
12 =3 Scaling relations
Scheidegger:

Fluctuations

Models

n

S
g
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wv
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(62}

References
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Models
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Dominant theoretical
concept for several decades. . . ..

Bethe lattices are fun and Models

tractable. Nutshell
Led to idea of “Statistical Referehces
inevitability” of river

network statistics

But Bethe lattices
unconnected with surfaces.

Scaling relations

In fact, Bethe lattices ~
infinite dimensional spaces
(oops).

So let's move on ...




Scheidegger's model

Directed random networks
‘*3\?, AN “v-s;}{ fff&;?
A :-Jx x{} %’ PS-"( ,{« I}Ei;
® ® ﬂ*{% 9&5/333 ?;i‘:'r:,;.
CRARVRED

RO a1

<% Functional form of all scaling laws exhibited but
exponents differ from real world !> 16 141

&
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Optimal channel networks Branching.

Networks Il
76 of 86

Horton <

Tokunaga

Reducing Horton
Landscapes h(Z) evolve such that energy Scaling relations
dissipation ¢ is minimized, where Fluctuations

Models

€ X /d? (flux) x (force) ~ Zathi i Z a) Nutshell

References

Landscapes obtained numerically give exponents
near that of real networks.

But: numerical method used matters.

And: Maritan et al. find basic universality classes
are that of Scheidegger, self-similar, and a third
kind of random network ¢!




Theoretical networks

network h d
Non-convergent flow 1 1
Directed random 2/3 1
Undirected random 5/8 5/4

Self-similar 1/2 1
OCN's () 1/2 1
OCN's (I1) 2/3 1
OCN's (l11) 3/5 1

Real rivers 0.5-0.7 1.0-1.2

h = ¢ x a® (Hack’s law).
d = ( o« L{ (stream self-affinity).
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Nutshell

Horton's laws and Tokunaga's law all fit together.

For 2-d networks, these laws are ‘planform’ laws
and ignore slope.

Abundant scaling relations can be derived.

Can take R,,, R,, and d as three independent
parameters necessary to describe all 2-d
branching networks.

For scaling laws, only h = InR,/InR,, and d are
needed.

Laws can be extended nicely to laws of
distributions.

Numerous models of branching network evolution

exist: nothing rock solid yet ...?
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