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Stories—The Fraction Assassin:
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Law and Order, Special Science Edition: Truthicide
Department
“In the scientific integrity system known as peer
review, the people are represented by two highly
overlapping yet equally important groups: the
independent scientists who review papers and the
scientists who punish those who publish garbage. This
is one of their stories.”
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Animal power

Fundamental biological and ecological constraint:

𝑃 = 𝑐 𝑀 𝛼

𝑃 = basal metabolic rate

𝑀 = organismal body mass
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𝑃 = 𝑐 𝑀 𝛼

Prefactor 𝑐 depends on body plan and body
temperature:

Birds 39–41 ∘𝐶
Eutherian Mammals 36–38 ∘𝐶

Marsupials 34–36 ∘𝐶
Monotremes 30–31 ∘𝐶
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What one might expect:

𝛼 = 2/3 because …
 Dimensional analysis suggests

an energy balance surface law:

𝑃 ∝ 𝑆 ∝ 𝑉 2/3 ∝ 𝑀 2/3

 Assumes isometric scaling (not quite the spherical
cow).

 Lognormal fluctuations:
Gaussian fluctuations in log10𝑃 around

log10𝑐𝑀𝛼.
 Stefan-Boltzmann law for radiated energy:

d𝐸
d𝑡 = 𝜎𝜀𝑆𝑇 4 ∝ 𝑆
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The prevailing belief of the Church of
Quarterology:

𝛼 = 3/4

𝑃 ∝ 𝑀 3/4

Huh?
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The prevailing belief of the Church of
Quarterology:

Most obvious concern:

3/4 − 2/3 = 1/12

 An exponent higher than 2/3 points suggests a
fundamental inefficiency in biology.

 Organisms must somehow be running ‘hotter’
than they need to balance heat loss.
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Related putative scalings:

Wait! There’s more!:
 number of capillaries ∝ 𝑀 3/4

 time to reproductive maturity ∝ 𝑀 1/4

 heart rate ∝ 𝑀 −1/4

 cross-sectional area of aorta ∝ 𝑀 3/4

 population density ∝ 𝑀 −3/4
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The great ‘law’ of heartbeats:

Assuming:
 Average lifespan ∝ 𝑀𝛽

 Average heart rate ∝ 𝑀−𝛽

 Irrelevant but perhaps 𝛽 = 1/4.

Then:
 Average number of heart beats in a lifespan

≃ (Average lifespan) × (Average heart rate)
∝ 𝑀𝛽−𝛽

∝ 𝑀0

 Number of heartbeats per life time is independent
of organism size!

 ≈ 1.5 billion ….
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From PoCS, the Prequel to CocoNuTs:

we wish to estimate the maximum speed, the relevant prop-
erty is not the basal metabolic rate but rather the maximum
metabolic rate. The order of magnitude of this parameter has
been shown to be roughly constant, too, when scaled to the
mass, with the value

bM � 2� 103 W kg�1 (7)

per unit of working tissue.27,30,31

B. Maximum relative speed

If the maximum relative speed Vmax=L only depends on
the parameters q, r, and bM, dimensional analysis can be
used to deduce its scaling. In terms of the three dimensions
½M�, ½L�; ½T�, the density scales as

q / ½M�½L��3: (8)

Since r is a force (/ ½M�½L�½T��2
) per unit cross-section

(/ ½L�2), it scales as

r / ½M�½L��1½T��2; (9)

and since bM is a power (/ ½M�½L�2½T��3
) per unit mass, it

scales as

bM / ½L�2½T��3: (10)

Therefore, since Vmax=L / ½T��1
, we deduce

Vmax=L / bMq=r: (11)

In order to make a quantitative estimate, let us go a step
further than dimensional analysis. First, consider running and
swimming of animals beyond the micro-organism range. At
zero order, both means of locomotion can be considered as a
cyclic process (of frequency f) in which an organism of length
L moves by one “step” of length �L during each cycle, by
contracting muscles. Consider an organism of cross-section S
and length L:

• its mass is M � qSL,
• moving by one step of length �L by applying the force
�rS requires the energy per unit mass w � rSL=M � r=q,

• since f steps per second consume the energy fw per unit
mass, which must be smaller than bM, the maximum step
rate is fmax � bM=w � bMq=r.

The maximum speed equals the step length �L times the
maximum step rate fmax, whence

Vmax=L � fmax � bMq=r: (12)

Substituting Eqs. (1), (2), and (7) into Eq. (12) yields

Vmax=L � 10 s�1; (13)

which is the large-scale relation mentioned in the
Introduction.

Consider now micro-organisms. They move by rotating or
undulating flagella, cilia, or pili, which are operated by mo-
lecular motors as are the muscles of larger organisms, even
though the number of motors is much smaller for micro-
organisms. In this case, it is more enlightening to consider

the microscopic level. During one period of rotation or undu-
lation,23,32 a micro-organism of length L moves along a dis-
tance �L using energy �W0 [given in Eq. (3)] per molecular
motor. With f cycles per second, the power spent is �fW0.
For a motor of size �a0 given in Eq. (4) and mass �qa3

0, the
power cannot exceed the maximum metabolic rate �bMqa3

0.
This yields f � bMqa3

0=W0, whence

Vmax=L � bMqa3
0=W0: (14)

With n motors, both the numerator and the denominator of
Eq. (14) are multiplied by n, which does not change the
result. Since from Eq. (6) r � W0=a3

0, Eq. (14) is equivalent
to Eq. (12).

Hence, both micro-organisms and larger animals should
have a similar maximum relative speed for running and
swimming, given by Eqs. (12)–(13), in agreement with the
data plotted in Fig. 1.

IV. CONCLUDING REMARKS

There are two exceptions to the scaling derived above: fly-
ing species and very large organisms.

Flying is outside the scope of our simplified model
because in that case the muscles essentially govern wing
flapping, and this frequency does not yield the total relative
speed of the organism. In addition, air drag represents the
dominant constraint at large flying speeds.4

Consider now large running and swimming organisms, for
which Vmax=L tends to decrease (Fig. 1), even though the
data do not lie below one order of magnitude of the scaling
(13) except for the largest animal. Several effects become
important at high speeds, such as friction and excess heat
production. However, Fig. 1 suggests a similar trend for run-
ning and swimming, which points to a more fundamental li-
mitation, independent of the surrounding medium.

Let us consider an organism of cross-section S and length
L, as in Sec. III B, and approximate the locomotion as a peri-
odic motion of legs (for running) or tail (for swimming) of
length �L. The maximum frequency is constrained not only
by the power available, as considered in Sec. III B, but also
by the maximum angular acceleration that muscles can pro-
vide. With the torque C � rSL and moment of inertia
I � ML2 � qSL3, the angular acceleration d2h=dt2 � C=I is
constrained by

d2h=dt2 � r=ðqL2Þ: (15)

Integrating Eq. (15) twice yields the order of magnitude of
the time for the appendage to be accelerated up to a fixed
angle h:

t � Lðqh=rÞ1=2: (16)

Setting h � 1 in Eq. (16) yields the frequency f �
1=t � ðr=qÞ1=2=L and therefore the upper limit of the maxi-
mum speed

Vmax � ðr=qÞ1=2: (17)

Hence, the value of Vmax=L in Eq. (12) can only hold for

L � ðr=qÞ1=2=ðbMq=rÞ ¼ ðr=qÞ3=2=bM: (18)
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“How fast do living organisms move:
Maximum speeds from bacteria to
elephants and whales”
Meyer-Vernet and Rospars,
American Journal of Physics, 83, 719–722,
2015. [35]

range goes from mites to the African bush elephant for run-
ning and from micrometer-sized bacteria to whales for swim-
ming. Almost all the data lie in the range 1 < Vmax=L < 100.
This range is remarkably narrow compared to the 1020-fold
variation in body mass and confirms the striking constancy
of the maximum relative speed first noted by Bonner.9 The
human world records for running and swimming are plotted
as asterisks (red and blue, respectively). Both lie in the lower
range of animal running and swimming relative speeds,
respectively, illustrating the low rank of human beings in the
animal world for sprinting and swimming. Nevertheless,
these records still lie within an order of magnitude of the
scaling Vmax=L ¼ 10 s"1.

Figure 1 also suggests that the maximum speed tends to
level-off for large masses,4 a question that we shall discuss
in Sec. IV. We have not plotted flying speeds, which follow
a different scaling law (see Sec. IV).4

III. ESTIMATION OF MAXIMUM SPEED

In order to propose a basic interpretation of the observed
scaling, let us consider the three universal properties of
living species which constrain their maximum speed of loco-
motion: mass density q, applied force per unit cross-
sectional area r, and maximum power per unit mass bM

(maximum metabolic rate).

A. Three ubiquitous properties of living species

First, the mass density of organisms is roughly that of
liquid water, on which life on Earth is based

q ’ 103 kg m"3: (1)

Second, the applied force per unit cross-sectional area of
tissue6,17 is of order of magnitude

r # 2$ 105 Nm"2; (2)

from micro-organisms to the largest animals.18 This is an
example of the rule dating back to Galileo that the strength
of an object is proportional to its cross-section. Here, Eq. (2)
is not the resistance to fracture, the so-called tensile strength,
but the average active tension applied by organisms for their
locomotion. This tension has a similar value for all organ-
isms because it is based on biological molecular motors of

similar basic properties. Biological motors are molecules
converting chemical energy into mechanical energy via a
conformational change in their molecular structure.19 This
3-dimensional structure is held together by non-covalent
bonds, with the typical free energy

W0 # 10 kBT; (3)

which prevents their destruction by thermal agitation, and
their typical size is20

a0 # e2=4p!0W0 # 6 nm; (4)

despite the complexity of electrostatic interactions within
large molecules.21 Basically, a molecular motor uses an
energy #W0 for moving by one “step” via a change in 3-D
structure, so that the “step” length is #a0. The elementary
force is thus

F0 # W0=a0 # 7 pN (5)

over an equivalent cross-section area whose order of magni-
tude is a2

0, so that the force per unit cross-section area is

r # F0=a2
0 # W0=a3

0: (6)

Substituting Eqs. (3) and (4) into Eq. (6) yields Eq. (2).
This order of magnitude holds for muscles of animals,

which are made of filaments containing hundreds of elemen-
tary motors (myosin), as well as for the moving appendages
of micro-organisms.18,22,23

Third, consider the power available. Transport of heat and
nutrients takes place across surfaces, which are expected to
scale as the square of size, and thus to vary with body mass
as M2=3; therefore, the energy consumption rate of living
beings (the so-called “metabolic rate”) per unit mass is
expected to scale as M2=3=M ¼ M"1=3. Reality is more com-
plicated because body shape and structure change with size,
so that different scalings are observed24 with an exponent
closer to "1=4 than to "1=3. After decades-long controver-
sies,25,26 it has been shown, albeit rarely appreciated in the
physics community, that the basal metabolic rate per unit
mass remains roughly constant across life forms.27,28 More
precisely, for the vast majority of organisms it remains
within a 30-fold range,29 which is remarkably narrow com-
pared with the #1020-fold body mass range concerned. Since

Fig. 1. Maximum relative speed versus body mass for 202 running species (157 mammals plotted in magenta and 45 non-mammals plotted in green), 127
swimming species and 91 micro-organisms (plotted in blue). The sources of the data are given in Ref. 16. The solid line is the maximum relative speed
[Eq. (13)] estimated in Sec. III. The human world records are plotted as asterisks (upper for running and lower for swimming). Some examples of organisms of
various masses are sketched in black (drawings by François Meyer).
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range goes from mites to the African bush elephant for run-
ning and from micrometer-sized bacteria to whales for swim-
ming. Almost all the data lie in the range 1 < Vmax=L < 100.
This range is remarkably narrow compared to the 1020-fold
variation in body mass and confirms the striking constancy
of the maximum relative speed first noted by Bonner.9 The
human world records for running and swimming are plotted
as asterisks (red and blue, respectively). Both lie in the lower
range of animal running and swimming relative speeds,
respectively, illustrating the low rank of human beings in the
animal world for sprinting and swimming. Nevertheless,
these records still lie within an order of magnitude of the
scaling Vmax=L ¼ 10 s"1.

Figure 1 also suggests that the maximum speed tends to
level-off for large masses,4 a question that we shall discuss
in Sec. IV. We have not plotted flying speeds, which follow
a different scaling law (see Sec. IV).4

III. ESTIMATION OF MAXIMUM SPEED

In order to propose a basic interpretation of the observed
scaling, let us consider the three universal properties of
living species which constrain their maximum speed of loco-
motion: mass density q, applied force per unit cross-
sectional area r, and maximum power per unit mass bM

(maximum metabolic rate).

A. Three ubiquitous properties of living species

First, the mass density of organisms is roughly that of
liquid water, on which life on Earth is based

q ’ 103 kg m"3: (1)

Second, the applied force per unit cross-sectional area of
tissue6,17 is of order of magnitude

r # 2$ 105 Nm"2; (2)

from micro-organisms to the largest animals.18 This is an
example of the rule dating back to Galileo that the strength
of an object is proportional to its cross-section. Here, Eq. (2)
is not the resistance to fracture, the so-called tensile strength,
but the average active tension applied by organisms for their
locomotion. This tension has a similar value for all organ-
isms because it is based on biological molecular motors of

similar basic properties. Biological motors are molecules
converting chemical energy into mechanical energy via a
conformational change in their molecular structure.19 This
3-dimensional structure is held together by non-covalent
bonds, with the typical free energy

W0 # 10 kBT; (3)

which prevents their destruction by thermal agitation, and
their typical size is20

a0 # e2=4p!0W0 # 6 nm; (4)

despite the complexity of electrostatic interactions within
large molecules.21 Basically, a molecular motor uses an
energy #W0 for moving by one “step” via a change in 3-D
structure, so that the “step” length is #a0. The elementary
force is thus

F0 # W0=a0 # 7 pN (5)

over an equivalent cross-section area whose order of magni-
tude is a2

0, so that the force per unit cross-section area is

r # F0=a2
0 # W0=a3

0: (6)

Substituting Eqs. (3) and (4) into Eq. (6) yields Eq. (2).
This order of magnitude holds for muscles of animals,

which are made of filaments containing hundreds of elemen-
tary motors (myosin), as well as for the moving appendages
of micro-organisms.18,22,23

Third, consider the power available. Transport of heat and
nutrients takes place across surfaces, which are expected to
scale as the square of size, and thus to vary with body mass
as M2=3; therefore, the energy consumption rate of living
beings (the so-called “metabolic rate”) per unit mass is
expected to scale as M2=3=M ¼ M"1=3. Reality is more com-
plicated because body shape and structure change with size,
so that different scalings are observed24 with an exponent
closer to "1=4 than to "1=3. After decades-long controver-
sies,25,26 it has been shown, albeit rarely appreciated in the
physics community, that the basal metabolic rate per unit
mass remains roughly constant across life forms.27,28 More
precisely, for the vast majority of organisms it remains
within a 30-fold range,29 which is remarkably narrow com-
pared with the #1020-fold body mass range concerned. Since

Fig. 1. Maximum relative speed versus body mass for 202 running species (157 mammals plotted in magenta and 45 non-mammals plotted in green), 127
swimming species and 91 micro-organisms (plotted in blue). The sources of the data are given in Ref. 16. The solid line is the maximum relative speed
[Eq. (13)] estimated in Sec. III. The human world records are plotted as asterisks (upper for running and lower for swimming). Some examples of organisms of
various masses are sketched in black (drawings by François Meyer).
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Movement is one of the most fundamental processes of life. 
The individual survival of mobile organisms depends 
on their ability to reach resources and mating partners, 

escape predators, and switch between habitat patches or breed-
ing and wintering grounds. By creating and sustaining individual 
home ranges1 and meta-communities2, movement also profoundly 
affects the ability of animals to cope with changes in land use and in 
climate3. Additionally, movement determines encounter rates and 
thus the strength of species interactions4, which is an important 
factor influencing ecosystem stability5. Accordingly, a generalized 
and predictive understanding of animal movement is crucial6,7.

A fundamental constraint on movement is maximum speed. 
The realized movement depends on ecological factors such as land-
scape structure, habitat quality or sociality, but the range within 
which this realized movement occurs meets its upper limit at max-
imum movement speed. Similar to many physiological and eco-
logical parameters, movement speed of animals is often thought to 
follow a power-law relationship with body mass8–10. However, sci-
entists have always struggled with the fact that, in running animals, 
the largest are not the fastest11–14. In nature, the fastest running or 
swimming animals such as cheetahs or marlins are of intermediate 
size, indicating that a hump-shaped pattern may be more realis-
tic. There have been numerous attempts to describe this phenom-
enon11–13,15,16. Although biomechanical and morphological models 
have been tailored to explain this within taxonomic groups14,16–18, a 
general mechanistic model predicting the large-scale pattern (over 
the full body-mass range) across all taxonomic groups and ecosys-
tem types is still lacking. Here, we fill this void with a maximum-
speed model based on the concept that animals are limited in their 
time for maximum acceleration because of restrictions on the 
quickly available energy. Consequently, acceleration time becomes 
the critical factor determining the maximum speed of animals. 
In the following, we first develop the maximum-speed model (in 
equations that are illustrated in the conceptual Fig.  1), test the 
model predictions employing a global database and eventually 
illustrate its applications to advance a more general understanding 
of animal movement.

Results
Model development. Consistent with prior models8,10, we start 
with a power-law scaling of theoretical maximum speed vmax(theor) of 
animals with body mass M:

=v aM (1)b
max(theor)

During acceleration, the speed of an animal over time t  
saturates19–21 (Fig.  1a, solid lines) approaching vmax(theor) (Fig.  1a, 
dotted lines):

= − −v t v( ) (1 e ) (2)kt
max(theor)

The acceleration constant k describes how fast an animal 
reaches vmax(theor). In analogy to Newton’s second law, the accelera-
tion k should scale relative to the ratio between maximum force, 
F, and body mass, M: that is, k ~ F/M. Knowing that maximum 
muscle force roughly scales with body mass as F ~ Md, this yields a 
general power-law scaling of k with body mass M:

= −k cM (3)d 1

with constants c and d. As the allometric exponent d of the muscle 
force falls within the range 0.75 to 0.94 (refs. 14,22,23), the overall 
exponent (d −​ 1) should be negative, implying that larger animals 
need more time to accelerate to the same speed than smaller ones 
(see conceptual Fig.  1a; colour code exemplifies four animals of 
different size). Note that this general scaling relationship also 
allows for the special cases of a constant acceleration across species 
or a linear relationship with body mass.

Whereas prolonged high speeds are related to the maximum 
aerobic metabolism, maximum burst speeds are linked to anaero-
bic capacity24,25. For maximum aerobic speed, ‘slow twitch’ fibres 
are needed, which are highly efficient at using oxygen for gener-
ating adenosine triphosphate (ATP) to fuel muscle contractions. 
Thus, they produce energy more slowly but for a long period of 
time before they become fatigued, and they allow for continuous, 

A general scaling law reveals why the largest 
animals are not the fastest
Myriam R. Hirt1,2*, Walter Jetz1,3,4, Björn C. Rall1,2 and Ulrich Brose1,2

Speed is the fundamental constraint on animal movement, yet there is no general consensus on the determinants of maxi-
mum speed itself. Here, we provide a general scaling model of maximum speed with body mass, which holds across locomo-
tion modes, ecosystem types and taxonomic groups. In contrast to traditional power-law scaling, we predict a hump-shaped 
relationship resulting from a finite acceleration time for animals, which explains why the largest animals are not the fastest.  
This model is strongly supported by extensive empirical data (474 species, with body masses ranging from 30 μ​g to 
100 tonnes) from terrestrial as well as aquatic ecosystems. Our approach unravels a fundamental constraint on the upper 
limit of animal movement, thus enabling a better understanding of realized movement patterns in nature and their multifold 
ecological consequences.

Nature Ecology & Evolution | www.nature.com/natecolevol

“A general scaling law reveals why the largest
animals are not the fastest”
Hirt et al.,
Nature Ecology & Evolution, 1, 1116, 2017. [23]
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from 3 ×  10−8 kg to 108,400 kg. Statistical comparison amongst 
multiple models (see Methods) shows that the time-dependent 
maximum-speed model is the most adequate (see Supplementary 
Table 3). Our model (Fig. 2, parameter values in Supplementary 
Table 4) shows that the initial power-law increase of speed with 
body mass is similar for running and flying animals (b =  0.26 
and 0.24, respectively). However, flying animals are nearly six 
times as fast as running ones (a =  143 and 26, respectively). For 
swimming animals, the power-law increase in speed is steeper 
(b =  0.36, Fig. 2a). This is because water is 800 times as dense and 
60 times as viscous as air30 (in which both flying and running 
animals move). Small aquatic animals are slower than running 
animals of the same body mass, whereas larger species approach 
a similar speed to that of their running equivalents. This implies 
that in water, body mass brings a greater benefit in gaining speed. 
The second exponent is lower for flying animals (i = − 0.72) than 
for running (i =  − 0.6) and swimming ones (i =  − 0.56). Future 
research will need to disentangle the relative importance of 
anaerobic and musculoskeletal constraints on movement speed 
by measuring muscle force, muscle mass, body mass and maxi-
mum acceleration for the same species to narrow down this large 
range of possible exponents. Furthermore, this may allow us to 
address the systematic differences in the exponent i between the 
locomotion modes as well as potential morphological side effects 

(for example quadrupedal versus bipedal running, or soaring ver-
sus flapping flight).

Although the model provides strikingly strong fits with 
observations (R2 =  0.893), some unexplained variation remains. 
This might partially be explained by the fact that our data prob-
ably include not only maximum anaerobic speeds but also some 
slightly slower maximum aerobic speeds. Moreover, we assessed 
the robustness of our model by exploring this residual variation 
with respect to taxonomy (arthropods, birds, fish, mammals, mol-
luscs, reptiles), primary diet (carnivore, herbivore, omnivore), 
thermoregulation (ectotherm, endotherm) and locomotion mode 
(flying, running, swimming). As taxonomy and thermoregulation 
are highly correlated, we made a first model without taxonomy and 
a second model without thermoregulation and compared them by 
their Bayesian information criterion (BIC) values (see Methods 
for details). According to this, the model including thermoregu-
lation instead of taxonomy is the most adequate (∆ BIC =  27.37). 
In this model, the differences between the diet types were not 
significant. In contrast, combinations of locomotion mode with 
thermoregulation exhibited significant differences (Fig. 3). In fly-
ing and running animals, endotherms generally tend to be faster 
than ectotherms (Fig.  3a,b). Metabolic constraints may enable 
endotherms to have higher activity levels than ectotherms at the 
low to intermediate temperatures most commonly encountered 
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from 3 ×  10−8 kg to 108,400 kg. Statistical comparison amongst 
multiple models (see Methods) shows that the time-dependent 
maximum-speed model is the most adequate (see Supplementary 
Table 3). Our model (Fig. 2, parameter values in Supplementary 
Table 4) shows that the initial power-law increase of speed with 
body mass is similar for running and flying animals (b =  0.26 
and 0.24, respectively). However, flying animals are nearly six 
times as fast as running ones (a =  143 and 26, respectively). For 
swimming animals, the power-law increase in speed is steeper 
(b =  0.36, Fig. 2a). This is because water is 800 times as dense and 
60 times as viscous as air30 (in which both flying and running 
animals move). Small aquatic animals are slower than running 
animals of the same body mass, whereas larger species approach 
a similar speed to that of their running equivalents. This implies 
that in water, body mass brings a greater benefit in gaining speed. 
The second exponent is lower for flying animals (i = − 0.72) than 
for running (i =  − 0.6) and swimming ones (i =  − 0.56). Future 
research will need to disentangle the relative importance of 
anaerobic and musculoskeletal constraints on movement speed 
by measuring muscle force, muscle mass, body mass and maxi-
mum acceleration for the same species to narrow down this large 
range of possible exponents. Furthermore, this may allow us to 
address the systematic differences in the exponent i between the 
locomotion modes as well as potential morphological side effects 

(for example quadrupedal versus bipedal running, or soaring ver-
sus flapping flight).

Although the model provides strikingly strong fits with 
observations (R2 =  0.893), some unexplained variation remains. 
This might partially be explained by the fact that our data prob-
ably include not only maximum anaerobic speeds but also some 
slightly slower maximum aerobic speeds. Moreover, we assessed 
the robustness of our model by exploring this residual variation 
with respect to taxonomy (arthropods, birds, fish, mammals, mol-
luscs, reptiles), primary diet (carnivore, herbivore, omnivore), 
thermoregulation (ectotherm, endotherm) and locomotion mode 
(flying, running, swimming). As taxonomy and thermoregulation 
are highly correlated, we made a first model without taxonomy and 
a second model without thermoregulation and compared them by 
their Bayesian information criterion (BIC) values (see Methods 
for details). According to this, the model including thermoregu-
lation instead of taxonomy is the most adequate (∆ BIC =  27.37). 
In this model, the differences between the diet types were not 
significant. In contrast, combinations of locomotion mode with 
thermoregulation exhibited significant differences (Fig. 3). In fly-
ing and running animals, endotherms generally tend to be faster 
than ectotherms (Fig.  3a,b). Metabolic constraints may enable 
endotherms to have higher activity levels than ectotherms at the 
low to intermediate temperatures most commonly encountered 
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Movement is one of the most fundamental processes of life. 
The individual survival of mobile organisms depends 
on their ability to reach resources and mating partners, 

escape predators, and switch between habitat patches or breed-
ing and wintering grounds. By creating and sustaining individual 
home ranges1 and meta-communities2, movement also profoundly 
affects the ability of animals to cope with changes in land use and in 
climate3. Additionally, movement determines encounter rates and 
thus the strength of species interactions4, which is an important 
factor influencing ecosystem stability5. Accordingly, a generalized 
and predictive understanding of animal movement is crucial6,7.

A fundamental constraint on movement is maximum speed. 
The realized movement depends on ecological factors such as land-
scape structure, habitat quality or sociality, but the range within 
which this realized movement occurs meets its upper limit at max-
imum movement speed. Similar to many physiological and eco-
logical parameters, movement speed of animals is often thought to 
follow a power-law relationship with body mass8–10. However, sci-
entists have always struggled with the fact that, in running animals, 
the largest are not the fastest11–14. In nature, the fastest running or 
swimming animals such as cheetahs or marlins are of intermediate 
size, indicating that a hump-shaped pattern may be more realis-
tic. There have been numerous attempts to describe this phenom-
enon11–13,15,16. Although biomechanical and morphological models 
have been tailored to explain this within taxonomic groups14,16–18, a 
general mechanistic model predicting the large-scale pattern (over 
the full body-mass range) across all taxonomic groups and ecosys-
tem types is still lacking. Here, we fill this void with a maximum-
speed model based on the concept that animals are limited in their 
time for maximum acceleration because of restrictions on the 
quickly available energy. Consequently, acceleration time becomes 
the critical factor determining the maximum speed of animals. 
In the following, we first develop the maximum-speed model (in 
equations that are illustrated in the conceptual Fig.  1), test the 
model predictions employing a global database and eventually 
illustrate its applications to advance a more general understanding 
of animal movement.

Results
Model development. Consistent with prior models8,10, we start 
with a power-law scaling of theoretical maximum speed vmax(theor) of 
animals with body mass M:

=v aM (1)b
max(theor)

During acceleration, the speed of an animal over time t  
saturates19–21 (Fig.  1a, solid lines) approaching vmax(theor) (Fig.  1a, 
dotted lines):

= − −v t v( ) (1 e ) (2)kt
max(theor)

The acceleration constant k describes how fast an animal 
reaches vmax(theor). In analogy to Newton’s second law, the accelera-
tion k should scale relative to the ratio between maximum force, 
F, and body mass, M: that is, k ~ F/M. Knowing that maximum 
muscle force roughly scales with body mass as F ~ Md, this yields a 
general power-law scaling of k with body mass M:

= −k cM (3)d 1

with constants c and d. As the allometric exponent d of the muscle 
force falls within the range 0.75 to 0.94 (refs. 14,22,23), the overall 
exponent (d −​ 1) should be negative, implying that larger animals 
need more time to accelerate to the same speed than smaller ones 
(see conceptual Fig.  1a; colour code exemplifies four animals of 
different size). Note that this general scaling relationship also 
allows for the special cases of a constant acceleration across species 
or a linear relationship with body mass.

Whereas prolonged high speeds are related to the maximum 
aerobic metabolism, maximum burst speeds are linked to anaero-
bic capacity24,25. For maximum aerobic speed, ‘slow twitch’ fibres 
are needed, which are highly efficient at using oxygen for gener-
ating adenosine triphosphate (ATP) to fuel muscle contractions. 
Thus, they produce energy more slowly but for a long period of 
time before they become fatigued, and they allow for continuous, 
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extended muscle contractions. In contrast, maximum anaerobic 
speed is fuelled by a special type of ‘fast twitch’ fibres, which use 
ATP from the ATP storage of the fibre until it is depleted. Thus, 
they produce energy more quickly but also become fatigued very 
rapidly and only allow for short bursts of speed. As our maximum-
speed model is based on this maximum anaerobic capacity, the 
critical time τ available for maximum acceleration is limited by 
the amount of fast twitch fibre and their energy storage capacity. 
This storage capacity is correlated with the amount of muscle tissue 
mass, which is directly linked to body mass. Thus, similar to the 
muscle tissue mass, τ should follow a power law:

τ= fM (4)g

where the allometric exponent g should fall in the range 0.76 
to 1.27 documented for the allometric scaling of muscle tissue 
mass26–29. This power law implies that larger animals should have 
more time for acceleration (dashed lines in conceptual Fig. 1b, c). 
However, the power-law relationship of the critical time τ in our 
model allows for a negative or positive scaling of energy availabil-
ity with body mass as well as the lack of a relationship (constant 
energy availability across body masses (f =  0)). Although we have 
included power-law relationships of k and τ (equations (3) and (4)) 
in our model, these scaling assumptions are not strictly necessary. 
Instead, our only critical assumptions are that acceleration over 
time follows a saturation curve (equation (1)) and that the time 
available for anaerobic acceleration is limited.

Within the critical time τ, after which the energy available for 
acceleration is depleted, the animal reaches its realized maximum 

speed vmax (points in Fig. 1c), which may be lower than the theo-
retical maximum speed (Fig. 1a, dotted lines). Combining equa-
tions (1)–(4) with t =  τ yields = − − − +

v aM (1 e )b cfM
max

d g1
 which  

simplifies to

= − −v aM (1 e ) (5)b hM
max

i

where i =  d −  1 +  g and h =  cf. This equation predicts a hump-
shaped relationship between realized maximum speed and body 
mass (conceptual Fig. 1d).

The limiting term − −1 e hMi
 represents the fraction of the  

theoretical maximum speed that is realized and is defined on  
the interval]0;1[. For low body masses, this term is close to  
1 and the realized maximum speed approximates the theoreti-
cal maximum. With increasing body masses, this term decreases  
and reduces the realized maximum speed. Put simply, small 
to intermediately sized animals accelerate quickly and have  
enough time to reach their theoretical maximum speed, whereas 
large animals are limited in acceleration time and run out of 
readily mobilizable energy before being able to reach their 
theoretically possible maximum. Therefore, they have a lower  
realized maximum speed than predicted by a power-law scaling 
relationship.

Test of model predictions by empirical database. To test the 
model predictions (Fig. 1d), we compiled literature data on maxi-
mum speeds of running, flying and swimming animals includ-
ing not only mammals, fish and bird species but also reptiles, 
molluscs and arthropods. Body masses of these species range 
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extended muscle contractions. In contrast, maximum anaerobic 
speed is fuelled by a special type of ‘fast twitch’ fibres, which use 
ATP from the ATP storage of the fibre until it is depleted. Thus, 
they produce energy more quickly but also become fatigued very 
rapidly and only allow for short bursts of speed. As our maximum-
speed model is based on this maximum anaerobic capacity, the 
critical time τ available for maximum acceleration is limited by 
the amount of fast twitch fibre and their energy storage capacity. 
This storage capacity is correlated with the amount of muscle tissue 
mass, which is directly linked to body mass. Thus, similar to the 
muscle tissue mass, τ should follow a power law:

τ= fM (4)g

where the allometric exponent g should fall in the range 0.76 
to 1.27 documented for the allometric scaling of muscle tissue 
mass26–29. This power law implies that larger animals should have 
more time for acceleration (dashed lines in conceptual Fig. 1b, c). 
However, the power-law relationship of the critical time τ in our 
model allows for a negative or positive scaling of energy availabil-
ity with body mass as well as the lack of a relationship (constant 
energy availability across body masses (f =  0)). Although we have 
included power-law relationships of k and τ (equations (3) and (4)) 
in our model, these scaling assumptions are not strictly necessary. 
Instead, our only critical assumptions are that acceleration over 
time follows a saturation curve (equation (1)) and that the time 
available for anaerobic acceleration is limited.

Within the critical time τ, after which the energy available for 
acceleration is depleted, the animal reaches its realized maximum 

speed vmax (points in Fig. 1c), which may be lower than the theo-
retical maximum speed (Fig. 1a, dotted lines). Combining equa-
tions (1)–(4) with t =  τ yields = − − − +

v aM (1 e )b cfM
max

d g1
 which  

simplifies to

= − −v aM (1 e ) (5)b hM
max

i

where i =  d −  1 +  g and h =  cf. This equation predicts a hump-
shaped relationship between realized maximum speed and body 
mass (conceptual Fig. 1d).

The limiting term − −1 e hMi
 represents the fraction of the  

theoretical maximum speed that is realized and is defined on  
the interval]0;1[. For low body masses, this term is close to  
1 and the realized maximum speed approximates the theoreti-
cal maximum. With increasing body masses, this term decreases  
and reduces the realized maximum speed. Put simply, small 
to intermediately sized animals accelerate quickly and have  
enough time to reach their theoretical maximum speed, whereas 
large animals are limited in acceleration time and run out of 
readily mobilizable energy before being able to reach their 
theoretically possible maximum. Therefore, they have a lower  
realized maximum speed than predicted by a power-law scaling 
relationship.

Test of model predictions by empirical database. To test the 
model predictions (Fig. 1d), we compiled literature data on maxi-
mum speeds of running, flying and swimming animals includ-
ing not only mammals, fish and bird species but also reptiles, 
molluscs and arthropods. Body masses of these species range 
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speed are currently lacking, but our model offers a framework to 
include temperature effects formally in future work.

In ecological research, our maximum-speed model provides 
a mechanistic understanding of the upper limit to animal move-
ment patterns during migration, dispersal or bridging habitat 
patches. The travelling speed characterizing these movements 
is the fraction of maximum speed that can be maintained over  
longer periods of time. It would be interesting to analyse how 
travel speed scales with body mass on the large body-mass 
scale and whether it also follows a hump-shaped pattern. If so, 
animals would use an approximately fixed percentage of their  
maximum speed during travel. If, however, travel speed follows 

a power-law relationship with body mass, large and small ani-
mals would use a higher proportion of their maximum speed 
during travel than intermediately sized animals. This would 
also affect different measurements of animal space use as well as 
migration and dispersal distances. Although home ranges1,41 and 
day ranges42 of animals have been shown to follow power-law 
relationships with body mass, migration distances of flying ani-
mals, for example, follow a curvilinear relationship with body 
mass43. Our new results call for mechanistic analyses of how the 
hump-shaped scaling pattern of maximum speed could poten-
tially affect other movement parameters.

The integration of our model as a species-specific scale (“what 
is physiologically possible”) with research on how this fraction 
is modified by species traits and environmental parameters such  
as landscape structure, resource availability and temperature 
(“what is ecologically realized in nature”) could help to provide 
a mechanistic understanding unifying physiological and ecologi-
cal constraints on animal movement. In addition to generalizing  
our understanding across species traits and current landscape 
characteristics, this integrated approach will aid the prediction  
of how species-specific movement, and subsequently home 
ranges nd meta-communities, may respond to ongoing landscape  
fragmentation and environmental change. Thus, our approach 
may act as a simple and powerful tool for predicting the natu-
ral boundaries of animal movement and help in gaining a more  
unified understanding of the currently assessed movement data 
across taxa and ecosystems6,7.

Methods
Data. We searched for published literature providing data on the maximum speeds 
of running, flying and swimming animals by using the search terms “maximum 
speed”, “escape speed” and “sprint speed”. From this list, we excluded publications 
on (1) vertical speeds (mainly published for birds) to avoid side-effects of 
gravitational acceleration that are not included in our model, or (2) the maxima 
of normal speeds (including also dispersal and migration). This resulted in a data 
set containing 622 data points for 474 species (see Supplementary Table 1 for an 
overview). Our data include laboratory and field studies as well as meta-studies 
(which are mainly field studies but may also include a minor amount of laboratory 
studies). For some data points, the study type could not be ascertained, and they 
were marked as “unclear”. For an overview of the study type of our data, see 
Supplementary Table 2.

Model fitting. We fitted several models to these data: (1) the time-dependent 
maximum-speed model (equation (5)), (2) three polynomial models (simple 
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Figure 4 | Predicting the maximum speed of extinct species with the time-
dependent model. The model prediction (grey line) is fitted to data of extant 
species (grey circles) and extended to higher body masses. Speed data 
for dinosaurs (green triangles) come from detailed morphological model 
calculations (values in Table 1) and were not used to obtain model parameters.

Table 1 | Maximum-speed predictions for extant and extinct flightless birds, and bipedal and quadrupedal dinosaurs

Taxa Body mass (kg) Speed (km h–1)

Power law (95% CI) Morphological  
models

Time-dependent model  
(95% CI)

Flightless birds
Dromaius (extant) 27.2 40.92 (38.58–43.40) 47.88 57.62 (47.65–60.91)
Struthio (extant) 65.3 49.33 (46.27–52.59) 55.44 62.75 (46.71–66.03)
Patagornis (extinct) 45 45.56 (42.83–48.46) 50.40 61.34 (47.39–64.68)
Bipedal dinosaurs
Velociraptor 20 38.32 (36.19–40.58) 38.88 54.56 (46.89–57.82)
Allosaurus 1,400 94.87 (87.09–103.34) 33.84 40.78 (28.93–44.83)
Tyrannosaurus 6,000 129.41 (117.47–142.57) 28.8 27.05 (17.84–31.52)
Quadrupedal dinosaurs
Triceratops 8,478 139.32 (126.11–153.91) 26.4 24.36 (15.70–28.83)
Apatosaurus 27,869 179.59 (161.01–200.31) 12.3 16.75 (9.77–21.09)

Brachiosaurus 78,258 223.85 (199.00–251.80) 17.6 11.99 (6.39–16.04)
Model predictions of a simple power law, morphological models and our time-dependent maximum-speed model are compared (references in Supplementary Table 5). Confidence intervals (95% CI) are 
given for the power law and time-dependent model.
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 Maximum speed increases
with size: 𝑣max = 𝑎𝑀𝑏

 Takes a while to get going:
𝑣(𝑡) = 𝑣max(1 − 𝑒−𝑘𝑡)

 𝑘 ∼ 𝐹max/𝑀 ∼ 𝑐𝑀𝑑−1

Literature: 0.75 ≲ 𝑑 ≲ 0.94
 Acceleration time =

depletion time for anaerobic
energy: 𝜏 ∼ 𝑓𝑀𝑔 Literature:
0.76 ≲ 𝑔 ≲ 1.27

 𝑣max = 𝑎𝑀𝑏 (1 − 𝑒−ℎ𝑀𝑖)

 𝑖 = 𝑑 − 1 + 𝑔 and ℎ = 𝑐𝑓

 Literature search for for maximum speeds of running, flying and
swimming animals.

 Search terms: “maximum speed”, “escape speed” and “sprint speed”.

Note: [35] not cited.
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A theory is born:

1840’s: Sarrus and Rameaux [44] first suggested
𝛼 = 2/3.
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A theory grows:

1883: Rubner [42] found 𝛼 ≃ 2/3.

PoCS
@pocsvox

Optimal Supply
Networks II

Metabolism and
Truthicide

Death by
fractions

Measuring
exponents

River networks

Earlier theories

Geometric
argument

Conclusion

References

.
.
.
.
.

.
19 of 124

Theory meets a different ‘truth’:

1930’s: Brody, Benedict study mammals. [6]
Found 𝛼 ≃ 0.73 (standard).
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Our hero faces a shadowy cabal:

 1932: Kleiber analyzed 13 mammals. [25]

 Found 𝛼 = 0.76 and suggested 𝛼 = 3/4.
 Scaling law of Metabolism became known as

Kleiber’s Law (2011 Wikipedia entry is
embarrassing).

 1961 book: “The Fire of Life. An Introduction to
Animal Energetics”. [26]
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When a cult becomes a religion:

1950/1960: Hemmingsen [20, 21]

Extension to unicellular organisms.
𝛼 = 3/4 assumed true.
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Quarterology spreads throughout the land:
The Cabal assassinates 2/3-scaling:

 1964: Troon, Scotland.

 3rd Symposium on Energy Metabolism.

 𝛼 = 3/4 made official … …29 to zip.

 But the Cabal slipped up by publishing the conference
proceedings …

 “Energy Metabolism; Proceedings of the 3rd
symposium held at Troon, Scotland, May 1964,” Ed. Sir
Kenneth Blaxter [4]
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An unsolved truthicide:

So many questions …
 Did the truth kill a theory? Or did a theory kill the

truth?
 Or was the truth killed by just a lone, lowly

hypothesis?
 Does this go all the way to the top?

To the National Academies of Science?
 Is 2/3-scaling really dead?
 Could 2/3-scaling have faked its own death?
 What kind of people would vote on scientific facts?
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Modern Quarterology, Post Truthicide

 3/4 is held by many to be the one true exponent.

In the Beat of a Heart: Life, Energy, and
the Unity of Nature—by John Whitfield

 But: much controversy …
 See ‘Re-examination of the “3/4-law” of

metabolism’
by the Heretical Unbelievers Dodds, Rothman, and
Weitz [14], and ensuing madness …
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Some data on metabolic rates
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 Heusner’s
data
(1991) [22]

 391
Mammals

 blue line: 2/3
 red line: 3/4.
 (𝐵 = 𝑃 )
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Some data on metabolic rates
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 Bennett and
Harvey’s data
(1987) [3]

 398 birds
 blue line: 2/3
 red line: 3/4.
 (𝐵 = 𝑃 )

 Passerine vs. non-passerine issue …

PoCS
@pocsvox

Optimal Supply
Networks II

Metabolism and
Truthicide

Death by
fractions

Measuring
exponents

River networks

Earlier theories

Geometric
argument

Conclusion

References

.
.
.
.
.

.
28 of 124

Linear regression

Important:
 Ordinary Least Squares (OLS) Linear regression is

only appropriate for analyzing a dataset {(𝑥𝑖, 𝑦𝑖)}
when we know the 𝑥𝑖 are measured without error.

 Here we assume that measurements of mass 𝑀
have less error than measurements of metabolic
rate 𝐵.

 Linear regression assumes Gaussian errors.
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Measuring exponents

More on regression:
If (a) we don’t know what the errors of either variable
are,

or (b) no variable can be considered independent,

then we need to use
Standardized Major Axis Linear Regression. [43, 41]

(aka Reduced Major Axis = RMA.)
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Measuring exponents

For Standardized Major Axis Linear Regression:

slope
SMA

= standard deviation of 𝑦 data
standard deviation of 𝑥 data

 Very simple!
 Minimization of sum of areas of triangles induced

by vertical and horizontal residuals with best fit
line.

 The only linear regression that is Scale invariant.
 Attributed to Nobel Laureate economist Paul

Samuelson, [43] but discovered independently
by others.

 #somuchwin
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Measuring exponents

Relationship to ordinary least squares regression
is simple:

slope
SMA

= 𝑟−1 × slope
OLS 𝑦 on 𝑥

= 𝑟 × slope
OLS 𝑥 on 𝑦

where 𝑟 = standard correlation coefficient:

𝑟 = ∑𝑛
𝑖=1(𝑥𝑖 − ̄𝑥)(𝑦𝑖 − ̄𝑦)

√∑𝑛
𝑖=1(𝑥𝑖 − ̄𝑥)2√∑𝑛

𝑖=1(𝑦𝑖 − ̄𝑦)2

 Groovy upshot: If (1) a paper uses OLS regression
when RMA would be appropriate, and (2) 𝑟 is
reported, we can figure out the RMA slope. [41, 29]
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 Disparity between slopes for 𝑦 on 𝑥 and 𝑥 on 𝑦
regressions is a factor of 𝑟2 (𝑟−2)

 (Rayner uses 𝜌 for 𝑟.)
 Here: 𝑟2 = .4352 = 0.189, and

𝑟−2 = .435−2 = 2.292 = 5.285.
 See also: LaBarbera [29] (who resigned …)
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Heusner’s data, 1991 (391 Mammals)

range of 𝑀 𝑁 ̂𝛼

≤ 0.1 kg 167 0.678 ± 0.038

≤ 1 kg 276 0.662 ± 0.032

≤ 10 kg 357 0.668 ± 0.019

≤ 25 kg 366 0.669 ± 0.018

≤ 35 kg 371 0.675 ± 0.018

≤ 350 kg 389 0.706 ± 0.016

≤ 3670 kg 391 0.710 ± 0.021
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Bennett and Harvey, 1987 (398 birds)
𝑀max 𝑁 ̂𝛼

≤ 0.032 162 0.636 ± 0.103

≤ 0.1 236 0.602 ± 0.060

≤ 0.32 290 0.607 ± 0.039

≤ 1 334 0.652 ± 0.030

≤ 3.2 371 0.655 ± 0.023

≤ 10 391 0.664 ± 0.020

≤ 32 396 0.665 ± 0.019

≤ 100 398 0.664 ± 0.019
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Fluctuations—Things look normal …
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[07−Nov−1999 peter dodds]

 𝑃(𝐵 |𝑀) = 1/𝑀2/3𝑓(𝐵/𝑀2/3)
 Use a Kolmogorov-Smirnov test.
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Hypothesis testing

Test to see if 𝛼′ is consistent with our data {(𝑀𝑖, 𝐵𝑖)}:

𝐻0 ∶ 𝛼 = 𝛼′ and 𝐻1 ∶ 𝛼 ≠ 𝛼′.

 Assume each B𝑖 (now a random variable) is
normally distributed about 𝛼′log10𝑀𝑖 + log10𝑐.

 Follows that the measured 𝛼 for one realization
obeys a 𝑡 distribution with 𝑁 − 2 degrees of
freedom.

 Calculate a 𝑝-value: probability that the measured
𝛼 is as least as different to our hypothesized 𝛼′ as
we observe.

 See, for example, DeGroot and Scherish,
“Probability and Statistics.” [11]
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Revisiting the past—mammals

Full mass range:
𝑁 ̂𝛼 𝑝2/3 𝑝3/4

Kleiber 13 0.738 < 10−6 0.11

Brody 35 0.718 < 10−4 < 10−2

Heusner 391 0.710 < 10−6 < 10−5

Bennett 398 0.664 0.69 < 10−15

and Harvey
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Revisiting the past—mammals

𝑀 ≤ 10 kg:
𝑁 𝛼̂ 𝑝2/3 𝑝3/4

Kleiber 5 0.667 0.99 0.088

Brody 26 0.709 < 10−3 < 10−3

Heusner 357 0.668 0.91 < 10−15

𝑀 ≥ 10 kg:
𝑁 𝛼̂ 𝑝2/3 𝑝3/4

Kleiber 8 0.754 < 10−4 0.66

Brody 9 0.760 < 10−3 0.56

Heusner 34 0.877 < 10−12 < 10−7
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Analysis of residuals

1. Presume an exponent of your choice: 2/3 or 3/4.
2. Fit the prefactor (log10𝑐) and then examine the

residuals:

𝑟𝑖 = log10𝐵𝑖 − (𝛼′log10𝑀𝑖 − log10𝑐).

3. 𝐻0: residuals are uncorrelated
𝐻1: residuals are correlated.

4. Measure the correlations in the residuals and
compute a 𝑝-value.
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Analysis of residuals

We use the spiffing Spearman Rank-Order Correlation
Coefficient

Basic idea:
 Given {(𝑥𝑖, 𝑦𝑖)}, rank the {𝑥𝑖} and {𝑦𝑖} separately

from smallest to largest. Call these ranks 𝑅𝑖 and
𝑆𝑖.

 Now calculate correlation coefficient for ranks, 𝑟𝑠:


𝑟𝑠 = ∑𝑛
𝑖=1(𝑅𝑖 − 𝑅̄)(𝑆𝑖 − ̄𝑆)

√∑𝑛
𝑖=1(𝑅𝑖 − 𝑅̄)2√∑𝑛

𝑖=1(𝑆𝑖 − ̄𝑆)2

 Perfect correlation: 𝑥𝑖’s and 𝑦𝑖’s both increase
monotonically.
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Analysis of residuals

We assume all rank orderings are equally likely:
 𝑟𝑠 is distributed according to a Student’s

𝑡-distribution with 𝑁 − 2 degrees of freedom.
 Excellent feature: Non-parametric—real

distribution of 𝑥’s and 𝑦’s doesn’t matter.
 Bonus: works for non-linear monotonic

relationships as well.
 See Numerical Recipes in C/Fortran which

contains many good things. [39]
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Analysis of residuals—mammals
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(a) 𝑀 < 3.2 kg,
(b) 𝑀 < 10 kg,
(c) 𝑀 < 32 kg,
(d) all

mammals.
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Analysis of residuals—birds
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 p (a) 𝑀 < 0.1 kg,
(b) 𝑀 < 1 kg,
(c) 𝑀 < 10 kg,
(d) all birds.
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Other approaches to measuring exponents:
 Clauset, Shalizi, Newman: “Power-law

distributions in empirical data” [10]
SIAM Review, 2009.

 See Clauset’s page on measuring power law
exponents (code, other goodies).

 See this collection of tweets for related
amusement.
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Impure scaling?:

 So: The exponent 𝛼 = 2/3 works for all birds and
mammals up to 10–30 kg

 For mammals > 10–30 kg, maybe we have a new
scaling regime

 Possible connection?: Economos (1983)—limb
length break in scaling around 20 kg [15]

 But see later: non-isometric growth leads to lower
metabolic scaling. Oops.
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The widening gyre:

Now we’re really confused (empirically):
 White and Seymour, 2005: unhappy with large

herbivore measurements [56]. Pro 2/3: Find
𝛼 ≃ 0.686 ± 0.014.

 Glazier, BioScience (2006) [18]: “The 3/4-Power Law
Is Not Universal: Evolution of Isometric,
Ontogenetic Metabolic Scaling in Pelagic Animals.”

 Glazier, Biol. Rev. (2005) [17]: “Beyond the
3/4-power law’: variation in the intra- and
interspecific scaling of metabolic rate in animals.”

 Savage et al., PLoS Biology (2008) [45] “Sizing up
allometric scaling theory” Pro 3/4: problems
claimed to be finite-size scaling.
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Somehow, optimal river networks are
connected:

a
L?0

L? Lk = L
a0 ll0Lk0  𝑎 = drainage

basin area
 ℓ = length of

longest (main)
stream

 𝐿 = 𝐿∥ =
longitudinal
length of basin
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Mysterious allometric scaling in river
networks

 1957: J. T. Hack [19]

“Studies of Longitudinal Stream Profiles in Virginia
and Maryland”

ℓ ∼ 𝑎ℎ

ℎ ∼ 0.6
 Anomalous scaling: we would expect ℎ = 1/2 …
 Subsequent studies: 0.5 ≲ ℎ ≲ 0.6
 Another quest to find universality/god …
 A catch: studies done on small scales.
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Large-scale networks:
(1992) Montgomery and Dietrich [36]:

Fig. 1. Without a scale bar it
is almost impossible to de-
termine even the approxi-
mate scale of a topographic
map. The upper two maps
show adjacent drainage ba-
sins in the Oregon Coast
Range and illustrate the ef-
fect of depicting an area of
similar topography at diffier-
ent scales. The map on the
right covers an area four
times as large as, and has
twice the contour interval
of, the map on the left. The
lower two maps depict very
different landscapes, and de-
tailed mapping was done to
resolve the finest scale val- - --
leys, which determine the -
extent, or scale, of landscape
dissection. The map on the
left shows a portion of a/
small badlands area at Perth
Amboy, New Jersey (28)
(scale bar represents 2 m;
contour interval is 0.3 in).
The map on the right shows
a portion of the San Gabriel
Mountains of southern Cal-
ifornia (20) (scale bar repre-
sents 100 m; contour inter-
val is 15 in). Dashed fines on
both lower maps represent
the limit of original map-
ping. The drainage basin outlet on each map is oriented toward the bottom of the page. All four maps
suggest a limit to landscape dissection, defined by the size of the hilislopes, separating valleys. This
apparent limit, however, only corresponds to the extent of valley dissection definable in the field for the
case of the lower two maps.

We collected data from small drainage
basins in a variety of geologic settings that
represent a range in climate and vegetation
(4, 5). We measured the drainage area (A),
basin length (L), and local slope (S) for
locations in convergent topography along
low-order channel networks, at channel
heads, and along unchanneled valleys in
drainage basins where we had mapped the
channel networks in the field (4, 5). Drain-
age area was defined as the area upslope of
the measurement location, basin length was
defined as the length along the main valley
axis to the drainage divide, and local slope
was measured in the field. The structural
relation ofdrainage area to basin length (10)
for our composite data set is

L = 1.78 A49 (1)

E

5
c
U

Drainage area (m2)

where L and A are expressed in meters. This
relation is well approximated by the simple,
isometric relation

L (3 A)05 (2)
Inclusion of reported drainage area and
mainstream length data from larger net-
works (11-15) provides a composite data
set that also is reasonably fit (5) by this
relation. The data span a range of more
than 11 orders of magnitude in basin area,
from unchanneled hillside depressions to
the world's largest rivers (Fig. 2). This
relation suggests that there is a basic geo-
metric similarity between drainage basins
and the smaller basins contained within
them that holds down to the finest scale to
which the landscape is dissected (Fig. 3).
In the field this scale is easily recognized as

Fig. 2. Basin length versus drainage
area for unchanneled valleys, source
areas, and low-order channels mapped
in this study (0) and mainstream
length versus drainage area data report-
ed for large channel networks (0).
Sources of mainstream length data are
given in (5).

Fig. 3. The coherence of the data in Fig. 2 across
11 orders of magnitude indicates a geometric
similarity between small drainage basins and the
larger drainage basins that contain them. Al-
though the variance about the trend in Fig. 2
indicates a range in individual basin shapes, this
general relation apparently characterizes the land-
scape down to the finest scale of convergent
topography.

that ofthe topographically divergent ridges
that separate these fine-scale valleys.
Equation 1 differs, however, from the

relation between the mainstream length
and drainage area first reported by Hack
(11), in which basin area increases as L`.
Many subsequent workers interpreted sim-
ilar relations as indicating that drainage
network planform geometry changes with
increasing scale. Relations between main-
stream length and drainage area also have
been used to infer the fractal dimension of
individual channels and channel networks
(1, 16). Mueller (15), however, reported
that the exponent in the relation of main-
stream length to drainage area is not con-
stant, but decreases from 0.6 to -0.5 with
increasing network size, and Hack (11)
noted that the exponent in this relation
varies for individual drainage networks.
We cannot compare our data more quanti-
tatively with those reported by others be-
cause the mainstream length will diverge
from the basin length in proportion to the
area upslope of the stream head. We sus-
pect that the difference in the relations
derived from our data and those reported
previously reflects variation in the head-
ward extent ofthe stream network depicted
on maps of varying scale (17) as well as
downstream variations in both channel sin-
uosity (14) and drainage density (18). The
general scale independence indicated in
Fig. 2 suggests that landscape dissection
results in an integrated network of valleys
that capture geometrically similar drainage
basins at scales ranging from the largest
rivers to the finest scale valleys. Within this
scale range there appears to be little inher-
ent to the channel network and to the
corresponding shape ofthe drainage area it
captures that provides reference to an ab-
solute scale.

Nonetheless, field studies in semiarid to
humid regions demonstrate that there is a
finite extent to the branching channel net-
work (4, 5, 19-22). Channels do not occupy
the entire landscape; rather, they typically
begin at the foot of an unchanneled valley,
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 Composite data set: includes everything from
unchanneled valleys up to world’s largest rivers.

 Estimated fit:
𝐿 ≃ 1.78𝑎0.49

 Mixture of basin and main stream lengths.
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World’s largest rivers only:
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ℓ
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i) 37 of the world’s biggest basins

h ≃ 0.498

 Data from Leopold (1994) [31, 13]

 Estimate of Hack exponent: ℎ = 0.50 ± 0.06
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Earlier theories (1973–):

Building on the surface area idea:
 McMahon (70’s, 80’s): Elastic Similarity [32, 34]

 Idea is that organismal shapes scale allometrically
with 1/4 powers (like trees …)

 Disastrously, cites Hemmingsen [21] for surface
area data.

 Appears to be true for ungulate legs … [33]

 Metabolism and shape never properly connected.
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the trunk. Then the limb should grow
no longer than icr, where

lcw=C
E |~ d% (3)

and C depends only on the droop angle
9D, which in turn depends only on the
angle at which the limb leaves the
trunk (15). The result may be made
general for a tapered or hollow limb
exactly as was done for the buckling
problem. Comparing Eqs. 1, 2, and 3,
it is apparent that elastic criteria set
length proportional to the % power
of diameter in both the trunk and the
branches.

It should be possible to check the
validity of these results by measuring
the proportions of trees of different
scale. Such a check would be arduous
if it were necessary to know E and p

for each species; fortunately, the ratio
E/p is quite accurately constant in
green woods (16, 17). In Fig. 2, the
trunk diameter 1.525 meters from the
ground is plotted against the total
height for 576 individual trees, repre-

senting nearly every species found in
the United States. The data, taken pri-

marily from the American Forestry
Association's "Social register of big
trees" (18), include specimens both
very slender and very stout, since trees
are eligible for this list according to
their bigness, an index depending on
the sum of their circumference and
height (19). A solid line representing
Eq. 2 is also shown in Fig. 2; it was

calculated for E = 1.05 X 105 kilo-
grams per square meter and p = 6.18 x
102 kilograms per cubic meter (16).

The broken line, which fits near the
center of the data points, has the same
slope as the solid line but represents a
sequence of trees whose height in each
case is only one-fourth of the critical
buckling height. The conclusion seems
to be that the proportions of trees are
limited by elastic criteria, since there
are no data points to the left of the
solid line.

Animal Proportions

Just as trees must assume thicker
proportions with increasing size, so
must animals adjust their shape with
scale. The argument has long been
offered that animals could not remain
geometrically similar from the small to
the large because their limbs, whose
cross-sectional area increases as the
square of characteristic body dimension
L, must then support a weight which
increases as L3 (7). The difficulty with
these arguments based on strength cri-
teria is the inevitable conclusion that
animals may grow no larger than a size
which makes the applied stress equal
to the yield stress of their materials.
Animals larger than this size would
have to increase supporting areas di-
rectly with weight, so that no increases
in height could be tolerated, only in-
creases in width. If yield stress were
the only criterion, an animal with
slender proportions like the bobcat
should be capable of attaining the same
absolute height as the lion. In fact,
it is widely found that some animals
grow larger than others, and animals of

small scale are relatively more slender
than those of large scale (see cover).
Perhaps this transformation occurs, as
in differently sized trees, for reasons
based on elastic rather than strength
criteria.

In the following, we consider com-
parisons between animals of the same
family, so that their shape is grossly
similar. The only change in shape per-
mitted is for lengths to bear a specified
relationship to diameters: all lengths
will be proportional to one another, as
will be all diameters. Each limb, bone,
or muscle will thus have a length I
and diameter d, where length will be
taken as a measurement parallel to the
direction of tension or compression and
diameter will be measured perpendicu-
lar to this direction. Thus, the length
of the trunk is the distance between
shoulder and hip whether the animal
is bipedal or quadrapedal (Fig. 3a,
bottom).
When a quadruped is standing at

rest, the four limbs will be exposed pri-
marily to buckling loads, but the verte-
bral column and its musculature must
withstand bending loads. When the
same animal runs, the situation is sub-
stantially reversed in those phases of
the motion where the limbs are provid-
ing their maximum propulsive effort.
At these moments, the limbs are sup-
porting bending loads, while the ver-
tebral column is receiving an end
thrust and thus a buckling load. The
fact that the loads are dynamic rather
than static is not a consideration: the
maximum deflection of a structure sud-
denly loaded under its own weight is

X lO2
to
I0

01.

10

lol 10'

Body weight (kg)

100

E
-f&

.wI

01 0.1 1.0

Diameter (m)

Fig. 1 (left). Metabolic heat production plotted against body weight on logarithmic scales. The solid line has slope 3/4. The broken
line, which does not fit the data, has slope 2A and represents the way surface area increases with weight for geometrically similar
shapes [adapted from (2)]. Fig. 2 (right). Tree height plotted against trunk base diameter on logarithmic scales for record trees
representing nearly every American species. The trunk proportions are limited by elastic buckling criteria, since no points lie to the
left of- the solid line. Data from (18, 19).
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“Size and shape in biology”
T. McMahon,
Science, 179, 1201–1204, 1973. [32]

just twice the static deflection when the
load is gradually applied (12). The
true instantaneous loading condition for
each of the quasi-cylindrical elements is
thus some complicated sum of buckling,
bending, and torsional loads, but for-
tunately the elastic criteria predict the
same result independently of the type
of gravitational self-loading, namely
that every I should be proportional to
the 2/3 power of the equivalent d.

Rashevsky (20) assumed that the
trunk of an animal was a uniformly
loaded beam, and used the linearized
theory of beam bending to calculate
the same result, that trunk length
should go as diameter to the 23.
Rashevsky's model additionally re-
quired the cross-sectional area of the
animal's limbs to be proportional to
the weight of the trunk, leading to a
different set of rules for determining
limb proportions from those for trunk
proportions. In the present model all
the proportions of an animal would
change with size in the same way. If
W is the total body weight, the weight
of any limb is a specified fraction of
W, and:

W oc Id' (4)
but if P is proportional to d2, then

l cc W¼4; d cc W (5)
Comparative zoologists have long

been aware that the gross dimensions
of many species bear a power law rela-
tion to body weight. Brody (4) nmea-
sured the chest girth G and the height

at withers H of more than 3000 Hol-
stein cattle. His data fit the present
model well: he empirically found G
proportional to WO.36 (WO.375 pre-
dicted), while H goes as WO.24 (W025
predicted).

In a study of primates whose weights
ranged from 0.28 to 22 kg, Stahl and
Gummerson (21) reported many of the
important somatic and skeletal dimen-
sions, x, as power functions of body
weight, x = aWb. Figure 3a, reproduced
from their paper, shows that chest cir-
cumference in primates is proportional
to WO.37 with a correlation of .995.
Agreement with the proposed model is
excellent for most of his measurements:
b is 0.28 for trunk height (0.25 pre-
dicted) and 0.38 for maximum thigh
girth (0.375 predicted).

Let us return to the question of ex-
ternal body surface area. If the surface
area of each of the quasi-cylindrical
elements that make up the whole ani-
mal in the proposed model is calculated,
we find

surface area c Id+ d3/2 (6)
where the second term is due to the
ends of each cylindrical element, so
that it is absent or halved in the case
of many of the elements. For most
limbs and many of the trunks under
consideration, lid is approximately 10,
so that the second term is only 5 per-
cent of the first and may be neglected.
In this case, total body surface area is
proportional to Id and thus to W%W%,
or W%. Hemmingsen (8) presented a

plot of body surface area against weight
for animals in a weight range of 1 to
106 grams, and he also included points
representing defoliated beech trees. In
his figure, only one solid line appears,
that appropriate to the surface area of
a sphere of density 1.0 g/cm3. His fig-
ure is reproduced in Fig. 3b, with an
additional line representing the pro-
posed model of a cylinder whose sur-
face area is three times the sphere area
when both sphere and model weigh
close to 8 g, but only twice the sphere
area when both weigh about 70 kg.
The slope of the line for this stretched
cylinder is 0.63, while the slope of the
line for the sphere, and thus all geo-
metrically similar structures, is 0.67.
Although Hemmingsen argues that the
data points are well fitted by an imag-
inary line running parallel to that of
the sphere, it is apparent that a good
fit is obtained by the present model. In
data spanning the range from rats to
humans, Stahl (22) found that surface
area increases as the 0.65 power of
body weight. Thus, the present model
agrees with experimental observations
of body surface area as well as body
proportions.

Metabolic Rate

Our ideas describing how size de-
termines shape are now complete, and
we may return to the original question
concerning metabolism and Kleiber's
law. Suppose a muscle, whose cross-

Body weight (kg) Body weight (g)
Fig. 3. (a) Chest circumference, d4, plotted against body weight, W, for five species of primates. The broken lines represent the stand-
ard error in this least-squares fit [adapted from (21)]. The model proposed here, whereby each length, 1, increases as the % power
of diameter, d, is illustrated for two weights differing by a factor of 16. (b) Body surface area plotted against weight for verte-
brates. The animal data are reasonably well fitted by the stretched cylinder model [adapted from (8)].
23 MARCH 1973 1203
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 Hemmingsen’s “fit” is for a 2/3 power, notes
possible 10 kg transition. [?]

 p 46: “The energy metabolism thus definitely
varies interspecifically over similar wide weight
ranges with a higher power of the body weight
than the body surface.”
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Earlier theories (1977):

Building on the surface area idea …
 Blum (1977) [5] speculates on four-dimensional

biology:
𝑃 ∝ 𝑀 (𝑑−1)/𝑑

 𝑑 = 3 gives 𝛼 = 2/3
 𝑑 = 4 gives 𝛼 = 3/4
 So we need another dimension …
 Obviously, a bit silly… [46]
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Nutrient delivering networks:
 1960’s: Rashevsky considers blood networks and

finds a 2/3 scaling.
 1997: West et al. [53] use a network story to find

3/4 scaling.
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Nutrient delivering networks:

West et al.’s assumptions:
1. hierarchical network
2. capillaries (delivery units) invariant
3. network impedance is minimized via evolution

Claims:
 𝑃 ∝ 𝑀 3/4

 networks are fractal
 quarter powers everywhere
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Impedance measures:

 Poiseuille flow (outer branches):

𝑍 = 8𝜇
𝜋

𝑁
∑
𝑘=0

ℓ𝑘
𝑟4

𝑘𝑁𝑘

 Pulsatile flow (main branches):

𝑍 ∝
𝑁

∑
𝑘=0

ℎ1/2
𝑘

𝑟5/2
𝑘 𝑁𝑘

 Wheel out Lagrange multipliers …
 Poiseuille gives 𝑃 ∝ 𝑀1 with a logarithmic

correction.
 Pulsatile calculation explodes into flames.
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Not so fast …

Actually, model shows:
 𝑃 ∝ 𝑀 3/4 does not follow for pulsatile flow
 networks are not necessarily fractal.

Do find:
 Murray’s cube law (1927) for outer branches: [37]

𝑟3
0 = 𝑟3

1 + 𝑟3
2

 Impedance is distributed evenly.
 Can still assume networks are fractal.
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Connecting network structure to 𝛼
1. Ratios of network parameters:

𝑅𝑛 = 𝑛𝑘+1
𝑛𝑘

, 𝑅ℓ = ℓ𝑘+1
ℓ𝑘

, 𝑅𝑟 = 𝑟𝑘+1
𝑟𝑘

2. Number of capillaries ∝ 𝑃 ∝ 𝑀𝛼.

⇒ 𝛼 = − ln𝑅𝑛
ln𝑅2𝑟𝑅ℓ

(also problematic due to prefactor issues)

Obliviously soldiering on, we could assert:

 area-preservingness:
𝑅𝑟 = 𝑅−1/2

𝑛

 space-fillingness: 𝑅ℓ = 𝑅−1/3
𝑛

⇒ 𝛼 = 3/4
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Data from real networks:
Network 𝑅𝑛 𝑅𝑟 𝑅ℓ − ln𝑅𝑟

ln𝑅𝑛
− ln𝑅ℓ

ln𝑅𝑛
𝛼

West et al. – – – 1/2 1/3 3/4

rat (PAT) 2.76 1.58 1.60 0.45 0.46 0.73

cat (PAT) 3.67 1.71 1.78 0.41 0.44 0.79
(Turcotte et al. [50])

dog (PAT) 3.69 1.67 1.52 0.39 0.32 0.90

pig (LCX) 3.57 1.89 2.20 0.50 0.62 0.62
pig (RCA) 3.50 1.81 2.12 0.47 0.60 0.65
pig (LAD) 3.51 1.84 2.02 0.49 0.56 0.65

human (PAT) 3.03 1.60 1.49 0.42 0.36 0.83
human (PAT) 3.36 1.56 1.49 0.37 0.33 0.94
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Attempts to look at actual networks:

RESEARCH ARTICLE

Testing Foundations of Biological Scaling
Theory Using Automated Measurements of
Vascular Networks
Mitchell G Newberry1¤, Daniel B Ennis2, Van M Savage1,3,4*

1Department of Biomathematics, David Geffen School of Medicine, University of California Los Angeles, Los
Angeles, California, United States of America, 2 Department of Radiological Sciences, Biomedical Physics,
and Bioengineering, University of California, Los Angeles, Los Angeles, California, United States of America,
3Department of Ecology and Evolutionary Biology, University of California, Los Angeles, Los Angeles,
California, United States of America, 4 Santa Fe Institute, Santa Fe, NewMexico, United States of America

¤ Current address: University of Pennsylvania, Department of Biology, 433 S University Ave, Philadelphia,
PA 19104, USA
* vsavage@ucla.edu

Abstract
Scientists have long sought to understand how vascular networks supply blood and oxygen

to cells throughout the body. Recent work focuses on principles that constrain how vessel

size changes through branching generations from the aorta to capillaries and uses scaling

exponents to quantify these changes. Prominent scaling theories predict that combinations

of these exponents explain how metabolic, growth, and other biological rates vary with body

size. Nevertheless, direct measurements of individual vessel segments have been limited

because existing techniques for measuring vasculature are invasive, time consuming, and

technically difficult. We developed software that extracts the length, radius, and connectivity

of in vivo vessels from contrast-enhanced 3D Magnetic Resonance Angiography. Using

data from 20 human subjects, we calculated scaling exponents by four methods—two

derived from local properties of branching junctions and two from whole-network properties.

Although these methods are often used interchangeably in the literature, we do not find gen-

eral agreement between these methods, particularly for vessel lengths. Measurements for

length of vessels also diverge from theoretical values, but those for radius show stronger

agreement. Our results demonstrate that vascular network models cannot ignore certain

complexities of real vascular systems and indicate the need to discover new principles

regarding vessel lengths.

Author Summary

Vascular networks distribute resources and constrain metabolic rate. Founded on a few
key principles, biological scaling theories predict characteristic patterns for vascular net-
works as they branch from large to small vessels. These theories also predict seemingly
unrelated phenomena, such as size limits on mammals. However, vascular networks are
difficult to measure because there are billions of vessels that range in size from meters to
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“Testing foundations of biological scaling
theory using automated measurements of
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RESEARCH ARTICLE

Do Vascular Networks Branch Optimally or

Randomly across Spatial Scales?

Elif Tekin1, David Hunt1, Mitchell G. Newberry2, Van M. Savage1,3,4*

1 Department of Biomathematics, University of California, Los Angeles, David Geffen School of Medicine,

Los Angeles, California, United States of America, 2 Department of Biology, University of Pennsylvania,

Philadelphia, Pennsylvania, United States of America, 3 Department of Ecology and Evolutionary Biology,

University of California, Los Angeles, Los Angeles, California, United States of America, 4 Santa Fe Institute,

Santa Fe, New Mexico, United States of America

* vsavage@ucla.edu

Abstract

Modern models that derive allometric relationships between metabolic rate and body mass

are based on the architectural design of the cardiovascular system and presume sibling

vessels are symmetric in terms of radius, length, flow rate, and pressure. Here, we study the

cardiovascular structure of the human head and torso and of a mouse lung based on three-

dimensional images processed via our software Angicart. In contrast to modern allometric the-

ories, we find systematic patterns of asymmetry in vascular branching, potentially explaining

previously documented mismatches between predictions (power-law or concave curvature)

and observed empirical data (convex curvature) for the allometric scaling of metabolic rate.

To examine why these systematic asymmetries in vascular branching might arise, we con-

struct a mathematical framework to derive predictions based on local, junction-level optimality

principles that have been proposed to be favored in the course of natural selection and devel-

opment. The two most commonly used principles are material-cost optimizations (construc-

tion materials or blood volume) and optimization of efficient flow via minimization of power

loss. We show that material-cost optimization solutions match with distributions for asymmet-

ric branching across the whole network but do not match well for individual junctions. Conse-

quently, we also explore random branching that is constrained at scales that range from local

(junction-level) to global (whole network). We find that material-cost optimizations are the

strongest predictor of vascular branching in the human head and torso, whereas locally or

intermediately constrained random branching is comparable to material-cost optimizations for

the mouse lung. These differences could be attributable to developmentally-programmed

local branching for larger vessels and constrained random branching for smaller vessels.

Author Summary

The architecture of vascular networks must balance complex demands to efficiently

deliver oxygen and resources throughout the entire body. These demands constrain the

possible forms of vasculature. Because of these constraints and the indispensable role of

vasculature for much of life, scientists have sought to identify systematic patterns in the
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Some people understand it’s truly a disaster:

“Power, Sex, Suicide: Mitochondria and the
Meaning of Life”
by Nick Lane (2005). [30]

“As so often happens in science, the apparently solid
foundations of a field turned to rubble on closer
inspection.”
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Let’s never talk about this again:

37. We thank B. Spiller for crystallography advice, E.
Abbate for construction of several HPV18 mutants,
and D. S. King for mass spectrometry. We are
grateful to J. Holton and other members of the
Alber lab for helpful discussions; T. Alber, J. Berger,
R. Stevens, and R. Tjian for suggestions and critical
reading of the manuscript; L. W. Hung and T.
Earnest of the Advanced Light Source (ALS) for

sharing counsel and resources; and H. Bellamy of
the Stanford Synchrotron Radiation Laboratory
(SSRL). The ALS facility is funded by the Office of
Biological and Environmental Research of the U.S.
Department of Energy (U.S. DOE), with contribu-
tions from Ernest Orlando Lawrence Berkeley Na-
tional Laboratory (LBNL), Amgen, Roche, Universi-
ty of California at Berkeley, and Lawrence Liver-

more National Laboratory. The SSRL is funded by
the U.S. DOE Office of Basic Energy Science. This
work was supported by NIH grants CA30490 and
CA42414 to M.R.B. X-ray coordinates are available
from the authors until the data are deposited in
the Protein Data Bank.
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The Fourth Dimension of Life:
Fractal Geometry and

Allometric Scaling of Organisms
Geoffrey B. West,1,2* James H. Brown,2,3 Brian J. Enquist2,3

Fractal-like networks effectively endow life with an additional fourth spatial
dimension. This is the origin of quarter-power scaling that is so pervasive in
biology. Organisms have evolved hierarchical branching networks that termi-
nate in size-invariant units, such as capillaries, leaves, mitochondria, and oxidase
molecules. Natural selection has tended to maximize both metabolic capacity,
by maximizing the scaling of exchange surface areas, and internal efficiency, by
minimizing the scaling of transport distances and times. These design principles
are independent of detailed dynamics and explicit models and should apply to
virtually all organisms.

Evolution by natural selection is one of the
few universal principles in biology. It has
shaped the structural and functional design of
organisms in two important ways. First, it has
tended to maximize metabolic capacity, be-
cause metabolism produces the energy and
materials required to sustain and reproduce
life; this has been achieved by increasing
surface areas where resources are exchanged
with the environment. Second, it has tended
to maximize internal efficiency by reducing
distances over which materials are transport-
ed and hence the time required for transport.
A further consequence of evolution is the in-
credible diversity of body sizes, which range
over 21 orders of magnitude, from 10213 g
(microbes) to 108 g (whales). A fundamental
problem, therefore, is how exchange surfaces
and transport distances change, or scale, with
body size. In particular, a longstanding question
has been why metabolic rate scales as the 3/4-
power of body mass, M (1).

Biological scaling can be described by the
allometric equation Y 5 Y0 Mb, where Y is a
variable such as metabolic rate or life span,
Y0 is a normalization constant, and b is a
scaling exponent (1). Whereas Y0 varies with
the trait and type of organism, b characteris-
tically takes on a limited number of values,
all of which are simple multiples of 1/4. For

example, diameters of tree trunks and aortas
scale as M 3/8 rates of cellular metabolism and
heartbeat as M21/4, blood circulation time
and life span as M1/4, and whole-organism
metabolic rate as M 3/4. The question has been
why these exponents are multiples of 1/4
rather than 1/3 as expected on the basis of
conventional Euclidean geometric scaling.

Recently, we presented a model which
suggested that the explanation could be found
in the fractal-like architecture of the hierar-
chical branching vascular networks that dis-
tribute resources within organisms (2). The
model accurately predicts scaling exponents
that have been measured for many structural
and functional features of mammalian and
plant vascular systems. It is not clear, how-
ever, how this model can account for the
ubiquitous 3/4-power scaling of metabolic
rate in diverse kinds of organisms with their
wide variety of network designs, and espe-
cially in unicellular algae and protists, which

have no obvious branched anatomy. Here we
present a more general model, based on the
geometry rather than hydrodynamics of hier-
archical networks, that does not require the
existence of such explicit structures and that
can account for the pervasive quarter-power
scaling in biology.

We conjecture that organisms have been
selected to maximize fitness by maximizing
metabolic capacity, namely, the rate at which
energy and material resources are taken up
from the environment and allocated to some
combination of survival and reproduction.
This is equivalent to maximizing the scaling
of whole-organism metabolic rate, B. It fol-
lows that B is limited by the geometry and
scaling behavior of the total effective surface
area, a, across which nutrients and energy are
exchanged with the external or internal envi-
ronment. Examples include the total leaf area
of plants, the area of absorptive gut or capil-
lary surface area of animals, and the total area
of mitochondrial inner membranes within
cells. In general, therefore, B } a. It is im-
portant to distinguish a from the relatively
smooth external surface, or “skin,” enclosing
many organisms. We further conjecture that
natural selection has acted to maximize a
subject to various constraints while maintain-
ing a compact shape. This is equivalent to
minimizing the time and resistance for deliv-
ery of resources by minimizing some charac-
teristic length or internal linear distance of
the hierarchical network.

Broadly speaking, two sets of variables
can be used to describe the size and shape of
an organism: a conventional Euclidean set
describing the external surface, A, enclosing
the total volume, V; and a “biological” set
describing the internal structure, which in-
cludes the effective exchange area, a, and the

1Theoretical Division, MS B285, Los Alamos National
Laboratory, Los Alamos, NM 87545, USA. 2The Santa
Fe Institute, 1399 Hyde Park Road, Santa Fe, NM
87501, USA. 3Department of Biology, University of
New Mexico, Albuquerque, NM 87131, USA.

*To whom correspondence should be addressed. E-
mail: gbw@lanl.gov

Table 1. Examples of the biological network variables l, a, and v in plant, mammalian, and unicellular
systems.

Variable Plant Mammal Unicellular

l Mean path length from root
to leaf, or between leaves

Mean circulation
distance from heart to
capillary, or between
capillaries

Mean distance from cell
surface to mitochondria
and between
mitochondria

a Total area of leaves; area of
absorptive root surface

Total area of capillaries;
gut surface area

Actual cell surface area;
total surface area of
mitochondrial inner
membranes

v Total wood volume; total
cell volume

Total blood volume;
total tissue, or cell,
volume

Volume of cytoplasm

R E P O R T S
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“The fourth dimension of life: Fractal
geometry and allometric scaling of
organisms”
West, Brown, and Enquist,
Science, 284, 1677–1679, 1999. [54]

 No networks: Scaling argument for energy
exchange area 𝑎.

 Distinguish between biological and physical length
scales (distance between mitochondria versus cell
radius).

 Buckingham 𝜋 action. [9]

 Arrive at 𝑎 ∝ 𝑀𝐷/𝐷+1 and ℓ ∝ 𝑀1/𝐷.
 New disaster: after going on about fractality of 𝑎,

then state 𝑣 ∝ 𝑎ℓ in general.
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“It was the epoch of belief, it was the epoch of
incredulity”

p888, which contains a Bam HI to Not I fragment
encoding a full-length profilin cDNA (16); p989,
which encodes a mutant form of profilin, Pfy1p-3,
lacking the last three amino acids (18); p890, which
contains the Bgl II to Stu I fragment from p182 (26),
encoding Bni1p(1227–1397); p813, which con-
tains the Bgl II to Not I fragment from p182, encod-
ing Bni1p(1414–1953); and p951, which contains
the Hpa I to Not I fragment from p182, encoding
Bni1p(1647–1953). The pJG4-5–derived plasmids
were p561, which contains the Bam HI to Not I
fragment from p532 (26), encoding Bni1p(1–1953);
p717, which contains the Bam HI to Eco47 III frag-
ment from p532, encoding Bni1p(1–1214); p558,
which contains the Eco 47III to Not I fragment from
p182, encoding Bni1p(1215–1953); p913, which
contains the Bgl II to Stu I fragment from p182,
encoding Bni1p(1227–1397); p929, which con-
tains the Bgl II to Not I fragment from p182, encod-
ing Bni1p(1414–1953); p952, which contains the
Hpa I to Not I fragment from p182, encoding
Bni1p(1647–1953); and p887, which contains the
Bam HI to Not I fragment encoding a full-length
profilin cDNA (16). The pACT-derived plasmid was
p1124, encoding full-length Act1p as isolated in a
catch and release screen (22). The pGAD-C–de-
rived plasmid was p688, encoding the COOH-ter-
minal 311 amino acids (478–788) of Bud6p, as
isolated in a catch and release screen (22).

29. For localization of Bni1p, SY2625 (11) cells carrying a
multicopy plasmid encoding either HA-tagged Bni1p
[pY39tet1 (9)] or nontagged Bni1p were induced to
form mating projections (12). HA-Bni1p was localized
by immunofluorescence with monoclonal antibody
HA.11(Berkeley Antibody Company) as described [J.
R. Pringle, A. E.M. Adams, D. G. Drubin, B. K. Haarer,
Methods Enzymol. 194, 565 (1991)]. For localization
of Bud6p, SY2625 cells expressing GFP-Bud6p (23)
or containing the control plasmid pRS316 (26) were
induced to form mating projections (12), then ob-
served by fluorescence microscopy with the use of a
fluorescein isothiocyanate filter set.

30. Yeast cells of strain B5459 (MATa pep4::HIS3
prb1D1-6R ura3 trp1 lys2 leu2 his3D200 can1) car-
rying p1025 (26) were grown to mid-log phase in
raffinose medium, and galactose was added to
induce the production of HA-tagged Bni1p(1215–
1953). After 1 hour, extracts were prepared by
grinding cells with glass beads in lysis buffer [0.6 M
sorbitol, bovine serum albumin (1%), 140 mM
NaCl, 5 mM EDTA, 50 mM tris-HCl (pH 7.6), 0.06%
Triton X-100, 2 mM phenylmethylsulfonyl fluoride,
aprotinin (10 mg/ml)] as described (2). Escherichia
coli strain BL 21 (Novagen) was transformed with
pGEX-3X (Pharmacia) or p907 (26) and induced for
expression of GST or GST-profilin, respectively.
GST proteins were purified on glutathione-Sepha-
rose (Pharmacia) and washed twice with phos-
phate-buffered saline (PBS) [140 mM NaCl, 2.7
mM KCl, 10 mM Na2HPO4, 1.8 mM KH2PO4 (pH
7.3)]. Glutathione-Sepharose beads with GST or
GST-profilin bound were then added to the yeast
extract containing HA-Bni1p(1215–1953) and in-
cubated on ice. After 45 min, the beads were col-
lected and washed twice with PBS. The GST pro-
teins and associated proteins were eluted with glu-
tathione [10 mM glutathione, 50 mM tris-HCl (pH
8.0)] and subjected to immunoblot analysis with
antibodies to GST (Pharmacia) or the HA epitope
(29) as described (27).

31. We thank D. Amberg, B. Andrews, R. Brent, R.
Dorer, S. J. Elledge, S. Givan, B. K. Haarer, J.
Horecka, P. James, I. Sadowski, M. Tyers, and J.
Zahner for plasmids and yeast strains; B. Brand-
horst, J. Brown, N. Davis, S. Kim, B. Nelson, and I.
Pot for comments on the manuscript; and G. Poje
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A General Model for the Origin of Allometric
Scaling Laws in Biology

Geoffrey B. West, James H. Brown,* Brian J. Enquist
Allometric scaling relations, including the 3/4 power law for metabolic rates, are char-
acteristic of all organisms and are here derived from a general model that describes how
essential materials are transported through space-filling fractal networks of branching
tubes. The model assumes that the energy dissipated is minimized and that the terminal
tubes do not vary with body size. It provides a complete analysis of scaling relations for
mammalian circulatory systems that are in agreement with data. More generally, the
model predicts structural and functional properties of vertebrate cardiovascular and
respiratory systems, plant vascular systems, insect tracheal tubes, and other distribution
networks.

Biological diversity is largely a matter of
body size, which varies over 21 orders of
magnitude (1). Size affects rates of all bio-
logical structures and processes from cellu-
lar metabolism to population dynamics (2,
3). The dependence of a biological variable
Y on body mass M is typically characterized
by an allometric scaling law of the form

Y 5 Y0Mb (1)

where b is the scaling exponent and Y0 a
constant that is characteristic of the kind
of organism. If, as originally thought, these
relations reflect geometric constraints,
then b should be a simple multiple of
one-third. However, most biological phe-
nomena scale as quarter rather than third
powers of body mass (2–4): For example,
metabolic rates B of entire organisms scale
as M3/4; rates of cellular metabolism,
heartbeat, and maximal population
growth scale as M21/4; and times of blood
circulation, embryonic growth and devel-
opment, and life-span scale as M1/4. Sizes
of biological structures scale similarly: For
example, the cross-sectional areas of mam-
malian aortas and of tree trunks scale as
M3/4. No general theory explains the ori-
gin of these laws. Current hypotheses,
such as resistance to elastic buckling in
terrestrial organisms (5) or diffusion of
materials across hydrodynamic boundary
layers in aquatic organisms (6), cannot
explain why so many biological processes
in nearly all kinds of animals (2, 3), plants
(7), and microbes (8) exhibit quarter-pow-
er scaling.

We propose that a common mechanism

underlies these laws: Living things are sus-
tained by the transport of materials
through linear networks that branch to
supply all parts of the organism. We de-
velop a quantitative model that explains
the origin and ubiquity of quarter-power
scaling; it predicts the essential features of
transport systems, such as mammalian
blood vessels and bronchial trees, plant
vascular systems, and insect tracheal
tubes. It is based on three unifying princi-
ples or assumptions: First, in order for the
network to supply the entire volume of
the organism, a space-filling fractal-like
branching pattern (9) is required. Second,
the final branch of the network (such as
the capillary in the circulatory system) is a
size-invariant unit (2). And third, the en-
ergy required to distribute resources is
minimized (10); this final restriction is
basically equivalent to minimizing the to-
tal hydrodynamic resistance of the system.
Scaling laws arise from the interplay be-
tween physical and geometric constraints
implicit in these three principles. The
model presented here should be viewed as
an idealized representation in that we ig-
nore complications such as tapering of
vessels, turbulence, and nonlinear effects.
These play only a minor role in determin-
ing the dynamics of the entire network
and could be incorporated in more de-
tailed analyses of specific systems.

Most distribution systems can be de-
scribed by a branching network in which
the sizes of tubes regularly decrease (Fig.
1). One version is exhibited by vertebrate
circulatory and respiratory systems, anoth-
er by the “vessel-bundle” structure of mul-
tiple parallel tubes, characteristic of plant
vascular systems (11). Biological networks
vary in the properties of the tube (elastic
to rigid), the fluid transported (liquid to
gas), and the nature of the pump (a pul-
satile compression pump in the cardiovas-
cular system, a pulsatile bellows pump in
the respiratory system, diffusion in insect
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point mutations on the performance of digital organisms. In all cases, the
fitness (replication ratc) of each mutant was calculated in the same

environment in which its simple or complex parent evolved. and the mutant's

fitness is expressed relative to the parent. The first tool makes every possible
one-step point mutant for a particular parent. The default set includes 28

different instructions; given a parent of genome length 80. for example. there
3rc 80 X (28 - 1) = 2.160 different one-step point mutants. The mean fitness
of these mutants permits exact calculation of ex in the de<:ay tcst. The second

tool produces a random sample ofprogeny that differ from their parent by two
or more point mutations. ror each parent, we generated between lOS and 107

progeny with two mutations, three mutations and so on, up !O ten mutations.

The third tool produces and analyses pairs of point mutations alone and in

combination; for each two-step mutant, we have both corresponding one~step

mutants. Having the single mutants allows us to compare a double mutant's

actual fitness with the exact value expected under the hypothesis that the

mutations interact in a multiplicative manner. We ran the pair test on IO~ and

lOS mutational pairs for each complex and simple organism, respectively.

Statistical methods. We performed the Wilcoxon signed-ranks test on the

difference scores for all comparisons bet\\leen complex and simple organisms29
•

This test reflects the evolutionary relationship between pairs of organisms; it is

also non-parametric and thus insensitive to deviations from a normal dis­

tribution. To estimate {3 in the decay tests, we minimized the sum of squared

deviations around the log-transformed mean fitness values. We excluded

samples with fewer than 100 viable mutants, in which case log mean fitness

was poorlyeslimated. By increasing sample size to 108
, we can obtain additional

viable mutantsi the exclusion of some values because of insufficient sampling

appears to have no systematic effect on estimation of {3.
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A general model for the
structure and allometry
of plant vascular systems
Geoffrey B, West't, James H, BrownH & Brian 1. Enquistt*

• Theoretical Divisio1l, T-8, MS 8285, Los Alamos National Laboralory.
Los Alamos, New Mexico 87545, USA
t The Santa Fe lustilllte, 1399 Hyde Park Road, Sarita Fe, New Mexico 87501.
USA
+: Depatmetlt of Biology, Uuiversity of New Mexico, Albllqllerquc,
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Vascular plants vary in size by about twelve orders of magnitude,
and a single individual sequoia spans nearly this entire range as it
grows from a seedling to a mature tree, Size influences nearly all of
the structural, functional and ecological characteristics of
organismsl,2, Here we present an integrated model for the hydro­
dynamics, biomechanics and branching geometry of plants, based
on the application of a general theory of resource distribution
through hierarchical branching networks3 to the case of vascular
plants. The model successfully predicts a fractal-like architecture
and many known scaling laws, both between and within individ­
ual plants, including allometric exponents which are simple
multiples of 1/4, We show that conducting tubes must taper

Box 1 Notation and geometry

The model can be described as a continuously branching hIerarchical

network running from the trunk (level 0) to the petioles (level N), with an

arbitrary level denoted by k (Fig. 1). The architecture is characterized by

three parameters {a,.9 and n I, which relate daughter to parent branches:

ratios of branch radii, (1. afk+1tr. _n-·rz , tube radii, p~ -Skil/at =n-i12 •

and branch lengths, 'Y. -'ul"" and also the branching ratio, n, the number

of daughter branches derived from a parent branch. Because the total

number 01 tubes is preserved at each bfanching, n = nWfnt, wherenk is
the numberof tubes in akth-Ieve! branch;n is taken to be independent ofk

and typicaliyequals2. Clearly,n. =n~"-t,whereN isthetota! numberof

branching generalions from trunk to petiole, and nN is the number 01 tubes

in a petiole, which is taken to be an invariant. Now, for a volume-filling

network, 'Y. =n- I13 , independent of k (ref. 3). If tube tapering is uniform,a

is also independent of k, and it follows that

(1)

Various seating laws can now be derived. For example, the number

of termInal branches or leaves distal to the kth branch, nt = 0ttoN =

n"- k = (ftlrN)"ZM, and the area 01 conductive tissue (CT), Af' =

nt1TsI =A~l(f.lfN)llli;:", where AZ'" =nN'f(a~ is the area of conductive

tissue in a petiole. Thus, the area of conductive tissue relative to the

total (tol) branch cross-sectional area (Arc = 1Trf) Is given by

Af' (8.) (,,)21'1.-".ft---nN - -Ar - if.J (II

The total cross-sectional area scales as nA1':. lttl;'l = n(Jf = n 1-•. When

a = 1 this reduces to unity and the branching is area-preserving; that is,

the cross-sectional area of the daughter branches is equal to that of the

parent: nAr':1 = A,r. A simple example of this, considered in ref. 3, is the
pipe mode1°, in which all tubes have the same constant diameter (a = 0),

are tightly bundled and have no non-eonducting tissue. Herewe consider

lhe more realistic case in which tubes are loosely packed in sapwood and

there may be non-eonducting heartwood providing additional mechanical

stability.
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Really, quite confused:

Whole 2004 issue of Functional Ecology addresses
the problem:
 J. Kozlowski, M. Konrzewski. “Is West, Brown and

Enquist’s model of allometric scaling
mathematically correct and biologically relevant?”
Functional Ecology 18: 283–9, 2004. [28]

 J. H. Brown, G. B. West, and B. J. Enquist. “Yes,
West, Brown and Enquist’s model of allometric
scaling is both mathematically correct and
biologically relevant.” Functional Ecology 19:
735–738, 2005. [7]

 J. Kozlowski, M. Konarzewski. “West, Brown and
Enquist’s model of allometric scaling again: the
same questions remain.” Functional Ecology 19:
739–743, 2005.
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Curvature in metabolic scaling
Tom Kolokotrones1, Van Savage2, Eric J. Deeds1 & Walter Fontana1

For more than three-quarters of a century it has been assumed1 that
basal metabolic rate increases as body mass raised to some power p.
However, there is no broad consensus regarding the value of p:
whereas many studies have asserted that p is 3/4 (refs 1–4;
‘Kleiber’s law’), some have argued that it is 2/3 (refs 5–7), and others
have found that it varies depending on factors like environment
and taxonomy6,8–16. Here we show that the relationship between
mass and metabolic rate has convex curvature on a logarithmic
scale, and is therefore not a pure power law, even after accounting
for body temperature. This finding has several consequences. First,
it provides an explanation for the puzzling variability in estimates
of p, settling a long-standing debate. Second, it constitutes a strin-
gent test for theories of metabolic scaling. A widely debated model17

based on vascular system architecture fails this test, and we suggest
modifications that could bring it into compliance with the observed
curvature. Third, it raises the intriguing question of whether the
scaling relation limits body size.

In 1932, Max Kleiber found that basal metabolic rate (B)—the
power produced by a fasting, inactive organism—scales with body
mass (M) across animal species1. Based on 13 data points, Kleiber
concluded that this relationship was well described by a 3/4-power
law:

B 5 B0M3/4 (1)

This apparently simple relationship underlies and constrains an
extensive web of scaling relationships, ranging from growth rates to
lifespans to trophic dynamics18–20.

Since ‘Kleiber’s law’ was first proposed, significant amounts of data
have been collected and analysed4,7,8,13,15, fuelling debate about the
value of the exponent19,21–23, a quantity that is crucial for understand-
ing the physical origins of metabolic scaling. An exponent of 2/3 has
often been suggested5–7,15,24 based on a simple surface-to-volume argu-
ment. In contrast, a 3/4 exponent emerges from a theory proposed by
West, Brown and Enquist based on the properties of optimized
resource distribution networks, such as the cardiovascular system17.
Additionally, some investigators have noted deficiencies in the overall
fit of the power law and suggested that the exponent itself might vary
with factors such as taxonomic group or environment6,8–16.

We show that the widely held assumption of a scale-free power law
is incorrect. In our analysis, we utilize McNab’s recently compiled
data set8 of measurements made reliably under basal conditions
(inactive, thermoneutral, post-absorptive adults). It contains mea-
surements of mean metabolic rate from 637 species of mammals
spanning 6 orders of magnitude, making it one of the largest such
collections yet assembled. To estimate the effect of body temperature
on metabolic rate, we extracted temperature measurements from the
original papers used in McNab’s compilation. The resulting data set
of 447 species spans 5 orders of magnitude in mass (Supplemen-
tary Information) and was used for those fits that take into account
temperature effects. We excluded the orca because its large size
has the potential to disproportionately influence the fit, though we

found that this is not the case (Supplementary Information). We
repeated our analysis using data from Savage4 and Sieg16. Both data
sets give essentially the same results as the analysis presented
below (Supplementary Information). In all regressions, we use units
of grams for mass, watts for basal metabolic rate, and kelvin for
temperature.

On a logarithmic scale, a power law, like equation (1), but with an
arbitrary scaling exponent b1, becomes:

log10B 5 b0 1 b1log10M 1 e (2)

where b0 is the logarithm of B0 in equation (1), and e is the error term.
A fit to equation (2) accounts for a significant amount of the trend,
but poorly describes the data for both small and large mammals
(Fig. 1a, Supplementary Information). This suggests considering a
nonlinear model (on the logarithmic scale). As every analytic func-
tion can be expanded as a power series, the natural next candidate is a
quadratic model:

log10B 5 b0 1 b1log10M 1 b2(log10M)2 1 e (3)

This model results in a visibly better fit for mammals with
M . 50 g (Fig. 1a, Supplementary Information), which is confirmed
by the extremely small P value for b2 of 9.0 3 10210 (Table 1).
Although the quadratic term explains only an additional 0.3%
(96.1% versus 95.8%) of the total variation (7% of the unexplained
variation), its impact is clearly seen in both residual and partial
residual plots (Supplementary Information). The quadratic term is
also necessary to correctly predict the metabolic rate of megafauna
such as the orca and elephant (Fig. 1a). Importantly, the addition of
higher-order terms beyond the quadratic does not significantly
improve the fit (Supplementary Information), suggesting that the
scaling relationship for the mammals in this data set is well approxi-
mated by a quadratic function of log10M.

Despite the improved fit, there is still considerable residual vari-
ation in the data (Supplementary Information). Several studies have
demonstrated that temperature affects metabolic rate7,14,25,26. We
attempt to capture this effect by including a Boltzmann–Arrhenius
factor, that is, B 5 f(M)exp(2E/RT), where R is the gas constant and
T is body temperature in kelvin. When f is a pure power law, equation
(2), this new model fits significantly better, but still poorly describes
the data for small and large mammals (Supplementary Information).
However, when f is given by equation (3), the resulting temperature-
corrected quadratic model:

log10B~b0zb1log10Mzb2(log10M)2z
bT

T
ze ð4Þ

shows dramatically improved fit over the entire range of the data
(Supplementary Information). A plot of the residuals (Supplemen-
tary Information) shows that the fit for mammals of intermediate size
(between 25 g and 10 kg) is extremely good and that the deviation in
the upper tail is small, though still increasing. All of the terms in the

1Harvard Medical School, Boston, Massachusetts 02115, USA. 2David Geffen School of Medicine at the University of California at Los Angeles, Los Angeles, California 90024, USA.
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Let’s try a quadratic:

log10𝑃 ∼ log10𝑐 + 𝛼1log10𝑀 + 𝛼2log10𝑀2
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regression are extremely significant (P , 3 3 10 27 or better), sug-
gesting that both the temperature and quadratic terms are important
predictors of metabolic rate. From the value of bT (the coefficient of
the inverse temperature term) obtained from the quadratic fit, we
calculate an effective activation energy of 21.9 6 3.2 kcal mol21 or
0 .95 6 0 .14 eV (95% confidence intervals). This value is less than
the free energy of the full hydrolysis of ATP to AMP under standard
cellular conditions (26 kcal mol21 or 1.13 eV; ref. 27), indicating that
the model produces a biologically realistic coefficient.

In addition to temperature, previous studies have attempted to
control for other factors that may affect metabolic rate, such as shared
evolutionary history16,28, habitat, climate and food type8. To account
for these potential effects, we analyse the data using phylogenetic
generalized least squares regression29 and by conditioning on catego-
rical variables (Supplementary Information). For both analyses, we
find that the quadratic and temperature terms remain significant, with
some changes in the magnitude of the coefficients (Supplementary
Information). We also find that no single study or group of points is
responsible for the curvature in the data, and that the quadratic and
temperature terms remain significant across a variety of subsets of the
data (Supplementary Information). These results suggest that the
nonlinearity of the relationship between basal metabolic rate and mass
on a logarithmic scale is highly robust.

The local scaling exponent, defined as the derivative of the scal-
ing relationship (equation (4)) with respect to log10M, increases
significantly—from 0 .57 to 0 .87—over the range of the fitted data
(Fig. 1b). This stands in sharp contrast to the constant exponent of a
pure power law, and indicates that the relationship between meta-
bolic rate and mass is quite different for large and small animals. This
finding explains the long-standing disagreement regarding the value
of the scaling exponent, because assuming a power law at the outset
results in linear fits to curved data. Carrying out such fits yields
scaling exponents similar to the slopes of tangent lines at the mean
of the log10M distribution of the underlying data sets (Supplemen-
tary Information). Indeed, performing linear fits over partial mass
ranges confirms this increasing trend and reveals different regions of
the data that are consistent with either 2/3 or 3/4 (Fig. 2). Using the
values of b1 and b2 from the fit of the full model (equation (4)), we
can predict the scaling exponents obtained in previous studies using
only the first three moments of their log10M distributions (Fig. 2d,
Supplementary Information). In general, we find that data sets with
fewer large mammals7,14 tend to exhibit smaller exponents than ones
weighting large mammals more heavily1,4. Together, these results
indicate that curvature in the data is a major factor underlying the
historical variation in estimates of the scaling exponent (Supplemen-
tary Information).

Our findings have critical implications for theories of metabolic
scaling. The West, Brown and Enquist (WBE) model17 derives equa-
tion (1) as a consequence of the relationship between the volume of a
vascular network (which is proportional to mass) and the number of
capillaries (which is proportional to metabolic rate). However, it
predicts pure 3/4-power scaling only as an asymptotic law in the limit
of infinite body mass. For animals of finite size, the model instead
yields an (implicit) scaling relation that exhibits curvature on a log-
arithmic scale30:

M 5 c0B 1 c1B4/3 (5)

Under the assumptions of West et al., both coefficients in the
extended model (equation (5)) are positive, predicting concave
curvature—not the convex curvature found in the data—and result-
ing in a relatively poor fit (Fig. 3a and Supplementary Information).
This raises the question of whether the theory can be adapted to agree
with the data.

The WBE model posits that evolution resulted in a hierarchical
vascular system that minimizes energy loss in the transport of blood.
This assumption appears as an energy minimization criterion that

1 2 3 4 5 6

−1

0

1

2

3
Linear
Quadratic
Orca (not included in fit)
Elephant4 (not included in fit)

a

0 1 2 3 4 5 6

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

S
lo

pe

2/3 and 3/4
Power law
Quadratic

b

lo
g 1

0[
B

 (W
)]

log10[M (g)]

Figure 1 | Curvature in metabolic scaling. a, Linear (red) and quadratic
(blue) fits (not including temperature) of log10B versus log10M. The orca
(green square) and Asian elephant (ref. 4; turquoise square at larger mass)
are not included in the fit, but are predicted well. Differences in the quality of
fit are best seen in terms of the conditional mean of the error, estimated by
the lowess (locally-weighted scatterplot smoothing) fit of the residuals
(Supplementary Information). See Table 1 for the values of the coefficients
obtained from the fit. b, Slope of the quadratic fit (including temperature)
with pointwise 95% confidence intervals (blue). The slope of the power-law
fit (red) and models with fixed 2/3 and 3/4 exponents (black) are included for
comparison. This panel suggests that exponents estimated by assuming a
power law will be highly sensitive to the mass range of the data set used, as
shown in Fig. 2.

Table 1 | Regression coefficients without and with temperature correction

Regression coefficient Estimate Standard error P value

Without temperature correction*
b0 21.5078 0.0377 ,2 3 10216

b1 0.5400 0.0295 ,2 3 10216

b2 0.0322 0.0053 8.9560 3 10210

With temperature correction{
b0 14.0149 1.1826 ,2 3 10216

b1 0.5371 0.0305 ,2 3 10216

b2 0.0294 0.0057 2.5680 3 1027

bT 24,799.0 362.22 ,2 3 10216

Regression coefficients, standard errors, and P values for quadratic models without and with
temperature correction (for mass in grams, basal metabolic rate in watts, and temperature in
kelvin). The former use the full McNab data set (minus the orca) of 636 species; the latter use a
subset of 447 species for which we obtained temperature data. All coefficients are highly
significant.
* log10B 5 b0 1 b1log10M 1 b2(log10M)2 1 e.
{ log10B 5 b0 1 b1log10M 1 b2(log10M)2 1 bT/T 1 e.
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regression are extremely significant (P , 3 3 10 27 or better), sug-
gesting that both the temperature and quadratic terms are important
predictors of metabolic rate. From the value of bT (the coefficient of
the inverse temperature term) obtained from the quadratic fit, we
calculate an effective activation energy of 21.9 6 3.2 kcal mol21 or
0 .95 6 0 .14 eV (95% confidence intervals). This value is less than
the free energy of the full hydrolysis of ATP to AMP under standard
cellular conditions (26 kcal mol21 or 1.13 eV; ref. 27), indicating that
the model produces a biologically realistic coefficient.

In addition to temperature, previous studies have attempted to
control for other factors that may affect metabolic rate, such as shared
evolutionary history16,28, habitat, climate and food type8. To account
for these potential effects, we analyse the data using phylogenetic
generalized least squares regression29 and by conditioning on catego-
rical variables (Supplementary Information). For both analyses, we
find that the quadratic and temperature terms remain significant, with
some changes in the magnitude of the coefficients (Supplementary
Information). We also find that no single study or group of points is
responsible for the curvature in the data, and that the quadratic and
temperature terms remain significant across a variety of subsets of the
data (Supplementary Information). These results suggest that the
nonlinearity of the relationship between basal metabolic rate and mass
on a logarithmic scale is highly robust.

The local scaling exponent, defined as the derivative of the scal-
ing relationship (equation (4)) with respect to log10M, increases
significantly—from 0 .57 to 0 .87—over the range of the fitted data
(Fig. 1b). This stands in sharp contrast to the constant exponent of a
pure power law, and indicates that the relationship between meta-
bolic rate and mass is quite different for large and small animals. This
finding explains the long-standing disagreement regarding the value
of the scaling exponent, because assuming a power law at the outset
results in linear fits to curved data. Carrying out such fits yields
scaling exponents similar to the slopes of tangent lines at the mean
of the log10M distribution of the underlying data sets (Supplemen-
tary Information). Indeed, performing linear fits over partial mass
ranges confirms this increasing trend and reveals different regions of
the data that are consistent with either 2/3 or 3/4 (Fig. 2). Using the
values of b1 and b2 from the fit of the full model (equation (4)), we
can predict the scaling exponents obtained in previous studies using
only the first three moments of their log10M distributions (Fig. 2d,
Supplementary Information). In general, we find that data sets with
fewer large mammals7,14 tend to exhibit smaller exponents than ones
weighting large mammals more heavily1,4. Together, these results
indicate that curvature in the data is a major factor underlying the
historical variation in estimates of the scaling exponent (Supplemen-
tary Information).

Our findings have critical implications for theories of metabolic
scaling. The West, Brown and Enquist (WBE) model17 derives equa-
tion (1) as a consequence of the relationship between the volume of a
vascular network (which is proportional to mass) and the number of
capillaries (which is proportional to metabolic rate). However, it
predicts pure 3/4-power scaling only as an asymptotic law in the limit
of infinite body mass. For animals of finite size, the model instead
yields an (implicit) scaling relation that exhibits curvature on a log-
arithmic scale30:

M 5 c0B 1 c1B4/3 (5)

Under the assumptions of West et al., both coefficients in the
extended model (equation (5)) are positive, predicting concave
curvature—not the convex curvature found in the data—and result-
ing in a relatively poor fit (Fig. 3a and Supplementary Information).
This raises the question of whether the theory can be adapted to agree
with the data.

The WBE model posits that evolution resulted in a hierarchical
vascular system that minimizes energy loss in the transport of blood.
This assumption appears as an energy minimization criterion that
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Figure 1 | Curvature in metabolic scaling. a, Linear (red) and quadratic
(blue) fits (not including temperature) of log10B versus log10M. The orca
(green square) and Asian elephant (ref. 4; turquoise square at larger mass)
are not included in the fit, but are predicted well. Differences in the quality of
fit are best seen in terms of the conditional mean of the error, estimated by
the lowess (locally-weighted scatterplot smoothing) fit of the residuals
(Supplementary Information). See Table 1 for the values of the coefficients
obtained from the fit. b, Slope of the quadratic fit (including temperature)
with pointwise 95% confidence intervals (blue). The slope of the power-law
fit (red) and models with fixed 2/3 and 3/4 exponents (black) are included for
comparison. This panel suggests that exponents estimated by assuming a
power law will be highly sensitive to the mass range of the data set used, as
shown in Fig. 2.

Table 1 | Regression coefficients without and with temperature correction

Regression coefficient Estimate Standard error P value

Without temperature correction*
b0 21.5078 0.0377 ,2 3 10216

b1 0.5400 0.0295 ,2 3 10216

b2 0.0322 0.0053 8.9560 3 10210

With temperature correction{
b0 14.0149 1.1826 ,2 3 10216

b1 0.5371 0.0305 ,2 3 10216

b2 0.0294 0.0057 2.5680 3 1027

bT 24,799.0 362.22 ,2 3 10216

Regression coefficients, standard errors, and P values for quadratic models without and with
temperature correction (for mass in grams, basal metabolic rate in watts, and temperature in
kelvin). The former use the full McNab data set (minus the orca) of 636 species; the latter use a
subset of 447 species for which we obtained temperature data. All coefficients are highly
significant.
* log10B 5 b0 1 b1log10M 1 b2(log10M)2 1 e.
{ log10B 5 b0 1 b1log10M 1 b2(log10M)2 1 bT/T 1 e.
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regression are extremely significant (P , 3 3 10 27 or better), sug-
gesting that both the temperature and quadratic terms are important
predictors of metabolic rate. From the value of bT (the coefficient of
the inverse temperature term) obtained from the quadratic fit, we
calculate an effective activation energy of 21.9 6 3.2 kcal mol21 or
0 .95 6 0 .14 eV (95% confidence intervals). This value is less than
the free energy of the full hydrolysis of ATP to AMP under standard
cellular conditions (26 kcal mol21 or 1.13 eV; ref. 27), indicating that
the model produces a biologically realistic coefficient.

In addition to temperature, previous studies have attempted to
control for other factors that may affect metabolic rate, such as shared
evolutionary history16,28, habitat, climate and food type8. To account
for these potential effects, we analyse the data using phylogenetic
generalized least squares regression29 and by conditioning on catego-
rical variables (Supplementary Information). For both analyses, we
find that the quadratic and temperature terms remain significant, with
some changes in the magnitude of the coefficients (Supplementary
Information). We also find that no single study or group of points is
responsible for the curvature in the data, and that the quadratic and
temperature terms remain significant across a variety of subsets of the
data (Supplementary Information). These results suggest that the
nonlinearity of the relationship between basal metabolic rate and mass
on a logarithmic scale is highly robust.

The local scaling exponent, defined as the derivative of the scal-
ing relationship (equation (4)) with respect to log10M, increases
significantly—from 0 .57 to 0 .87—over the range of the fitted data
(Fig. 1b). This stands in sharp contrast to the constant exponent of a
pure power law, and indicates that the relationship between meta-
bolic rate and mass is quite different for large and small animals. This
finding explains the long-standing disagreement regarding the value
of the scaling exponent, because assuming a power law at the outset
results in linear fits to curved data. Carrying out such fits yields
scaling exponents similar to the slopes of tangent lines at the mean
of the log10M distribution of the underlying data sets (Supplemen-
tary Information). Indeed, performing linear fits over partial mass
ranges confirms this increasing trend and reveals different regions of
the data that are consistent with either 2/3 or 3/4 (Fig. 2). Using the
values of b1 and b2 from the fit of the full model (equation (4)), we
can predict the scaling exponents obtained in previous studies using
only the first three moments of their log10M distributions (Fig. 2d,
Supplementary Information). In general, we find that data sets with
fewer large mammals7,14 tend to exhibit smaller exponents than ones
weighting large mammals more heavily1,4. Together, these results
indicate that curvature in the data is a major factor underlying the
historical variation in estimates of the scaling exponent (Supplemen-
tary Information).

Our findings have critical implications for theories of metabolic
scaling. The West, Brown and Enquist (WBE) model17 derives equa-
tion (1) as a consequence of the relationship between the volume of a
vascular network (which is proportional to mass) and the number of
capillaries (which is proportional to metabolic rate). However, it
predicts pure 3/4-power scaling only as an asymptotic law in the limit
of infinite body mass. For animals of finite size, the model instead
yields an (implicit) scaling relation that exhibits curvature on a log-
arithmic scale30:

M 5 c0B 1 c1B4/3 (5)

Under the assumptions of West et al., both coefficients in the
extended model (equation (5)) are positive, predicting concave
curvature—not the convex curvature found in the data—and result-
ing in a relatively poor fit (Fig. 3a and Supplementary Information).
This raises the question of whether the theory can be adapted to agree
with the data.

The WBE model posits that evolution resulted in a hierarchical
vascular system that minimizes energy loss in the transport of blood.
This assumption appears as an energy minimization criterion that

1 2 3 4 5 6

−1

0

1

2

3
Linear
Quadratic
Orca (not included in fit)
Elephant4 (not included in fit)

a

0 1 2 3 4 5 6

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

S
lo

pe

2/3 and 3/4
Power law
Quadratic

b

lo
g 1

0[
B

 (W
)]

log10[M (g)]

Figure 1 | Curvature in metabolic scaling. a, Linear (red) and quadratic
(blue) fits (not including temperature) of log10B versus log10M. The orca
(green square) and Asian elephant (ref. 4; turquoise square at larger mass)
are not included in the fit, but are predicted well. Differences in the quality of
fit are best seen in terms of the conditional mean of the error, estimated by
the lowess (locally-weighted scatterplot smoothing) fit of the residuals
(Supplementary Information). See Table 1 for the values of the coefficients
obtained from the fit. b, Slope of the quadratic fit (including temperature)
with pointwise 95% confidence intervals (blue). The slope of the power-law
fit (red) and models with fixed 2/3 and 3/4 exponents (black) are included for
comparison. This panel suggests that exponents estimated by assuming a
power law will be highly sensitive to the mass range of the data set used, as
shown in Fig. 2.

Table 1 | Regression coefficients without and with temperature correction

Regression coefficient Estimate Standard error P value

Without temperature correction*
b0 21.5078 0.0377 ,2 3 10216

b1 0.5400 0.0295 ,2 3 10216

b2 0.0322 0.0053 8.9560 3 10210

With temperature correction{
b0 14.0149 1.1826 ,2 3 10216

b1 0.5371 0.0305 ,2 3 10216

b2 0.0294 0.0057 2.5680 3 1027

bT 24,799.0 362.22 ,2 3 10216

Regression coefficients, standard errors, and P values for quadratic models without and with
temperature correction (for mass in grams, basal metabolic rate in watts, and temperature in
kelvin). The former use the full McNab data set (minus the orca) of 636 species; the latter use a
subset of 447 species for which we obtained temperature data. All coefficients are highly
significant.
* log10B 5 b0 1 b1log10M 1 b2(log10M)2 1 e.
{ log10B 5 b0 1 b1log10M 1 b2(log10M)2 1 bT/T 1 e.
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“This raises the question of whether the theory
can be adapted to agree with the data”1

fixes the vessel geometry (Supplementary Information). In the model,
the vascular system is composed of two parts: large vessels with
pulsatile blood flow and small vessels with smooth blood flow. The
transition between these regions happens abruptly a constant number
of levels from the capillaries. Together, these assumptions yield equa-
tion (5) (Supplementary Information). However, the calculation
neglects physical effects, such as the attenuation of pulses as they
travel away from the heart, which may affect the behaviour of
large vessels and the position and nature of the transition between
vessel types. This suggests several modifications to the model (Sup-
plementary Information).

We first relax the assumptions about vessel geometry (model RG,
‘relaxed geometry’) in the pulsatile regime, resulting in a version of
equation (5) in which the asymptotic exponent is no longer 3/4, but c0

and c1 are still positive, thus failing to produce convex curvature. Next,
we modify the location of the transition between flow regimes. In one
possibility, the transition occurs a constant number of levels from the
heart (model FH, ‘from heart’), rather than from the capillaries. In
another possibility, the transition occurs a constant fraction of levels
from the heart (model PT, ‘proportional transition’). Both modifica-
tions lead to models that predict convex curvature, as detected in the

data (Fig. 3a and b). However, the fit of the FH model is almost as poor
as the original WBE model (Fig. 3a, Supplementary Information). In
contrast, the PT model fits nearly as well as the quadratic model,
suggesting that it merits further investigation. These modifications
demonstrate that the WBE model can, in principle, be brought into
agreement with the observed curvature, while still preserving core
assumptions, such as the primacy of resource distribution networks.
A more detailed energy minimization calculation should help to
determine if these adaptations represent physically realistic cases or
suggest alternative corrections.

The WBE model and its variants necessarily predict an asymptotic
scaling exponent, suggesting that metabolic rate does not limit
animal size without additional assumptions, such as the existence
of a minimal cellular metabolic rate. On the other hand, the quadratic
model with temperature (equation (4)), which provides the best fit to
the data, predicts that the slope of the scaling function increases
without bound (though this apparent behaviour may be due to the
paucity of data for large animals). If this is correct, the metabolic
scaling relationship may directly determine maximum animal size.
This limit might occur at the mass at which the slope equals 1. Beyond
this point, bigger is no longer better, meaning that an x% increase in
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Figure 2 | Scaling exponent depends on mass range. a, Slope estimated by
linear regression within a three log-unit mass range (smaller near the
boundaries). Values on the abscissa denote mean log10M within the range.
When the 95% confidence regions (dashed lines) include the 2/3 or 3/4 lines,
the local slope is consistent with a 2/3 or 3/4 exponent, respectively. These
cases are indicated by the shaded regions (2/3 on the left and 3/4 on the
right). b, Slope estimated by using all data points with M , x. The shaded
region is consistent with 2/3 slope estimates. c, Slope estimated by using all
data points with M . x. The shaded region is consistent with 3/4 slope

estimates. d, Exponents estimated for eight historical data sets using linear
regression (black filled circles): Lovegrove13, Lovegrove14, White10, White28,
Sieg16, McNab8, and Savage4 using species average data (‘Savage4’) and
binned data (‘Savage4 bin’). Exponents predicted using coefficients from
quadratic fits to McNab’s (red), Sieg’s (green), or Savage’s (blue) data and
the first three moments of log10M (Supplementary Information). Thick lines
represent uncorrected 95% confidence intervals. Thin lines are multiplicity
corrected intervals.
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1Already raised and fully established 9 years earlier. [14]
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Evolution has generally made things bigger1

“The Phantom Tollbooth”
by Norton Juster (1961). [24]

 Regression starting at low 𝑀 makes sense
 Regression starting at high 𝑀 makes …no sense

1Yes, yes, yes: insular dwarfism with the shrinkage
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Still going:

beneficial in that it allows for results to be expressed strictly in terms of deviations from the

symmetricWBE results, it does not as easily distinguish between positive and negative type

asymmetry, and in certain circumstances may even obscure the presence (or absence) of

asymmetry all together. For example, should both child branches have physical length scale

factors of 0.8, then the symmetric-difference length scale factors would have non-zero values

of D~g j;m ¼ 0:8 � ~gWBE and D~g j;n ¼ ~gWBE � 0:8. For a further exploration of this approach, see

S3 Text.

Results

Of significant interest is examining the effect of asymmetric branching on the predicted values

of the metabolic scaling exponent θ. As we are still working under the main principles of the

symmetricWBE model, we focus our study on the class of asymmetric networks that minimize

energy-loss during fluid transport, and that have a branching architecture that can be

Fig 2. Rendering of Selected Networks. An assortment of networks are presented with associated average (β, γ) and difference (Δβ,Δγ) scale

factors, and metabolic scaling exponents (θ). Note that in all of these cases there is no switching of asymmetry type either within or across

generations, and the scale factors are assumed to be constant both within and across branching generations. Networks (A) and (B) represent the

symmetric limits under the constraints associated with pulsatile flow (Eqs (16) and (17)) and constant flow (Eqs (20) and (21)), respectively. Networks

(C) and (D) represent the two extreme asymmetric limits. Networks (E) through (J) exhibit varying degrees of branching asymmetry while satisfying

the constraints associated with pulsatile flow. Each of these tree networks are represented as points that fall along the 3/4 metabolic scaling contour

as shown in Fig 4. Networks (I) through (P) satisfy constant laminar flow, and they also fall along the 3/4 metabolic scaling contour as shown in Fig 5.

https://doi.org/10.1371/journal.pcbi.1005394.g002

A general model for scaling in asymmetric networks

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1005394 March 20, 2017 6 / 25

“A general model for metabolic scaling in
self-similar asymmetric networks”
Brummer, Brummer, and Enquist,
PLoS Comput Biol, 13, e1005394, 2017. [8]

Wut?:
“Most importantly, we show that the 3/4 metabolic
scaling exponent from Kleiber’s Law can still be
attained within many asymmetric networks.”
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Oh no:
“Scale: The Universal Laws of Growth,
Innovation, Sustainability, and the Pace of
Life in Organisms, Cities, Economies, and
Companies”
by Geoffrey B. West (2017). [52]

Amazon reviews excerpts (so, so not fair but …):
 “Full of intriguing, big ideas but amazingly sloppy

both in details and exposition, especially
considering the author is a theoretical physicist.”

 “The beginning is terrible. He shows four graphs
to illustrate scaling relationships, none of which
have intelligible scales”

 “(he actually repeats several times that businesses
can die but are not really an animal - O RLY?)”
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Simple supply networks:

© 1999 Macmillan Magazines Ltd

letters to nature
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mean distance scales at least as L and at most as LD. The latter result
holds for a network with a one-dimensional topology as in a space-
Ælling spiral, whereas the former result is obtained when the
network has all links directed away from the source (or towards a
collection point or the outlet in the river basin). Indeed, C scales as
LD+1 for all directed networks (the Øow in all but the links of the
directed maximal network (Fig. 1b) are necessarily zero in these
cases) independent of whether they have loops or a tree-like
structure, provided Ib is non-negative on each link. Such solutions
do indeed exist and include all directed trees (Fig. 1c). These
solutions belong to the class of the most efÆcient networks in that
they lead to the smallest value of C. In such networks, B scales as CD/

(D+1). Thus, for D à 3, when quantities related to the network are
scaled with respect to C, we obtain quarter-power scaling rather
than the one-third power behaviour discussed earlier.
The application of our theorem to the problem of allometric

scaling in living organisms, which span size scales that range over
many orders of magnitude1±8, is straightforward. In spite of an
impressive array of scales and the accompanying diverse require-
ments in the resources needed for sustaining the organism, a robust
and common feature is that a variety of biological quantities
(generically denoted as Y) that are related to blood circulation
scale algebraically with the massM of the organism. The relation is
given as Y,Ms, where s is a scaling exponent1±8. Even though the
organisms are three-dimensional, the exponent s is usually consis-
tently found to be obtained from the fraction 1/4.

West, Brown and Enquist8 have constructed a model of space-
Ælling hierarchical networks of branching tubes to explain allo-
metric scaling. In our analysis, the massM of an organism scales as
the blood volume C, so that in the simplest and most efÆcient
scenario B,M3=4, which is the central result of allometric scaling1±10.
Many of the other exponents derived in ref. 8 follow from simple
dimensional analysis, thus accounting for their robustness, whereas
others depend on detailed assumptions. The scaling exponent is
universal. Our analysis shows that the basic result does not require
any assumptions regarding the hierarchical nature of the network
nor does it necessarily demand a tree-like structure. However, the
presence of a tree would greatly shorten the total length of the
network, thereby increasing its viability and efÆciency. Observed
differences in scaling within a species and between species1±7 could
arise from factors extrinsic to the network that limit the amount of
nutrients delivered to the sites (see Supplementary Information).
We now turn to a test of the theorem within the context of river

networks12. An elevation map of the soil heights of the rugged
landscape may be used to derive a spanning tree that deÆnes unique
routes from each location within the basin to the global outlet,
where the main stream is formed. Suitably accurate data and
objective procedures to extract the network are known, and the
reliability of the observational results are well established12. Each site
X in the basin is associated with a sub-basin that drains into it. The
role of the metabolic rate for this sub-basin is taken by the total
contributing area, which is deÆned by the recursion relation
AX à SZ[nnÖXÜAZ á 1, where nn(X) are the nearest neighbours of X
that drain into X through appropriate steepest-descent drainage
directions. Note that the added unity is the area of the elementary
pixel, the analogue of FX. Indeed, ifA is the area of the sub-basin that
drains into a given site X, the analogue of C is deÆned by SZ[gAZ
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Figure 1 Sketches of transportation networks. a, An example of a fully connected

network, deÆned as the connection pattern of links that join the sites, generically

denoted by X, characterized by different distances LX from the source O. The

nodenumber in the drawing represents the value ofLXdeÆned to be theminimum

number of sites encountered among all the routes along the network fromO to X.

The cross-hatched area represents the elementary service volume VX of one of

the sites. Each site X may be thought of as serving an elementary volume VX

requiring the necessary nutrient supply FX. Two sites are deÆned as neighbours if

their service volumes share a part of their boundaries of non-zero measure. The

arrows denote orientated links that are directed away from the source.b,Maximal

directed network. Only orientated links are retained from the fully connected

network. c, A directed spanning tree. Each site is connected to the source by a

single path, the shortest, belonging to the maximal network. d, A spiral pattern,

which yields limiting scaling behaviour. Note that within the assumed framework

of local connectivity, the possibility of explosion patterns11 connecting all sites

directly to the source is not admissible.
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Figure 2 Allometric scaling in river networks. Double logarithmic plot of

C ~ SX[gAX versus A for three river networks characterized by different climates,

geology and geographic locations (Dry Fork, West Virginia, 586 km2, digital terrain

map (DTM) size 303 30m2; Island Creek, Idaho, 260 km2, DTM size 303 30m2;

Tirso, Italy, 2,024 km2, DTM size 2373 237m2). The experimental points are

obtained by binning total contributing areas, and computing the ensemble

average of the sum of the inner areas for each sub-basin within the binned

interval. The Ægure uses pixel units in which the smallest area element is

assigned a unit value. Also plotted is the predicted scaling relationship with

slope 3/2. The inset shows the raw data from the Tirso basin before any binning

has been done.

 Banavar et al.,
Nature,
(1999) [1].

 Flow rate
argument.

 Ignore
impedance.

 Very general
attempt to
find most
efficient
transportation
networks.
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Simple supply networks

 Banavar et al. find ‘most efficient’ networks with

𝑃 ∝ 𝑀 𝑑/(𝑑+1)

 …but also find

𝑉network ∝ 𝑀 (𝑑+1)/𝑑

 𝑑 = 3:
𝑉blood ∝ 𝑀 4/3

 Consider a 3 g shrew with 𝑉blood = 0.1𝑉body

 ⇒ 3000 kg elephant with 𝑉blood = 10𝑉body
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Geometric argument
Optimal Form of Branching Supply and Collection Networks

Peter Sheridan Dodds*

Department of Mathematics and Statistics, Center for Complex Systems,
and the Vermont Advanced Computing Center, University of Vermont, Burlington, Vermont 05401, USA

(Received 9 February 2009; published 27 January 2010)

For the problem of efficiently supplying material to a spatial region from a single source, we present a

simple scaling argument based on branching network volume minimization that identifies limits to the

scaling of sink density. We discuss implications for two fundamental and unresolved problems in

organismal biology and geomorphology: how basal metabolism scales with body size for homeotherms

and the scaling of drainage basin shape on eroding landscapes.

DOI: 10.1103/PhysRevLett.104.048702 PACS numbers: 89.75.Hc, 87.19.U!, 92.40.Gc

In both natural and man-made systems, branching net-
works universally facilitate the essential task of supplying
material from a central source to a widely distributed sink
population. Branching networks also underlie the comple-
mentary process of collecting material from many sources
at a single sink. Such networks typically exhibit structural
self-similarity over many orders of magnitude: river net-
works drain continents [1–3], arterial and venal networks
move blood between the macroscopic heart and micro-
scopic capillaries [4], and trees and plants orient leaves
in space taking on the roles of both structure and
transportation.

We address the following questions regarding supply
networks. (1) What is the minimum network volume re-
quired to continually supply material from a source to a
population of sinks in some spatial region!? (2) How does
this optimal solution scale if ! is rescaled allometrically?
(For convenience, we use the language of distribution, i.e.,
a single source supplying many sinks.) Our approach is
inspired by that of Banavar et al. [5,6] who sought to derive
scaling properties of optimal transportation networks in
isometrically growing regions based on a flow rate argu-
ment; Banavar et al.’s approach followed the seminal work
of West et al. [7] who suggested supply networks were key
to understanding the metabolic limitations of organisms,
and focused on network impedance minimization (see
[8,9]). In contrast to this previous work, our treatment is
explicitly geometric. We also accommodate four other key
features: the ambient dimension, allometrically growing
regions, variable sink density, and varying speed of mate-
rial transportation.

We consider the problem of network supply for a general
class of d-dimensional spatial regions in a D " d dimen-
sional space. Each region ! has volume V and overall
dimensions L1 # L2 # $ $ $ # Ld [see Fig. 1(a)]. We allow
these length scales to scale as Li / V!i, creating families
of allometrically similar regions. For isometric growth, all
dimensions scale uniformly meaning !i ¼ 1=d, while for
allometric growth, we must have at least one of the f!ig
being different. For the general case of allometry, we

choose an ordering of f!ig such that the length scales are
arranged from most dominant to least dominant: !max ¼
!1 " $ $ $ " !d.
We assume that isolated sinks are located throughout a

contiguous spatial region ! (volume V) which contains a

single source located at ~x ¼ ~0. We allow sink density to
follow "& "0ðVÞð1þ ak ~xkÞ!# where a is fixed, # " 0,
and k ~xk is the distance from the source. When the exponent
# ¼ 0, " is constant throughout the region (as for capil-
laries in organisms), but remains a function of the region’s

b)

a)

c)

FIG. 1. (a) We consider families of d-dimensional spatial
regions that scale allometrically with Li / V!i, and exist in a
D-dimensional space where D " d. For the d ¼ D ¼ 2 example
shown, !max ¼ !1 > !2, and L1 grows faster than L2. We
require that each spatial region is star-convex, i.e., from at least
one point all other points are directly observable, and the single
source must be located at any one of these central points.
(b) Distribution (or collection) networks can be thought of as a
superposition of virtual vessels. In the example shown, the
source (circle) supplies material to the three sinks (squares).
(c) Allowing virtual vessels to expand as they move away from
the source captures a potential decrease in speed in material flow.
For scaling of branching network form to be affected, the radius
r of a virtual vessel must scale with vessel length s (measured
from the sink) as s!$.

PRL 104, 048702 (2010) P HY S I CA L R EV I EW LE T T E R S
week ending

29 JANUARY 2010

0031-9007=10=104(4)=048702(4) 048702-1 ! 2010 The American Physical Society

“Optimal Form of Branching Supply and
Collection Networks”
Peter Sheridan Dodds,
Phys. Rev. Lett., 104, 048702, 2010. [12]

 Consider one source supplying many sinks in a
𝑑-dim. volume in a 𝐷-dim. ambient space.

 Assume sinks are invariant.
 Assume sink density 𝜌 = 𝜌(𝑉 ).
 Assume some cap on flow speed of material.
 See network as a bundle of virtual vessels:
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Geometric argument

 Q: how does the number of sustainable sinks
𝑁sinks scale with volume 𝑉 for the most efficient
network design?

 Or: what is the highest 𝛼 for 𝑁sinks ∝ 𝑉 𝛼?
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Geometric argument

 Allometrically growing regions:

Ω Ω L’2

L 1 L’

2L

1

(V)
(V’)

 Have 𝑑 length scales which scale as

𝐿𝑖 ∝ 𝑉 𝛾𝑖 where 𝛾1 + 𝛾2 + … + 𝛾𝑑 = 1.

 For isometric growth, 𝛾𝑖 = 1/𝑑.
 For allometric growth, we must have at least two

of the {𝛾𝑖} being different
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Spherical cows and pancake cows:
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Spherical cows and pancake cows:
 Question: How does the surface area 𝑆cow of our

two types of cows scale with cow volume 𝑉cow?
Insert question from assignment 4

 Question: For general families of regions, how
does surface area 𝑆 scale with volume 𝑉 ? Insert
question from assignment 4
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Geometric argument

 Best and worst configurations (Banavar et al.)

a b

 Rather obviously:
min𝑉net ∝ ∑ distances from source to sinks.
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Minimal network volume:

Real supply networks are close to optimal:

J.S
tat.M

ech.
(2006)

P
01015

Shape and efficiency in spatial distribution networks

(a) (b) (c) (d)

Figure 1. (a) Commuter rail network in the Boston area. The arrow marks
the assumed root of the network. (b) Star graph. (c) Minimum spanning tree.
(d) The model of equation (3) applied to the same set of stations.

Table 1. Number of vertices n, route factor q, and total edge length for each of
the networks described in the text, along with the equivalent results for the star
graphs and minimum spanning trees on the same vertices. (Note that the route
factor for the star graph is always 1 and so has been omitted from the table.)

Route factor Edge length (km)

Network n Actual MST Actual MST Star

Sewer system 23 922 1.59 2.93 498 421 102 998
Gas (WA) 226 1.13 1.82 5578 4374 245 034
Gas (IL) 490 1.48 2.42 6547 4009 59 595
Rail 126 1.14 1.61 559 499 3 272

set of n − 1 edges joining them such that all vertices belong to a single component and
the sum of the lengths of the edges is minimized4.)

To make the comparison with the star graph, we consider the distance from each non-
root vertex to the root, first along the edges of the network and second along a simple
Euclidean straight line, and calculate the mean ratio of these two distances over all such
vertices. Following [18], we refer to this quantity as the network’s route factor, and denote
it q:

q =
1

n − 1

n−1∑

i=1

li0
di0

, (1)

where li0 is the distance along the edges of the network from vertex i to the root (which
has label 0), and di0 is the direct Euclidean distance. If there is more than one path
through the network to the root, we take the shortest one. Thus, for example, q = 2
would imply that on average the shortest path from a vertex to the root through the
network is twice as long as a direct straight-line connection. The smallest possible value
of the route factor is 1, which is achieved by the star graph.

The route factors for our four networks are shown in table 1. As we can see, the
networks are remarkably efficient in this sense, with route factors quite close to 1. Values

4 If we are not restricted to the specified vertex set but are allowed to add vertices freely, then the optimal solution
is the Steiner tree; in practice we find that there is little difference between results for minimum spanning and
Steiner trees in the present context.

doi:10.1088/1742-5468/2006/01/P01015 4

Gastner and Newman (2006): “Shape and efficiency in
spatial distribution networks” [16]
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Rules for Biologically Inspired
Adaptive Network Design
Atsushi Tero,1,2 Seiji Takagi,1 Tetsu Saigusa,3 Kentaro Ito,1 Dan P. Bebber,4 Mark D. Fricker,4
Kenji Yumiki,5 Ryo Kobayashi,5,6 Toshiyuki Nakagaki1,6*
Transport networks are ubiquitous in both social and biological systems. Robust network performance
involves a complex trade-off involving cost, transport efficiency, and fault tolerance. Biological
networks have been honed by many cycles of evolutionary selection pressure and are likely to yield
reasonable solutions to such combinatorial optimization problems. Furthermore, they develop without
centralized control and may represent a readily scalable solution for growing networks in general. We
show that the slime mold Physarum polycephalum forms networks with comparable efficiency, fault
tolerance, and cost to those of real-world infrastructure networks—in this case, the Tokyo rail system.
The core mechanisms needed for adaptive network formation can be captured in a biologically
inspired mathematical model that may be useful to guide network construction in other domains.

Transport networks are a critical part of the
infrastructure needed to operate a modern
industrial society and facilitate efficient

movement of people, resources, energy, and
information. Despite their importance, most net-
works have emerged without clear global design
principles and are constrained by the priorities
imposed at their initiation. Thus, the main motiva-
tion historically was to achieve high transport
efficiency at reasonable cost, but with correspond-
ingly less emphasis on making systems tolerant to
interruption or failure. Introducing robustness
inevitably requires additional redundant pathways
that are not cost-effective in the short term. In recent
years, the spectacular failure of key infrastructure

such as power grids (1, 2), financial systems (3, 4),
airline baggage-handling systems (5), and railway
networks(6),aswellasthepredictedvulnerabilityof
systems such as information networks (7) or supply
networks (8) to attack, have highlighted the need to
develop networks with greater intrinsic resilience.

Some organisms grow in the form of an inter-
connected network as part of their normal forag-
ing strategy to discover and exploit new resources
(9–12). Such systems continuously adapt to their
environment and must balance the cost of produc-
ing an efficient network with the consequences of
even limited failure in a competitive world. Unlike
anthropogenic infrastructure systems, these biolog-
ical networks have been subjected to successive
rounds of evolutionary selection and are likely to
have reached a point at which cost, efficiency, and
resilience are appropriately balanced. Drawing in-
spiration from biology has led to useful approaches
to problem-solving such as neural networks, ge-
netic algorithms, and efficient search routines de-
veloped from ant colony optimization algorithms
(13). We exploited the slime mold Physarum
polycephalum to develop a biologically inspired
model for adaptive network development.

Physarum is a large, single-celled amoeboid
organism that forages for patchily distributed
food sources. The individual plasmodium ini-
tially explores with a relatively contiguous for-
aging margin to maximize the area searched.
However, behind the margin, this is resolved into
a tubular network linking the discovered food
sources through direct connections, additional in-
termediate junctions (Steiner points) that reduce
the overall length of the connecting network,
and the formation of occasional cross-links that
improve overall transport efficiency and resil-
ience (11, 12). The growth of the plasmodium is
influenced by the characteristics of the sub-
strate (14) and can be constrained by physical
barriers (15) or influenced by the light regime
(16), facilitating experimental investigation of
the rules underlying network formation. Thus,
for example, Physarum can find the shortest
path through a maze (15–17) or connect dif-
ferent arrays of food sources in an efficient
manner with low total length (TL) yet short
averageminimum distance (MD) between pairs
of food sources (FSs), with a high degree of
fault tolerance (FT) to accidental disconnection
(11, 18, 19). Capturing the essence of this sys-
tem in simple rules might be useful in guiding
the development of decentralized networks in
other domains.

We observed Physarum connecting a template
of 36 FSs that represented geographical locations
of cities in the Tokyo area, and compared the result
with the actual rail network in Japan. The
Physarum plasmodium was allowed to grow from
Tokyo and initially filled much of the available
land space, but then concentrated on FSs by
thinning out the network to leave a subset of larger,
interconnecting tubes (Fig. 1). An alternative
protocol, in which the plasmodium was allowed
to extend fully in the available space and the FSs
were then presented simultaneously, yielded sim-
ilar results. To complete the network formation, we
allowed any excess volume of plasmodium to

1Research Institute for Electronic Science, Hokkaido University,
Sapporo 060-0812, Japan. 2PRESTO, JST, 4-1-8 Honcho,
Kawaguchi, Saitama, Japan. 3Graduate School of Engineering,
Hokkaido University, Sapporo 060-8628, Japan. 4Department of
Plant Sciences, University of Oxford, Oxford OX1 3RB, UK.
5Department of Mathematical and Life Sciences, Hiroshima
University, Higashi-Hiroshima 739-8526, Japan. 6JST, CREST, 5
Sanbancho, Chiyoda-ku, Tokyo, 102-0075, Japan.
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“Rules for Biologically Inspired Adaptive
Network Design”
Tero et al.,
Science, 327, 439-442, 2010. [49]

Urban deslime in action:
https://www.youtube.com/watch?v=GwKuFREOgmo
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Minimal network volume:

We add one more element:

2rsink2rsource

ℓ

 Vessel cross-sectional area may vary with distance
from the source.

 Flow rate increases as cross-sectional area
decreases.

 e.g., a collection network may have vessels
tapering as they approach the central sink.

 Find that vessel volume 𝑣 must scale with vessel
length ℓ to affect overall system scalings.
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Minimal network volume:

Effecting scaling:

2rsink2rsource

ℓ

 Consider vessel radius 𝑟 ∝ (ℓ + 1)−𝜖, tapering from
𝑟 = 𝑟max where 𝜖 ≥ 0.

 Gives 𝑣 ∝ ℓ1−2𝜖 if 𝜖 < 1/2
 Gives 𝑣 ∝ 1 − ℓ−(2𝜖−1) → 1 for large ℓ if 𝜖 > 1/2
 Previously, we looked at 𝜖 = 0 only.
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Minimal network volume:
For 0 ≤ 𝜖 < 1/2, approximate network volume by
integral over region:

min𝑉net ∝ ∫
Ω𝑑,𝐷(𝑉 )

𝜌 || ⃗𝑥||1−2𝜖 d ⃗𝑥

Insert question from assignment 4

∝ 𝜌𝑉 1+𝛾max(1−2𝜖) where 𝛾max = max𝑖𝛾𝑖.
For 𝜖 > 1/2, find simply that

min𝑉net ∝ 𝜌𝑉

 So if supply lines can taper fast enough and
without limit, minimum network volume can be
made negligible.
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For 0 ≤ 𝜖 < 1/2:
 min𝑉net ∝ 𝜌𝑉 1+𝛾max(1−2𝜖)

 If scaling is isometric, we have 𝛾max = 1/𝑑:

min𝑉net/iso ∝ 𝜌𝑉 1+(1−2𝜖)/𝑑

 If scaling is allometric, we have 𝛾max = 𝛾allo > 1/𝑑:
and

min𝑉net/allo ∝ 𝜌𝑉 1+(1−2𝜖)𝛾allo

 Isometrically growing volumes require less
network volume than allometrically growing
volumes:

min𝑉net/iso
min𝑉net/allo

→ 0 as 𝑉 → ∞

PoCS
@pocsvox

Optimal Supply
Networks II

Metabolism and
Truthicide

Death by
fractions

Measuring
exponents

River networks

Earlier theories

Geometric
argument

Conclusion

References

.
.
.
.
.

.
89 of 124

For 𝜖 > 1/2:
 min𝑉net ∝ 𝜌𝑉
 Network volume scaling is now independent of

overall shape scaling.

Limits to scaling
 Can argue that 𝜖 must effectively be 0 for real

networks over large enough scales.
 Limit to how fast material can move, and how

small material packages can be.
 e.g., blood velocity and blood cell size.
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This
is a
really
clean

slide
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Blood networks

 Velocity at capillaries and aorta approximately
constant across body size [51]: 𝜖 = 0.

 Material costly ⇒ expect lower optimal bound of
𝑉net ∝ 𝜌𝑉 (𝑑+1)/𝑑 to be followed closely.

 For cardiovascular networks, 𝑑 = 𝐷 = 3.
 Blood volume scales linearly with body volume [47],

𝑉net ∝ 𝑉 .
 Sink density must ∴ decrease as volume increases:

𝜌 ∝ 𝑉 −1/𝑑.

 Density of suppliable sinks decreases with
organism size.
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Blood networks

 Then 𝑃 , the rate of overall energy use in Ω, can at
most scale with volume as

𝑃 ∝ 𝜌𝑉 ∝ 𝜌 𝑀 ∝ 𝑀 (𝑑−1)/𝑑

 For 𝑑 = 3 dimensional organisms, we have

𝑃 ∝ 𝑀 2/3

 Including other constraints may raise scaling
exponent to a higher, less efficient value.
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 Exciting bonus: Scaling obtained by the supply
network story and the surface-area law only
match for isometrically growing shapes.
Insert question from assignment 4
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Recall:

 The exponent 𝛼 = 2/3 works for all birds and
mammals up to 10–30 kg

 For mammals > 10–30 kg, maybe we have a new
scaling regime

 Economos: limb length break in scaling around 20
kg

 White and Seymour, 2005: unhappy with large
herbivore measurements. Find 𝛼 ≃ 0.686 ± 0.014
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Prefactor:

Stefan-Boltzmann law:


d𝐸
d𝑡 = 𝜎𝑆𝑇 4

where 𝑆 is surface and 𝑇 is temperature.
 Very rough estimate of prefactor based on scaling

of normal mammalian body temperature and
surface area 𝑆:

𝐵 ≃ 105𝑀2/3erg/sec.

 Measured for 𝑀 ≤ 10 kg:

𝐵 = 2.57 × 105𝑀2/3erg/sec.
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River networks
 View river networks as collection networks.
 Many sources and one sink.
 𝜖?
 Assume 𝜌 is constant over time and 𝜖 = 0:

𝑉net ∝ 𝜌𝑉 (𝑑+1)/𝑑 = constant × 𝑉 3/2

 Network volume grows faster than basin ‘volume’
(really area).

 It’s all okay:
Landscapes are 𝑑=2 surfaces living in 𝐷=3
dimensions.

 Streams can grow not just in width but in depth …
 If 𝜖 > 0, 𝑉net will grow more slowly but 3/2 appears

to be confirmed from real data.
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Hack’s law
 Volume of water in river network can be

calculated by adding up basin areas
 Flows sum in such a way that

𝑉net = ∑
all pixels

𝑎pixel 𝑖

 Hack’s law again:
ℓ ∼ 𝑎ℎ

 Can argue
𝑉net ∝ 𝑉 1+ℎ

basin = 𝑎1+ℎ
basin

where ℎ is Hack’s exponent.
 ∴ minimal volume calculations gives

ℎ = 1/2
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Real data:

 Banavar et al.’s
approach [1] is
okay because 𝜌
really is constant.

 The irony: shows
optimal basins
are isometric

 Optimal Hack’s
law: ℓ ∼ 𝑎ℎ with
ℎ = 1/2

 (Zzzzz)

© 1999 Macmillan Magazines Ltd
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mean distance scales at least as L and at most as LD. The latter result
holds for a network with a one-dimensional topology as in a space-
Ælling spiral, whereas the former result is obtained when the
network has all links directed away from the source (or towards a
collection point or the outlet in the river basin). Indeed, C scales as
LD+1 for all directed networks (the Øow in all but the links of the
directed maximal network (Fig. 1b) are necessarily zero in these
cases) independent of whether they have loops or a tree-like
structure, provided Ib is non-negative on each link. Such solutions
do indeed exist and include all directed trees (Fig. 1c). These
solutions belong to the class of the most efÆcient networks in that
they lead to the smallest value of C. In such networks, B scales as CD/

(D+1). Thus, for D à 3, when quantities related to the network are
scaled with respect to C, we obtain quarter-power scaling rather
than the one-third power behaviour discussed earlier.
The application of our theorem to the problem of allometric

scaling in living organisms, which span size scales that range over
many orders of magnitude1±8, is straightforward. In spite of an
impressive array of scales and the accompanying diverse require-
ments in the resources needed for sustaining the organism, a robust
and common feature is that a variety of biological quantities
(generically denoted as Y) that are related to blood circulation
scale algebraically with the massM of the organism. The relation is
given as Y,Ms, where s is a scaling exponent1±8. Even though the
organisms are three-dimensional, the exponent s is usually consis-
tently found to be obtained from the fraction 1/4.

West, Brown and Enquist8 have constructed a model of space-
Ælling hierarchical networks of branching tubes to explain allo-
metric scaling. In our analysis, the massM of an organism scales as
the blood volume C, so that in the simplest and most efÆcient
scenario B,M3=4, which is the central result of allometric scaling1±10.
Many of the other exponents derived in ref. 8 follow from simple
dimensional analysis, thus accounting for their robustness, whereas
others depend on detailed assumptions. The scaling exponent is
universal. Our analysis shows that the basic result does not require
any assumptions regarding the hierarchical nature of the network
nor does it necessarily demand a tree-like structure. However, the
presence of a tree would greatly shorten the total length of the
network, thereby increasing its viability and efÆciency. Observed
differences in scaling within a species and between species1±7 could
arise from factors extrinsic to the network that limit the amount of
nutrients delivered to the sites (see Supplementary Information).
We now turn to a test of the theorem within the context of river

networks12. An elevation map of the soil heights of the rugged
landscape may be used to derive a spanning tree that deÆnes unique
routes from each location within the basin to the global outlet,
where the main stream is formed. Suitably accurate data and
objective procedures to extract the network are known, and the
reliability of the observational results are well established12. Each site
X in the basin is associated with a sub-basin that drains into it. The
role of the metabolic rate for this sub-basin is taken by the total
contributing area, which is deÆned by the recursion relation
AX à SZ[nnÖXÜAZ á 1, where nn(X) are the nearest neighbours of X
that drain into X through appropriate steepest-descent drainage
directions. Note that the added unity is the area of the elementary
pixel, the analogue of FX. Indeed, ifA is the area of the sub-basin that
drains into a given site X, the analogue of C is deÆned by SZ[gAZ
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Figure 1 Sketches of transportation networks. a, An example of a fully connected

network, deÆned as the connection pattern of links that join the sites, generically

denoted by X, characterized by different distances LX from the source O. The

nodenumber in the drawing represents the value ofLXdeÆned to be theminimum

number of sites encountered among all the routes along the network fromO to X.

The cross-hatched area represents the elementary service volume VX of one of

the sites. Each site X may be thought of as serving an elementary volume VX

requiring the necessary nutrient supply FX. Two sites are deÆned as neighbours if

their service volumes share a part of their boundaries of non-zero measure. The

arrows denote orientated links that are directed away from the source.b,Maximal

directed network. Only orientated links are retained from the fully connected

network. c, A directed spanning tree. Each site is connected to the source by a

single path, the shortest, belonging to the maximal network. d, A spiral pattern,

which yields limiting scaling behaviour. Note that within the assumed framework

of local connectivity, the possibility of explosion patterns11 connecting all sites

directly to the source is not admissible.
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Figure 2 Allometric scaling in river networks. Double logarithmic plot of

C ~ SX[gAX versus A for three river networks characterized by different climates,

geology and geographic locations (Dry Fork, West Virginia, 586 km2, digital terrain

map (DTM) size 303 30m2; Island Creek, Idaho, 260 km2, DTM size 303 30m2;

Tirso, Italy, 2,024 km2, DTM size 2373 237m2). The experimental points are

obtained by binning total contributing areas, and computing the ensemble

average of the sum of the inner areas for each sub-basin within the binned

interval. The Ægure uses pixel units in which the smallest area element is

assigned a unit value. Also plotted is the predicted scaling relationship with

slope 3/2. The inset shows the raw data from the Tirso basin before any binning

has been done.

From Banavar et al. (1999) [1]
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Even better—prefactors match up:
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The Cabal strikes back:

 Banavar et al., 2010, PNAS:
“A general basis for quarter-power scaling in
animals.” [2]

 “It has been known for decades that the metabolic
rate of animals scales with body mass with an
exponent that is almost always < 1, > 2/3, and
often very close to 3/4.”

 Cough, cough, cough, hack, wheeze, cough.
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Stories—Darth Quarter:
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Some people understand it’s truly a disaster:

PoCS
@pocsvox

Optimal Supply
Networks II

Metabolism and
Truthicide

Death by
fractions

Measuring
exponents

River networks

Earlier theories

Geometric
argument

Conclusion

References

.
.
.
.
.

.
104 of 124

The unnecessary bafflement continues:

“Testing the metabolic theory of ecology” [40]

C. Price, J. S. Weitz, V. Savage, J. Stegen, A. Clarke, D.
Coomes, P. S. Dodds, R. Etienne, A. Kerkhoff, K.
McCulloh, K. Niklas, H. Olff, and N. Swenson
Ecology Letters, 15, 1465–1474, 2012.
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Artisanal, handcrafted silliness:
“Critical truths about power laws” [48]
Stumpf and Porter, Science, 2012
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relationship between body size x and meta-
bolic performance y, but this relationship has 
been supported empirically over many orders 
of magnitude (from bacteria to whales). The 
clear dependence of various biological char-
acteristics on body size is, of course, insuf-
fi cient by itself to infer a causal relationship, 
but few people would dispute the reality of 
such a relationship.

Purported power laws fall loosely into 
two categories: those with statistical sup-
port—by itself a nontrivial task ( 15)—and 
those without it. Numerous scholars have 
neglected to apply careful statistical tests 
to data that were reported to exhibit power-
law relationships; so-called “scale-free” net-
works are perhaps the best known and most 
widely discussed examples ( 2,  6,  13). How-
ever, when formal statistical tools have been 
applied to network data, evidence favoring 
power-law relationships has almost always 
been negligible ( 7,  15,  16).

As a rule of thumb, a candidate power 
law should exhibit an approximately linear 
relationship on a log-log plot over at least 
two orders of magnitude in both the x and y 
axes. This criterion rules out many data sets, 
including just about all biological networks. 
Examination ( 15) of the statistical support for 
numerous reported power laws has revealed 
that the overwhelming majority of them failed 
statistical testing (sometimes rather epically). 
For example, a recent study found ( 17) that 
the number of interacting partners (i.e., the 
degree) of proteins in yeast is power-law dis-
tributed, but careful statistical analysis refutes 
this claim ( 18). Noise or incomplete data can 
further distort the picture ( 19). Trying to dis-
cern a power-law relationship by eyeballing 
straight lines (or even trying to find them 
using, for example, least-squares fi tting) on 
log-log plots of data can be appealing, but the 
human ability to detect patterns from even the 
fl imsiest of evidence might lead researchers 
to conclude the existence of a bona fi de power 
law based on purely qualitative criteria.

Even if a reported power law surmounts 
the statistical hurdle, it often lacks a genera-
tive mechanism. Indeed, the same power law 
(that is, with the same value of λ) can arise 
from many different mechanisms ( 3). In the 
absence of a mechanism, purely empirical 
fitting does have the potential to be inter-
esting, but one should simply report such 
results in a neutral fashion rather than pro-
vide unsubstantiated suggestions of univer-
sality. The fact that heavy-tailed distributions 
occur in complex systems is certainly impor-
tant (because it implies that extreme events 
occur more frequently than would otherwise 
be the case), and statistically sound empiri-

cal fi ts of event data, when used with caution, 
can help in data interpretation (as it is cer-
tainly useful to estimate how often extreme 
events occur in a given system). However, a 
statistically sound power law is no evidence 
of universality without a concrete underlying 
theory to support it. Moreover, knowledge of 
whether or not a distribution is heavy-tailed is 
far more important than whether it can be fi t 
using a power law.

Suppose that one generates a large num-
ber of independent random variables xi drawn 
from heavy-tailed distributions, which need 
not be power laws. Then, by a version of the 
central limit theorem (CLT), the sum of these 
random variables is generically power-law 
distributed ( 20). Few people today would 
express amazement at fi nding that the CLT 
holds in a given context (when one adds up 
random variables drawn from distributions 
with fi nite moments), and the CLT is a vital 
tool in statistics, providing the basis for many 
rigorous scientific analyses. It also holds 
ubiquitously, including in situations in which 
random variables are drawn from heavy-
tailed distributions; in such cases, however, 
power laws replace the Gaussian distribution 
as the limiting situation. One thus expects 
power laws to emerge naturally for rather 
unspecifi c reasons, simply as a by-product of 
mixing multiple (potentially rather disparate) 
heavy-tailed distributions. For example, it is 
possible to decompose a supposedly “power-
law” degree distribution of a metabolic net-
work into separate distributions of metabo-

lites of different types ( 16). The degree dis-
tribution for each of these metabolite classes 
is different, refl ecting the different roles that 
they play in the organism.

Finally, and perhaps most importantly, 
even if the statistics of a purported power 
law have been done correctly, there is a the-
ory that underlies its generative process, and 
there is ample and uncontroversial empiri-
cal support for it, a critical question remains: 
What genuinely new insights have been 
gained by having found a robust, mecha-
nistically supported, and in-all-other-ways 
superb power law? We believe that such 
insights are very rare.

Power laws do have an interesting and 
possibly even important role to play, but one 
needs to be very cautious when interpreting 
them. The most productive use of power laws 
in the real world will therefore, we believe, 
come from recognizing their ubiquity (and 
perhaps exploiting them to simplify or even 
motivate subsequent analysis) rather than 
from imbuing them with a vague and mistak-
enly mystical sense of universality. 
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Zipf‘s Law

C. elegans nervous system

S. cerevisiae protein interaction network

How good is your power law? The chart refl ects 
the level of statistical support—as measured in ( 16, 
 21)—and our opinion about the mechanistic sophis-
tication underlying hypothetical generative models 
for various reported power laws. Some relation-
ships are identifi ed by name; the others refl ect the 
general characteristics of a wide range of reported 
power laws. Allometric scaling stands out from the 
other power laws reported for complex systems. 10.1126/science.1216142
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relationship between body size x and meta-
bolic performance y, but this relationship has 
been supported empirically over many orders 
of magnitude (from bacteria to whales). The 
clear dependence of various biological char-
acteristics on body size is, of course, insuf-
fi cient by itself to infer a causal relationship, 
but few people would dispute the reality of 
such a relationship.

Purported power laws fall loosely into 
two categories: those with statistical sup-
port—by itself a nontrivial task ( 15)—and 
those without it. Numerous scholars have 
neglected to apply careful statistical tests 
to data that were reported to exhibit power-
law relationships; so-called “scale-free” net-
works are perhaps the best known and most 
widely discussed examples ( 2,  6,  13). How-
ever, when formal statistical tools have been 
applied to network data, evidence favoring 
power-law relationships has almost always 
been negligible ( 7,  15,  16).

As a rule of thumb, a candidate power 
law should exhibit an approximately linear 
relationship on a log-log plot over at least 
two orders of magnitude in both the x and y 
axes. This criterion rules out many data sets, 
including just about all biological networks. 
Examination ( 15) of the statistical support for 
numerous reported power laws has revealed 
that the overwhelming majority of them failed 
statistical testing (sometimes rather epically). 
For example, a recent study found ( 17) that 
the number of interacting partners (i.e., the 
degree) of proteins in yeast is power-law dis-
tributed, but careful statistical analysis refutes 
this claim ( 18). Noise or incomplete data can 
further distort the picture ( 19). Trying to dis-
cern a power-law relationship by eyeballing 
straight lines (or even trying to find them 
using, for example, least-squares fi tting) on 
log-log plots of data can be appealing, but the 
human ability to detect patterns from even the 
fl imsiest of evidence might lead researchers 
to conclude the existence of a bona fi de power 
law based on purely qualitative criteria.

Even if a reported power law surmounts 
the statistical hurdle, it often lacks a genera-
tive mechanism. Indeed, the same power law 
(that is, with the same value of λ) can arise 
from many different mechanisms ( 3). In the 
absence of a mechanism, purely empirical 
fitting does have the potential to be inter-
esting, but one should simply report such 
results in a neutral fashion rather than pro-
vide unsubstantiated suggestions of univer-
sality. The fact that heavy-tailed distributions 
occur in complex systems is certainly impor-
tant (because it implies that extreme events 
occur more frequently than would otherwise 
be the case), and statistically sound empiri-

cal fi ts of event data, when used with caution, 
can help in data interpretation (as it is cer-
tainly useful to estimate how often extreme 
events occur in a given system). However, a 
statistically sound power law is no evidence 
of universality without a concrete underlying 
theory to support it. Moreover, knowledge of 
whether or not a distribution is heavy-tailed is 
far more important than whether it can be fi t 
using a power law.

Suppose that one generates a large num-
ber of independent random variables xi drawn 
from heavy-tailed distributions, which need 
not be power laws. Then, by a version of the 
central limit theorem (CLT), the sum of these 
random variables is generically power-law 
distributed ( 20). Few people today would 
express amazement at fi nding that the CLT 
holds in a given context (when one adds up 
random variables drawn from distributions 
with fi nite moments), and the CLT is a vital 
tool in statistics, providing the basis for many 
rigorous scientific analyses. It also holds 
ubiquitously, including in situations in which 
random variables are drawn from heavy-
tailed distributions; in such cases, however, 
power laws replace the Gaussian distribution 
as the limiting situation. One thus expects 
power laws to emerge naturally for rather 
unspecifi c reasons, simply as a by-product of 
mixing multiple (potentially rather disparate) 
heavy-tailed distributions. For example, it is 
possible to decompose a supposedly “power-
law” degree distribution of a metabolic net-
work into separate distributions of metabo-

lites of different types ( 16). The degree dis-
tribution for each of these metabolite classes 
is different, refl ecting the different roles that 
they play in the organism.

Finally, and perhaps most importantly, 
even if the statistics of a purported power 
law have been done correctly, there is a the-
ory that underlies its generative process, and 
there is ample and uncontroversial empiri-
cal support for it, a critical question remains: 
What genuinely new insights have been 
gained by having found a robust, mecha-
nistically supported, and in-all-other-ways 
superb power law? We believe that such 
insights are very rare.

Power laws do have an interesting and 
possibly even important role to play, but one 
needs to be very cautious when interpreting 
them. The most productive use of power laws 
in the real world will therefore, we believe, 
come from recognizing their ubiquity (and 
perhaps exploiting them to simplify or even 
motivate subsequent analysis) rather than 
from imbuing them with a vague and mistak-
enly mystical sense of universality. 
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How good is your power law? The chart refl ects 
the level of statistical support—as measured in ( 16, 
 21)—and our opinion about the mechanistic sophis-
tication underlying hypothetical generative models 
for various reported power laws. Some relation-
ships are identifi ed by name; the others refl ect the 
general characteristics of a wide range of reported 
power laws. Allometric scaling stands out from the 
other power laws reported for complex systems. 10.1126/science.1216142
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 Call generalization of Central Limit Theorem,
stable distributions. Also: PLIPLO action.

 Summary: Wow.
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Conclusion

 Supply network story consistent with dimensional
analysis.

 Isometrically growing regions can be more efficiently
supplied than allometrically growing ones.

 Ambient and region dimensions matter
(𝐷 = 𝑑 versus 𝐷 > 𝑑).

 Deviations from optimal scaling suggest inefficiency
(e.g., gravity for organisms, geological boundaries).

 Actual details of branching networks not that
important.

 Exact nature of self-similarity varies.

 2/3-scaling lives on, largely in hiding.

 3/4-scaling? Jury ruled a mistrial.

 The truth will out. Maybe.

PoCS
@pocsvox

Optimal Supply
Networks II

Metabolism and
Truthicide

Death by
fractions

Measuring
exponents

River networks

Earlier theories

Geometric
argument

Conclusion

References

.
.
.
.
.

.
107 of 124

References I

[1] J. R. Banavar, A. Maritan, and A. Rinaldo.
Size and form in efficient transportation
networks.
Nature, 399:130–132, 1999. pdf

[2] J. R. Banavar, M. E. Moses, J. H. Brown, J. Damuth,
A. Rinaldo, R. M. Sibly, and A. Maritan.
A general basis for quarter-power scaling in
animals.
Proc. Natl. Acad. Sci., 107:15816–15820, 2010.
pdf

[3] P. Bennett and P. Harvey.
Active and resting metabolism in
birds—allometry, phylogeny and ecology.
J. Zool., 213:327–363, 1987. pdf

PoCS
@pocsvox

Optimal Supply
Networks II

Metabolism and
Truthicide

Death by
fractions

Measuring
exponents

River networks

Earlier theories

Geometric
argument

Conclusion

References

.
.
.
.
.

.
108 of 124

References II

[4] K. L. Blaxter, editor.
Energy Metabolism; Proceedings of the 3rd
symposium held at Troon, Scotland, May 1964.
Academic Press, New York, 1965.

[5] J. J. Blum.
On the geometry of four-dimensions and the
relationship between metabolism and body
mass.
J. Theor. Biol., 64:599–601, 1977. pdf

[6] S. Brody.
Bioenergetics and Growth.
Reinhold, New York, 1945.
reprint, . pdf

PoCS
@pocsvox

Optimal Supply
Networks II

Metabolism and
Truthicide

Death by
fractions

Measuring
exponents

River networks

Earlier theories

Geometric
argument

Conclusion

References

.
.
.
.
.

.
109 of 124

References III

[7] J. H. Brown, G. B. West, and B. J. Enquist.
Yes, West, Brown and Enquist’s model of
allometric scaling mathematically correct and
biologically relevant?
Functional Ecology, 19:735––738, 2005. pdf

[8] A. B. Brummer, S. V. M., and B. J. Enquist.
A general model for metabolic scaling in
self-similar asymmetric networks.
PLoS Comput Biol, 13, 2017. pdf

[9] E. Buckingham.
On physically similar systems: Illustrations of the
use of dimensional equations.
Phys. Rev., 4:345–376, 1914. pdf

PoCS
@pocsvox

Optimal Supply
Networks II

Metabolism and
Truthicide

Death by
fractions

Measuring
exponents

River networks

Earlier theories

Geometric
argument

Conclusion

References

.
.
.
.
.

.
110 of 124

References IV

[10] A. Clauset, C. R. Shalizi, and M. E. J. Newman.
Power-law distributions in empirical data.
SIAM Review, 51:661–703, 2009. pdf

[11] M. H. DeGroot.
Probability and Statistics.
Addison-Wesley, Reading, Massachusetts, 1975.

[12] P. S. Dodds.
Optimal form of branching supply and collection
networks.
Phys. Rev. Lett., 104(4):048702, 2010. pdf

[13] P. S. Dodds and D. H. Rothman.
Scaling, universality, and geomorphology.
Annu. Rev. Earth Planet. Sci., 28:571–610, 2000.
pdf

PoCS
@pocsvox

Optimal Supply
Networks II

Metabolism and
Truthicide

Death by
fractions

Measuring
exponents

River networks

Earlier theories

Geometric
argument

Conclusion

References

.
.
.
.
.

.
111 of 124

References V

[14] P. S. Dodds, D. H. Rothman, and J. S. Weitz.
Re-examination of the “3/4-law” of metabolism.
Journal of Theoretical Biology, 209:9–27, 2001.
pdf

[15] A. E. Economos.
Elastic and/or geometric similarity in mammalian
design.
Journal of Theoretical Biology, 103:167–172, 1983.
pdf

[16] M. T. Gastner and M. E. J. Newman.
Shape and efficiency in spatial distribution
networks.
J. Stat. Mech.: Theor. & Exp., 1:P01015, 2006.
pdf

PoCS
@pocsvox

Optimal Supply
Networks II

Metabolism and
Truthicide

Death by
fractions

Measuring
exponents

River networks

Earlier theories

Geometric
argument

Conclusion

References

.
.
.
.
.

.
112 of 124

References VI

[17] D. S. Glazier.
Beyond the ‘3/4-power law’: variation in the intra-
and interspecific scaling of metabolic rate in
animals.
Biol. Rev., 80:611–662, 2005. pdf

[18] D. S. Glazier.
The 3/4-power law is not universal: Evolution of
isometric, ontogenetic metabolic scaling in
pelagic animals.
BioScience, 56:325–332, 2006. pdf

[19] J. T. Hack.
Studies of longitudinal stream profiles in Virginia
and Maryland.
United States Geological Survey Professional
Paper, 294-B:45–97, 1957. pdf

PoCS
@pocsvox

Optimal Supply
Networks II

Metabolism and
Truthicide

Death by
fractions

Measuring
exponents

River networks

Earlier theories

Geometric
argument

Conclusion

References

.
.
.
.
.

.
113 of 124

References VII

[20] A. Hemmingsen.
The relation of standard (basal) energy
metabolism to total fresh weight of living
organisms.
Rep. Steno Mem. Hosp., 4:1–58, 1950. pdf

[21] A. Hemmingsen.
Energy metabolism as related to body size and
respiratory surfaces, and its evolution.
Rep. Steno Mem. Hosp., 9:1–110, 1960. pdf

[22] A. A. Heusner.
Size and power in mammals.
Journal of Experimental Biology, 160:25–54, 1991.
pdf

PoCS
@pocsvox

Optimal Supply
Networks II

Metabolism and
Truthicide

Death by
fractions

Measuring
exponents

River networks

Earlier theories

Geometric
argument

Conclusion

References

.
.
.
.
.

.
114 of 124

References VIII

[23] M. R. Hirt, W. Jetz, B. C. Rall, and U. Brose.
A general scaling law reveals why the largest
animals are not the fastest.
Nature Ecology & Evolution, 1:1116, 2017. pdf

[24] N. Juster.
The Phantom Tollbooth.
Random House, 1961.

[25] M. Kleiber.
Body size and metabolism.
Hilgardia, 6:315–353, 1932. pdf

[26] M. Kleiber.
The Fire of Life. An Introduction to Animal
Energetics.
Wiley, New York, 1961.



PoCS
@pocsvox

Optimal Supply
Networks II

Metabolism and
Truthicide

Death by
fractions

Measuring
exponents

River networks

Earlier theories

Geometric
argument

Conclusion

References

.
.
.
.
.

.
115 of 124

References IX

[27] T. Kolokotrones, V. Savage, E. J. Deeds, and
W. Fontana.
Curvature in metabolic scaling.
Nature, 464:753, 2010. pdf

[28] J. Kozłowski and M. Konarzewski.
Is West, Brown and Enquist’s model of
allometric scaling mathematically correct and
biologically relevant?
Functional Ecology, 18:283––289, 2004. pdf

[29] P. La Barbera and R. Rosso.
On the fractal dimension of stream networks.
Water Resources Research, 25(4):735–741, 1989.
pdf

PoCS
@pocsvox

Optimal Supply
Networks II

Metabolism and
Truthicide

Death by
fractions

Measuring
exponents

River networks

Earlier theories

Geometric
argument

Conclusion

References

.
.
.
.
.

.
116 of 124

References X

[30] N. Lane.
Power, Sex, Suicide: Mitochondria and the
Meaning of Life.
Oxford University Press, Oxford, UK, 2005.

[31] L. B. Leopold.
A View of the River.
Harvard University Press, Cambridge, MA, 1994.

[32] T. McMahon.
Size and shape in biology.
Science, 179:1201–1204, 1973. pdf

[33] T. A. McMahon.
Allometry and biomechanics: Limb bones in adult
ungulates.
The American Naturalist, 109:547–563, 1975.
pdf

PoCS
@pocsvox

Optimal Supply
Networks II

Metabolism and
Truthicide

Death by
fractions

Measuring
exponents

River networks

Earlier theories

Geometric
argument

Conclusion

References

.
.
.
.
.

.
117 of 124

References XI

[34] T. A. McMahon and J. T. Bonner.
On Size and Life.
Scientific American Library, New York, 1983.

[35] N. Meyer-Vernet and J.-P. Rospars.
How fast do living organisms move: Maximum
speeds from bacteria to elephants and whales.
American Journal of Physics, pages 719–722,
2015. pdf

[36] D. R. Montgomery and W. E. Dietrich.
Channel initiation and the problem of landscape
scale.
Science, 255:826–30, 1992. pdf

PoCS
@pocsvox

Optimal Supply
Networks II

Metabolism and
Truthicide

Death by
fractions

Measuring
exponents

River networks

Earlier theories

Geometric
argument

Conclusion

References

.
.
.
.
.

.
118 of 124

References XII

[37] C. D. Murray.
A relationship between circumference and weight
in trees and its bearing on branching angles.
J. Gen. Physiol., 10:725–729, 1927. pdf

[38] M. G. Newberry, E. D. B., and S. V. M.
Testing foundations of biological scaling theory
using automated measurements of vascular
networks.
PLoS Comput Biol, 11:e1004455, 2015. pdf

[39] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and
B. P. Flannery.
Numerical Recipes in C.
Cambridge University Press, second edition, 1992.

PoCS
@pocsvox

Optimal Supply
Networks II

Metabolism and
Truthicide

Death by
fractions

Measuring
exponents

River networks

Earlier theories

Geometric
argument

Conclusion

References

.
.
.
.
.

.
119 of 124

References XIII

[40] C. Price, J. S. Weitz, V. Savage, S. Stegen, A. Clarke,
D. Coomes, P. S. Dodds, R. Etienne, A. Kerkhoff,
K. McCulloh, K. Niklas, H. Olff, and N. Swenson.
Testing the metabolic theory of ecology.
Ecology Letters, 15:1465–1474, 2012. pdf

[41] J. M. V. Rayner.
Linear relations in biomechanics: the statistics of
scaling functions.
J. Zool. Lond. (A), 206:415–439, 1985. pdf

[42] M. Rubner.
Ueber den einfluss der körpergrösse auf stoffund
kraftwechsel.
Z. Biol., 19:535–562, 1883. pdf

PoCS
@pocsvox

Optimal Supply
Networks II

Metabolism and
Truthicide

Death by
fractions

Measuring
exponents

River networks

Earlier theories

Geometric
argument

Conclusion

References

.
.
.
.
.

.
120 of 124

References XIV

[43] P. A. Samuelson.
A note on alternative regressions.
Econometrica, 10:80–83, 1942. pdf

[44] Sarrus and Rameaux.
Rapport sur une mémoire adressé à l’Académie
de Médecine.
Bull. Acad. R. Méd. (Paris), 3:1094–1100, 1838–39.

[45] V. M. Savage, E. J. Deeds, and W. Fontana.
Sizing up allometric scaling theory.
PLoS Computational Biology, 4:e1000171, 2008.
pdf

PoCS
@pocsvox

Optimal Supply
Networks II

Metabolism and
Truthicide

Death by
fractions

Measuring
exponents

River networks

Earlier theories

Geometric
argument

Conclusion

References

.
.
.
.
.

.
121 of 124

References XV

[46] J. Speakman.
On Blum’s four-dimensional geometric
explanation for the 0.75 exponent in metabolic
allometry.
J. Theor. Biol., 144(1):139–141, 1990. pdf

[47] W. R. Stahl.
Scaling of respiratory variables in mammals.
Journal of Applied Physiology, 22:453–460, 1967.

[48] M. P. H. Stumpf and M. A. Porter.
Critical truths about power laws.
Science, 335:665–666, 2012. pdf

PoCS
@pocsvox

Optimal Supply
Networks II

Metabolism and
Truthicide

Death by
fractions

Measuring
exponents

River networks

Earlier theories

Geometric
argument

Conclusion

References

.
.
.
.
.

.
122 of 124

References XVI

[49] A. Tero, S. Takagi, T. Saigusa, K. Ito, D. P. Bebber,
M. D. Fricker, K. Yumiki, R. Kobayashi, and
T. Nakagaki.
Rules for biologically inspired adaptive network
design.
Science, 327(5964):439–442, 2010. pdf

[50] D. L. Turcotte, J. D. Pelletier, and W. I. Newman.
Networks with side branching in biology.
Journal of Theoretical Biology, 193:577–592, 1998.
pdf

[51] P. D. Weinberg and C. R. Ethier.
Twenty-fold difference in hemodynamic wall
shear stress between murine and human aortas.
Journal of Biomechanics, 40(7):1594–1598, 2007.
pdf

PoCS
@pocsvox

Optimal Supply
Networks II

Metabolism and
Truthicide

Death by
fractions

Measuring
exponents

River networks

Earlier theories

Geometric
argument

Conclusion

References

.
.
.
.
.

.
123 of 124

References XVII

[52] G. B. West.
Scale: The Universal Laws of Growth, Innovation,
Sustainability, and the Pace of Life in Organisms,
Cities, Economies, and Companies.
Penguin Press, New York, 2017.

[53] G. B. West, J. H. Brown, and B. J. Enquist.
A general model for the origin of allometric
scaling laws in biology.
Science, 276:122–126, 1997. pdf

[54] G. B. West, J. H. Brown, and J. Enquist.
The fourth dimension of life: Fractal geometry
and allometric scaling of organisms.
Science, 284:1677–1679, 1999. pdf



PoCS
@pocsvox

Optimal Supply
Networks II

Metabolism and
Truthicide

Death by
fractions

Measuring
exponents

River networks

Earlier theories

Geometric
argument

Conclusion

References

.
.
.
.
.

.
124 of 124

References XVIII

[55] G. B. West, J. H. Brown, and J. Enquist.
Nature.
Nature, 400:664–667, 1999. pdf

[56] C. R. White and R. S. Seymour.
Allometric scaling of mammalian metabolism.
J. Exp. Biol., 208:1611–1619, 2005. pdf


