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Optimal supply networks

What's the best way to distribute stuff?

& Stuff = medical services, energy, people, ...
<& Some fundamental network problems:

1. Distribute stuff from a single source to many sinks

2. Distribute stuff from many sources to many sinks

3. Redistribute stuff between nodes that are both
sources and sinks

<% Supply and Collection are equivalent problems
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Single source optimal supply

Basic question for distribution/supply networks:
&> How does flow behave given cost:

C= Z I]"YZJ'
J
where
I, = currenton link j
and

Z; = link j's impedance.
&> Example: v = 2 for electrical networks.

Single source optimal supply

(b) ©

— —

(@) v > 1: Braided (bulk) flow

(b) v < 1: Local minimum: Branching flow

(c) v < 1: Global minimum: Branching flow

&% Note: This is a single source supplying a region.

From Bohn and Magnasco [/

See also Banavar et al.!': “Topology of the Fittest
Transportation Network”; focus is on presence or absence
of loops—same story

Single source optimal supply

Optimal paths related to transport (Monge)
problems (&

pha-095 taholest 351 .\ apra-0s s

~ | “Optimal paths related to transport
Qinglan Xia,
Communications in Contemporary
Mathematics, 5, 251-279, 2003. ("%
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Growing networks—two parameter model: 2%’
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&% Parameters control impedance (0 < o < 1) and
angles of junctions (0 < f3)

&% For this example: a = 0.6 and 8= 0.5

Growing networks: (2]

FIGURE 3. A maple leaf

'Y

& Top: a = 0.66, 3 = 0.38; Bottom: o = 0.66, 3 = 0.70

Single source optimal supply

An immensely controversial issue ...

&% The form of natural branching networks:
Random, optimal, or some
combination? (© 182,541

& River networks, blood networks, trees, ...

Two observations:

&% Self-similar networks appear everywhere in nature
for single source supply/single sink collection.

<% Real networks differ in details of scaling but
reasonably agree in scaling relations.
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Optimal Optimal Optimal
O t |t tran i transportation transportation
imality: imal ; el ; . -
g yl _— . Wi, Asideon Py, Murray's law:
Optimal channel networks e - Mueysian
P ) s ooy e o Work done = F - d = energy transferred by force F Find: ey
Thermodynamic analogy ['*! References ) References & = kr3 References
Power = P = rate work is done=F - v
Versus ... Ap = Pressure differential = Force per unit area Insert question from assignment 16 ('
@ = Volume flow per unit time (current) All of this means we have a groovy cube-law:

Randomness:
Scheidegger’'s directed random networks
Undirected random networks

= cross-sectional area - velocity
S o ®Ap = Force - velocity

27 O]
£ A
w 1Ol

§ A
" 1Ol

wa 110f29 wa 160f29 wa 190f29
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Murray's law (1926) )
connects branch radii at - Murray’s law: - @, = volume rate of flow into an order w vessel ot
fOrkS' [11,10,12,7,16] transportation transportation segment transportation
g Total power (cost): g Tokunaga picture: g
- 8l Morray mects Tokunaga
_ — H2 .2 _
-\ References P = Pdrag + Pretabolic = © Y +ersl References > — 9% =2 T.® References
\L— where r = radius of main w =201 T Z kX w—k
}!;», branch, and r; and r, are k=t
' radii of sub-branches. Observe power increases linearly with ¢ Using ¢, = kr3
w w
Holds up well for outer branchings of blood Butr’s effectis nonlinear: _ s
networks. increasing r makes flow easier but increases 3 3 3
Also found to hold f (12,81 iy lem i metabolic cost (as r2) (ry)” =2(r,_1)” + Z Ty (o)
so found to hold for trees when xylem Is decreasing r decrease metabolic cost but k=1

not a supporting structure 1, impedance goes up (as r—4)
See D'Arcy Thompson's “On Growth and Form” for
background and general inspiration ['> ],

Same form as:

L)

Q
n, = 2n,.1 + E TNy
—wtl Wow @

D 140f29 Da 170f29 ’ - o 210f29
generation @ =w+1 apsorption
Use hydraulic equivalent of Ohm's law: Gpocsvox Optimization—Murray's law @pocsvox Optimization Gpocsvox
Optimal Suppl: Optimal Suppl: Optimal Suppl:
Ap=0Z <V =IR Neworkal Networkel Networkel
where Ap = pressure difference, ® = flux.
optmal Murray's law: Optimal Optmal
Fluid mechanics: Poiseuille ransportation fansportation M . ransportation
e e S 2 S - inimi i . . urray meets Tokunaga:
|7|’1:]pieidiainicieC)‘I for smooth S:fy»‘“'(';"‘”g Minimize P with respect tor: Sr;fllw‘vl\f;!\‘ng y g S,’ff‘,'!l:"”g
Poiseuille flow(Z'in a tube of o oP o 8l s Find Horton ratio for vessel radius R,. = r,, /7, ;.
radius r and length £: References o = or (‘I’Qm + CT2€> References Find R3 satisfies same equation as R,, and R, References
8nk (vis for volume):

gy Flow rates at each branching have to add up (else
our organism is in serious trouble ...):
- s (A [P —1p—1
govx?grrjraemfiglézcssjé)\//e%c%jrqési‘niwgda:ce'). by =, + O, Is there more we could do here to constrain the
q P ’ ) ) Horton ratios and Tokunaga constants?
Pyrag = ®Ap = 927 where again 0 refers to the main branch and 1

) ) and 2 refers to the offspring branches
Also have rate of energy expenditure in

maintaining blood given metabolic constant c:

[Se)

[s1Se)

Pretabolic = er?t
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Optimization

Murray meets Tokunaga:
& Isometry: V,, oc 63
& Gives

RE—R:=R, =R

‘v

&% We need one more constraint ...

& West et al. (1997) 8] achieve similar results
following Horton's laws (but this work is a
disaster).

&% So does Turcotte et al. (1998) '/ using Tokunaga
(sort of).
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