Scaling-a Plenitude of Power Laws

Principles of Complex Systems, Vols. 1, 2, \& 3D CSYS/MATH 300, 303, \& 394, 2022-2023| @pocsvox

Computational Story Lab | Vermont Complex Systems Center Santa Fe Institute | University of Vermont

(c) (1)(2)

Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 License.

These slides are brought to you by:

Scaling

Scaling-at-large
Allometry
Biology
Physics
People
Money
Language
Technology
Specialization
References

These slides are also brought to you by:

Special Guest Executive Producer

\checkmark On Instagram at pratchett the_cat $\sqrt{\top}$

Outline

Scaling-at-large
Allometry
Scaling-at-large
Allometry
Biology
Biology
Physics
Physics
People
Money
People
Money
Language
Technology
Specialization
References
Language
Technology
Specialization

References

The Boggoracle Speaks:

Scaling-at-large

Allometry
Biology
Physics
People
Money
Language
Technology
Specialization
References

vum $\left|\begin{array}{l}0 \\ 0\end{array}\right|$
のac 5 of 106

Archival object:
 Scaling-at-large
 Allometry
 Biology
 Physics
 People
 Money
 Language
 Technology
 Specialization
 References

 vum $\left\lvert\, \begin{aligned} & 0 \\ & 0\end{aligned}\right.$
 のaल 7 of 106

Scalingarama

General observation:

Systems (complex or not) that cross many spatial and temporal scales often exhibit some form of scaling.

Scaling-at-large
Allometry
Biology
Physics
Outline-All about scaling:
People
Money
Language
Technology
Specialization
In PoCS, Vol. 2:
Advances in measuring your power-law relationships.
Scaling in blood and river networks.

The Unsolved Allometry Theoricides.

Definitions

A power law relates two variables x and y as follows:

$$
y=c x^{\alpha}
$$

Definitions

The prefactor c must balance dimensions.
Imagine the height ℓ and volume v of a family of shapes are related as:

Allometry
Biology
Physics
People

$$
\ell=c v^{1 / 4}
$$

路 Using [.] to indicate dimension, then

$$
[c]=[l] /\left[V^{1 / 4}\right]=L / L^{3 / 4}=L^{1 / 4}
$$

. More on this later with the Buckingham π theorem.

Looking at data

Power-law relationships are linear in log-log space:

$$
\begin{gathered}
y=c x^{\alpha} \\
\Rightarrow \log _{b} y=\alpha \log _{b} x+\log _{b} c
\end{gathered}
$$

with slope equal to α, the scaling exponent.
Much searching for straight lines on log-log or double-logarithmic plots.
Good practice: Always, always, always use base 10.
\& Yes, the Dozenalists are right, 12 would be better.
But: hands. ${ }^{1}$ And social pressure.
Talk only about orders of magnitude (powers of 10).
${ }^{1}$ Probably an accident of evolution-debated.
Scaling-at-large
Allometry
Biology
Physics
People
Money
Language
Technology
Specialization
References

A beautiful, heart-warming example:

```
\& \(G\) volume of gray matter: 'computing elements'
```

噱 $W=$ volume of white matter: 'wiring'

s. $W \sim c G^{1.23}$
from Zhang \& Sejnowski, PNAS (2000) ${ }^{[38]}$

Why is $\alpha \simeq 1.23 ?$

Quantities（following Zhang and Sejnowski）：
$G=$ Volume of gray matter（cortex／processors）
$W=$ Volume of white matter（wiring）
领 $T=$ Cortical thickness（wiring）
\＆$S=$ Cortical surface area
$L=$ Average length of white matter fibers
．$p=$ density of axons on white matter／cortex interface
\＆$G \sim S T$（convolutions are okay）
．$W \sim \frac{1}{2} p S L$
$G \sim L^{3} \leftarrow$ this is a little sketchy．．．
Eliminate S and L to find $W \propto G^{4 / 3} / T$

Why is $\alpha \simeq 1.23 ?$

A rough understanding:

Physics
People
We are here: $W \propto G^{4 / 3} / T$

- Observe weak scaling $T \propto G^{0.10 \pm 0.02}$.
\& Implies $S \propto G^{0.9} \rightarrow$ convolutions fill space.
$\Rightarrow W \propto G^{4 / 3} / T \propto G^{1.23 \pm 0.02}$

Money
Language
Technology
Specialization
References

um : $\left\lvert\, \begin{aligned} & 0 \\ & 0\end{aligned}\right.$
っのल 14 of 106

Tricksiness:

Scaling-at-large
Allometry
Biology
Physics
People
Money
Language
Technology
Specialization
References
 approximations.
Measuring exponents is a hairy business...
With $V=G+W$, some power laws must be

Disappointing deviations from scaling:

- Per George Carlin[3
\&es, should be the median. \#painful

The koala- ${ }^{\text {, }}$, a few roos short in the top paddock:
\& Very small brains [3 relative to body size.
Wrinkle-free, smooth.
Not many algorithms needed:

- Only eat eucalyptus leaves (no water)
(Will not eat leaves picked and presented to them)
- Move to the next tree.
- Sleep.
- Defend themselves if needed (tree-climbing crocodiles, humans).
- Occasionally make more koalas.

Scaling-at-large
Allometry
Biology
Physics
People
Money
Language
Technology
Specialization
References

Good scaling:

General rules of thumb:

High quality: scaling persists over three or more orders of magnitude for each variable.

R Medium quality: scaling persists over three or more orders of magnitude for only one variable and at least one for the other.

Language
Technology
Specialization
References

Rery dubious: scaling 'persists' over less than an order of magnitude for both variables.

Unconvincing scaling:

Average walking speed as a function of city population:

Two problems:

1. use of natural log, and
2. minute varation in dependent variable.
from Bettencourt et al. (2007) ${ }^{[4]}$; otherwise totally great-more later.

Scaling-at-large
Allometry
Biology
Physics
People
Money
Language
Technology
Specialization
References

uvm $\left\lvert\, \begin{aligned} & \mathrm{O} \\ & \text { O. } \\ & \text { O. }\end{aligned}\right.$
つの® 18 of 106

Definitions

Power laws are the signature of scale invariance:

Scale invariant 'objects' look the 'same' when they are appropriately rescaled.

Objects = geometric shapes, time series, functions, relationships, distributions,...
R 'Same' might be 'statistically the same'
R To rescale means to change the units of measurement for the relevant variables

References

Scale invariance

Our friend $y=c x^{\alpha}$:

If we rescale x as $x=r x^{\prime}$ and y as $y=r^{\alpha} y^{\prime}$, \& then

$$
\begin{gathered}
r^{\alpha} y^{\prime}=c\left(r x^{\prime}\right)^{\alpha} \\
\Rightarrow y^{\prime}=c r^{\alpha} x^{\alpha} r^{-\alpha} \\
\Rightarrow y^{\prime}=c x^{\prime \alpha}
\end{gathered}
$$

Scaling-at-large
Allometry
Biology
Physics
People
Money
Language
Technology
Specialization
References

uvm $\left|\begin{array}{l}\text { O } \\ \text { on } \\ 0\end{array}\right|$
つa® 20 of 106

Scale invariance

Compare with $y=c e^{-\lambda x}$:

\& If we rescale x as $x=r x^{\prime}$, then

$$
y=c e^{-\lambda r x^{\prime}}
$$

(s) Original form cannot be recovered.
scale matters for the exponential.

Say $x_{0}=1 / \lambda$ is the characteristic scale.
For $x \gg x_{0}, y$ is small, while for $x \ll x_{0}, y$ is large.

Isometry:

Allometry:

- Dimensions scale linearly with each other.

Dimensions scale nonlinearly.

Language

Allometry: -

Re Refers to differential growth rates of the parts of a living organism's body part or process.
\& First proposed by Huxley and Teissier, Nature, 1936 "Terminology of relative growth" ${ }^{[15,34]}$

UVM $\left|\begin{array}{l}0 \\ 0 \\ 0\end{array}\right|$

Definitions

Isometry versus Allometry:

Iso-metry = 'same measure'
A Allo-metry = 'other measure'
Scaling-at-large
Allometry
Biology
Physics
People
Money
Language

We use allometric scaling to refer to both:

Technology
Specialization

1. Nonlinear scaling of a dependent variable on an independent one (e.g., $y \propto x^{1 / 3}$)
2. The relative scaling of correlated measures (e.g., white and gray matter).

References

An interesting，earlier treatise on scaling：

ON SIZE AND LIFE

McMahon and Bonner， $1983{ }^{[26]}$

Scaling－at－large
Allometry
Biology
Physics
People
Money
Language
Technology
Specialization
References

uvm $\left|\begin{array}{l}\mathrm{O} \\ 0\end{array}\right|$
っのく 24 of 106

The many scales of life:

The biggest living things (left). All the organisms are drawn to the same scale. 1, The largest flying bird (albatross); 2, the largest known animal (the blue whale), 3, the largest extinct land mammal (Baluchitherium) with a human figure shown for scale; 4, the tallest living land animal (giraffe); 5, $7 y$ rannosaurus; 6, Diplodocus; 7, one of the largest flying reptiles (Pteranodon); 8, the largest extinct snake; 9 , the length of the largest tapeworm found in man; 10, the largest living reptile (West African crocodile); 11, the largest extinct lizard; 12, the largest extinct bird (Aepyornis); 13, the largest jellyfish (Cyanea); 14, the largest living lizard (Komodo dragon); 15, sheep; 16, the largest bivalve mollusc (Tridacna); 17; the largest fish (whale shark); 18, horse; 19, the largest crustacean (Japanese spider crab); 20, the largest sea scorpion (Eurypterid); 21, large tarpon; 22, the largest lobster; 23, the largest mollusc (deep-water squid, Architeuthis); 24, ostrich; 25 , the lower 105 feet of the largest organism (giant sequoia), with a 100-foot larch superposed.

p. 2, McMahon and Bonner [26]

The many scales of life:

Medium-sized creatures (above). 1, Dog; 2, common herring; 3, the largest egg (Aepyornis); 4, song thrush with egg; 5, the smallest bird (hummingbird) with egg; 6 , queen bee; 7 , common cockroach; 8 , the largest stick insect; 9, the largest polyp (Branchiocerianthus); 10, the smallest mammal (flying shrew); 11, the smallest vertebrate (a tropical frog); 12, the largest frog (goliath frog); 13, common grass frog; 14, house mouse; 15, the largest land snail (Achatina) with egg; 16, common snail; 17, the largest beetle (goliath beetle); 18, human hand; 19, the largest starfish (Luidia); 20 , the largest free-moving protozoan (an extinct nummulite).

p. 3, McMahon and Bonner [26] More on the Elephant Bird

 here ${ }^{\text {E }}$.

The many scales of life:

Small, "naked-eye" creatures (lower left). 1, One of the smallest fishes (Trimmatom nanus); 2, common brown hydra, expanded; 3, housefly; 4, medium-sized ant; 5, the smallest vertebrate (a tropical frog, the same as the one numbered 11 in the figure above); 6, flea (Xenopsylla cheopis); 7, the smallest land snail; 8, common water flea (Daphnia).

The smallest "naked-eye" creatures and some large microscopic animals and cells (below right). 1, Vorticella, a ciliate; 2, the largest ciliate protozoan (Bursaria); 3 , the smallest many-celled animal (a rotifer); 4, smallest flying insect (Elaphis); 5, another ciliate (Paramecium); 6, cheese mite; 7. human sperm; 8 , human ovum; 9 , dysentery amoeba; 10, human liver cell; 11, the foreleg of the flea (numbered 6 in the figure to the left).

3, McMahon and Bonner [26]

Size range（in grams）and cell differentiation：

Biology

Physics
People
Money
Language
Technology
Specialization
References

[^0]っのく 28 of 106

Non-uniform growth:

Scaling-at-large
Allometry
Biology
Physics
People
Money
Language
Technology
Specialization
References

[^1]っのल 29 of 106

Non-uniform growth-arm length versus height:

Good example of a break in scaling:

A crossover in scaling occurs around a height of 1 metre.
p. 32, McMahon and Bonner ${ }^{[26]}$
\qquad
\qquad 7

Weightlifting: $M_{\text {world record }} \propto M_{\text {lifter }}^{2 / 3}$

Idea: Power ~ cross-sectional area of isometric lifters.
p. 53, McMahon and Bonner ${ }^{[26]}$

Scaling-at-large
Allometry
Biology
Physics
People
Money
Language
Technology
Specialization
References

"Scaling in athletic world records" ${ }^{\text {B }}$

Savaglio and Carbone,

Nature, 404, 244, 2000. ${ }^{[33]}$

 maxatharte. the same races are considered for momen b,di, apatt from the 1 hour race. Lines represent the best tis. The scasing

 speed is strongly stected by the staring stat of athietes.

Eek: Small scaling regimes

Bean speed $\langle s\rangle$ decays with race time τ :

$$
\langle s\rangle \sim \tau^{-\beta}
$$

Break in scaling at around $\tau \simeq 150-170$ seconds

- Anaerobic-aerobic transition

R Roughly 1 km running race

R Running decays faster than swimming

Scaling-at-large
Allometry
Biology
Physics
People
Money
Language
Technology
Specialization
References

＂Athletics：Momentous sprint at the 2156

Tatem et àl．，
Nature，431，525－525，2004．${ }^{[35]}$

Linear extrapolation for the 100 metres：

Tatem：＂］＂If I＇m wrong anyone is welcome to come and question me about the result after the 2156 Olympics．＂

uvn

つのく 33 of 106

Titanothere horns: $L_{\text {horn }} \sim L_{\text {skull }}{ }^{4}$

Scaling-at-large
Allometry
Biology
Physics
People
Money
Language
Technology
Specialization
References

uvm $\left|\begin{array}{l}\mathrm{O} \\ 0\end{array}\right|$
p. 36, McMahon and Bonner ${ }^{[26]}$; a bit dubious.

Stories-The Fraction Assassin: ${ }^{2}$

Alometry
Biology
Physics
People
Money
Language
Technology
Specialization
References

$0 \quad 708090100$
$\frac{|1|||||||||||||||||||||\mid}{10}$
$\begin{array}{llllll}6 & 1.5 & 1.4 & 1.3 & 1.2\end{array}$
*uv $\left|\begin{array}{l}0 \\ 0\end{array}\right|$
1*bonk bonk*
っのल 35 of 106

Animal power

Fundamental biological and ecological constraint:

$$
P=c M^{\alpha}
$$

$$
P=\text { basal metabolic rate }
$$

$$
M=\text { organismal body mass }
$$

Biology
Physics
People
Money
Language
Technology
Specialization
References

$P=c M^{\alpha}$

Prefactor c depends on body plan and body temperature:

Birds	$39-41^{\circ} \mathrm{C}$
Eutherian Mammals	$36-38^{\circ} \mathrm{C}$
Marsupials	$34-36{ }^{\circ} \mathrm{C}$
Monotremes	$30-31^{\circ} \mathrm{C}$

Scaling-at-large
Allometry
Biology
Physics
People
Money
Language
Technology
Specialization
References

uvm $\left|\begin{array}{l}0 \\ 0 \\ 0\end{array}\right|$
っの® 37 of 106

What one might expect:

$\alpha=2 / 3$ because ...

- Dimensional analysis suggests an energy balance surface law:

$$
P \propto S \propto V^{2 / 3} \propto M^{2 / 3}
$$

Scaling-at-large
Allometry
Biology
Physics
People
Money
Assumes isometric scaling (not quite the spherical cow).
\& Lognormal fluctuations:
Gaussian fluctuations in $\log P$ around $\log c M^{\alpha}$.
Stefan-Boltzmann law for radiated energy:

$$
\frac{\mathrm{d} E}{\mathrm{~d} t}=\sigma \varepsilon S T^{4} \propto S
$$

The prevailing belief of the Church of Quarterology：

Huh？

The prevailing belief of the Church of Quarterology:

Most obvious concern:

$$
3 / 4-2 / 3=1 / 12
$$

Physics
People
Money
Language
Technology
Specialization
References

Related putative scalings：

Scaling－at－large
Allometry
Biology

Wait！There＇s more！：

number of capillaries $\propto M^{3 / 4}$
s time to reproductive maturity $\propto M^{1 / 4}$
，heart rate $\propto M^{-1 / 4}$
cross－sectional area of aorta $\propto M^{3 / 4}$
population density $\propto M^{-3 / 4}$

Physics
People
Money
Language
Technology
Specialization
References

The great 'law' of heartbeats:

Assuming:

Average lifespan $\propto M^{\beta}$
Average heart rate $\propto M^{-\beta}$
Irrelevant but perhaps $\beta=1 / 4$.
Scaling-at-large
Allometry
Biology
Physics
People
Money
Then:
Language
Technology
Specialization
References

$$
\begin{aligned}
& \propto M^{\beta-\beta} \\
& \propto M^{0}
\end{aligned}
$$

R Number of heartbeats per life time is independent of organism size!
\& ≈ 1.5 billion....

Scaling-at-large
Allometry

Biology

Physics
People
Money
Language
Technology
Specialization
References

Ecology—Species-area law: $\bar{\square}$

Allegedly (data is messy): ${ }^{[21, ~ 19]}$

> "An equilibrium theory of insular zoogeography" MacArthur and Wilson, Evolution, 17, 373-387, 1963. ${ }^{[21]}$

$$
N_{\text {species }} \propto A^{\beta}
$$

Scaling-at-large
Allometry
Biology
Physics
People
Money
Language
Technology
Specialization
References

Cancer:

"Variation in cancer risk among tissues can be explained by the number of stem cell divisions" $\overline{\text { E }}$

Tomasetti and Vogelstein, Science, 347, 78-81, 2015. ${ }^{[36]}$

Fig. 1 The relationship between the number of stem cell divisions in the lifetime of a given tissue and the lifetime risk of cancer in that tissue. Values are from table S1, the derivation of which is ciscussed in the supplementary materials.

People
Money
Language
Technology
Specialization
References

Roughly: $p \sim r^{2 / 3}$ where $p=$ life time probability and r = rate of stem cell replication.

uvm $=\left|\begin{array}{l}0 \\ \circ \\ 0\end{array}\right|$

PoCs
@pocsvox
"How fast do living organisms move: Maximum speeds from bacteria to élephants and whales" \ddagger
Meyer-Vernet and Rospars, American Journal of Physics, 83, 719-722, 2015. ${ }^{[28]}$

Fig. 1. Maximum relative speed versus body mass for 202 running species (157 mammals plotted in magenta and 45 non-mammals plotted in green), 127 swimming species and 91 micro-organisms (plotted in blue). The sources of the data are given in Ref. 16. The solid line is the maximum relative speed [Eq. (13)] estimated in Sec. III. The human world records are plotted as asterisks (upper for running and lower for swimming). Some examples of organisms of various masses are sketched in black (drawings by François Meyer).

Scaling-at-large
Allometry
Biology
Physics
People
Money
Language
Technology
Specialization
References

＂A general scaling law reveals why the largest animals are not the fastest＂${ }^{\boldsymbol{\pi}}$

Hirt et al．，
Nature Ecology \＆Evolution，1，1116，2017．${ }^{[12]}$

Biology

Physics
People
Money
Language
Technology
Specialization
References

UYM $\left\lvert\, \begin{aligned} & 0 \\ & 5 \\ & 0\end{aligned}\right.$

つのく 47 of 106

"A general scaling law reveals why the largest animals are not the fastest" $\bar{\square}$ Hirt et al.,
 Nature Ecology \& Evolution, 1, 1116, 2017. [12]

Biology

Figure 1 | Concept of time-dependent and mass-dependent realized maximum speed of animals. a, Acceleration of animals follows a saturation curve (solid lines) approaching the theoretical maximum speed (dotted lines) depending on body mass (colour code). \mathbf{b}, The time available for acceleration haximum speed with body mass (d)

Physics
People
Money
Language
Technology
Specialization
References

つの® 48 of 106

Figure $4 \mid$ Predicting the maximum speed of extinct species with the time－ dependent model．The model prediction（grey line）is fitted to data of extant species（grey circles）and extended to higher body masses．Speed data for dinosaurs（green triangles）come from detailed morphological model calculations（values in Table 1）and were not used to obtain model parameters．
－ Maximum speed increases with size：
$v_{\max }=a M^{b}$

Takes a while to get going：
$v(t)=v_{\text {max }}\left(1-e^{-k t}\right)$
er $k \sim F_{\max } / M \sim c M^{d-1}$
Literature： $0.75 \lesssim d \lesssim 0.94$
Acceleration time＝ depletion time for anaerobic energy：
$\tau \sim f M^{g}$
Literature： $0.76 \lesssim g \lesssim 1.27$
\＆$v_{\text {max }}=a M^{b}\left(1-e^{-h M^{i}}\right)$
s $i=d-1+g$ and $h=c f$

Scaling－at－large
Allometry
Biology
Physics
People
Money
Language
Technology
Specialization
References

um ： $\left\lvert\, \begin{aligned} & 0 \\ & \text { on }\end{aligned}\right.$
っのく 49 of 106

R Literature search for for maximum speeds of running，flying and

Engines:

Scaling-at-large
Allometry
Biology
Physics
People
Money
Language
Technology
Specialization
References

uvm $\left|\begin{array}{l}\text { O } \\ \text { on }\end{array}\right|$
BHP = brake horse power
つの® 50 of 106

The allometry of nails:

Since $\ell d^{2} \propto$ Volume v :

Diameter \propto Mass $^{2 / 7}$ or $d \propto v^{2 / 7}$.
Length \propto Mass $^{3 / 7}$ or $\ell \propto v^{3 / 7}$.

Nails lengthen faster than they broaden (c.f. trees).
p. 58-59, McMahon and Bonner [26]

The allometry of nails:

A buckling instability?:

* Physics/Engineering result [\mathcal{B} : Columns buckle under a load which depends on d^{4} / ℓ^{2}.
R To drive nails in, posit resistive force \propto nail circumference $=\pi d$.
Match forces independent of nail size: $d^{4} / \ell^{2} \propto d$.
- Leads to $d \propto \ell^{2 / 3}$.

Argument made by Galileo ${ }^{[11]}$ in 1638 in "Discourses on Two New Sciences." Also, see here.
A Another smart person's contribution: Euler, 1757■
R Also see McMahon, "Size and Shape in Biology," Science, 1973. ${ }^{[25]}$

Scaling-at-large
Allometry
Biology
Physics
People
Money
Language
Technology
Specialization
References

vum
$\left|\begin{array}{l}0 \\ 0\end{array}\right|$

Rowing: Speed $\propto(\text { number of rowers) })^{1 / 9}$

Shell dimensions and performances.

No. of oarsmen	Modifying description	Length, l (m)	$\begin{aligned} & \text { Beam, } b \\ & (\mathrm{~m}) \end{aligned}$	l / b	Boat mass per oarsman (kg)	Time for 2000 m (min)			
						1	II	III	IV
8	Heavyweight	18.28	0.610	30.0	14.7	5.87	5.92	5.82	5.73
8	Lightweight	18.28	0.598	30.6	14.7				
4	With coxswain	12.80	0.574	22.3	18.1				
4	Without coxswain	11.75	0.574	21.0	18.1	6.33	6.42	6.48	6.13
2	Double scull	9.76	0.381	25.6	13.6				
2	Pair-oared shell	9.76	0.356	27.4	13.6	6.87	6.92	6.95	6.77
1	Single scull	7.93	0.293	27.0	16.3	7.16	7.25	7.28	7.17

Very weak scaling and size variation but it's theoretically explainable ...

Scaling-at-large
Allometry
Biology
Physics
People
Money
Language
Technology
Specialization
References

UVM $\left|\begin{array}{l}\mathrm{O} \\ 0 \\ 0\end{array}\right|$
っのल 53 of 106

Physics:

Scaling in elementary laws of physics:

Inverse-square law of gravity and Coulomb's law:

$$
F \propto \frac{m_{1} m_{2}}{r^{2}} \text { and } F \propto \frac{q_{1} q_{2}}{r^{2}} .
$$

- Force is diminished by expansion of space away from source.
- The square is $d-1=3-1=2$, the dimension of a sphere's surface.
We'll see a gravity law applies for a range of human phenomena.

References

[^2]
Dimensional Analysis:

The Buckingham π theorem ${ }^{3}$:3
Scaling-at-large
Allometry
"On Physically Similar Systems: Illustrations
of the Use of Dimensional Equations" ${ }^{\bar{\prime}}$
E. Buckingham,
Phys. Rev., 4, 345-376, 1914.

As captured in the 1990s in the MIT physics library:

Biology
Physics
People
Money
Language
Technology
Specialization
References

のa^ 55 of 106

Dimensional Analysis: ${ }^{4}$

Fundamental equations cannot depend on units:

. System involves n related quantities with some unknown equation $f\left(q_{1}, q_{2}, \ldots, q_{n}\right)=0$.

Scaling-at-large
Allometry
Biology
Physics
People
Money
Language
Technology
Specialization
References

uvm $\left|\begin{array}{l}\text { O } \\ \text { on } \\ 0\end{array}\right|$
${ }^{4}$ Length is a dimension, furlongs and smoots $\sqrt{ }$ are units

Example：

Simple pendulum：

Scaling－at－large
Allometry

Biology
Physics
People
Money
Language
Technology
Specialization
References and $[\tau]=T$ ．
\＆Turn over your envelopes and find some π＇s．
Idealized mass／platypus swinging forever．
Four quantities：
1．Length ℓ ，
2．mass m ，
3．gravitational acceleration g ，and
4．pendulum＇s period τ ．

R Variable dimensions：$[\ell]=L,[m]=M,[g]=L T^{-2}$ ，

unm

A little formalism：

Game：find all possible independent combinations of the $\left\{q_{1}, q_{2}, \ldots, q_{n}\right\}$ ，that form dimensionless quantities $\left\{\pi_{1}, \pi_{2}, \ldots, \pi_{p}\right\}$ ，where we need to figure out p（which must be $\leq n$ ）．
． Consider $\pi_{i}=q_{1}^{x_{1}} q_{2}^{x_{2}} \cdots q_{n}^{x_{n}}$ ．
8
We（desperately）want to find all sets of powers x_{j} that create dimensionless quantities．
Bimensions：want $\left[\pi_{i}\right]=\left[q_{1}\right]^{x_{1}}\left[q_{2}\right]^{x_{2}} \ldots\left[q_{n}\right]^{x_{n}}=1$ ．
For the platypus pendulum we have
$\left[q_{1}\right]=L,\left[q_{2}\right]=M,\left[q_{3}\right]=L T^{-2}$ ，and $\left[q_{4}\right]=T$ ， with dimensions $d_{1}=L, d_{2}=M$ ，and $d_{3}=T$ ．
So：$\left[\pi_{i}\right]=L^{x_{1}} M^{x_{2}}\left(L T^{-2}\right)^{x_{3}} T^{x_{4}}$ ．
We regroup：$\left[\pi_{i}\right]=L^{x_{1}+x_{3}} M^{x_{2}} T^{-2 x_{3}+x_{4}}$ ．
We now need：$x_{1}+x_{3}=0, x_{2}=0$ ，and $-2 x_{3}+x_{4}=0$ ．
－Time for matrixology ．．．

Well, of course there are matrices:

R Thrillingly, we have:

$$
\mathbf{A} \vec{x}=\left[\begin{array}{cccc}
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & -2 & 1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

A nullspace equation: $\mathbf{A} \vec{x}=\overrightarrow{0}$.
, Number of dimensionless parameters = Dimension of null space $=n-r$ where n is the number of columns of \mathbf{A} and r is the rank of \mathbf{A}.
Here: $n=4$ and $r=3 \rightarrow F\left(\pi_{1}\right)=0 \rightarrow \pi_{1}=$ const.
In general: Create a matrix A where $i j$ th entry is the power of dimension i in the j th variable, and solve by row reduction to find basis null vectors.
\& We (you) find: $\pi_{1}=\ell / g \tau^{2}=$ const. Upshot: $\tau \propto \sqrt{\ell}$. Insert question from assignment 2 厄

Scaling-at-large
Allometry
Biology
Physics
People
Money
Language
Technology
Specialization
References

vum $\left|\begin{array}{l}0 \\ 0\end{array}\right|$
つac 59 of 106
G. I. Taylor, magazines, and classified secrets:

Self-similar blast wave:

Radius: $[R]=L$, Time: $[t]=T$,
Density of air: $[\rho]=M / L^{3}$, Energy: $[E]=M L^{2} / T^{2}$.

Biology
Physics
People
Money
Language
Technology
Specialization
References

Scaling: Speed decays as $1 / R^{3 / 2}$.

Sorting out base units of fundamental measurement:

Scaling-at-large
Allometry

by Dono/Wikipedia

by Wikipetzi/Wikipedia

Biology
Physics
People
Money
Language
Technology
Specialization
References

*um $\left\lvert\, \begin{aligned} & 0 \\ & 0\end{aligned}\right.$

[^3]
Turbulence:

Big whirls have little whirls That heed on their velocity, And little whirls have littler whirls
And so on to viscosity.

- Lewis Fry Richardsonce

Scaling-at-large
Allometry
Biology
Physics
People
Money
Language
Technology
Specialization
References
\& Image from here[].

- Jonathan Swift (1733): "Big fleas have little fleas upon their backs to bite 'em, And little fleas have lesser fleas, and so, ad infinitum." The Siphonaptera. ${ }^{-7}$

＂Turbulent luminance in impassioned van Gogh paintings＂${ }^{\text {E＂}}$

Scaling－at－large
Allometry
Biology
Physics
People
Money
Language
Technology
Specialization
References

っの凤 63 of 106

Advances in turbulence：

> In 1941，Kolmogorov，armed only with dimensional analysis and an envelope figures this out：${ }^{[18]}$

$$
E(k)=C \epsilon^{2 / 3} k^{-5 / 3}
$$

$E(k)=$ energy spectrum function．
$\epsilon=$ rate of energy dissipation．
，$k=2 \pi / \lambda=$ wavenumber．

Energy is distributed across all modes，decaying with wave number．
．No internal characteristic scale to turbulence．
Stands up well experimentally and there has been no other advance of similar magnitude．

Scaling－at－large
Allometry
Biology
Physics
People
Money
Language
Technology
Specialization
References

uvM
$\left|\begin{array}{l}0 \\ 0 \\ 0\end{array}\right|$

8. "Anomalous" scaling of lengths, areas, volumes relative to each other.

Scaling-at-large
Allometry
Biology
The enduring question: how do self-similar geometries form?

R Robert E. Horton [: : Self-similarity of river (branching) networks (1945). ${ }^{[13]}$
\& Harold Hurst[^—Roughness of time series (1951). ${ }^{[14]}$
Lewis Fry Richardson [$\boldsymbol{3}$-Coastlines (1961).
\& Benoit B. Mandelbrot[$\boldsymbol{\beta}$-Introduced the term "Fractals" and explored them everywhere, 1960s on. ${ }^{[22,23,24]}$
${ }^{d}$ Note to self: Make millions with the "Fractal Diet"

Scaling in Cities:

Scaling-at-large

"Growth, innovation, scaling, and the pace of life in cities" "C
Béttencourt et al.,
Proc. Natl. Acad. Sci., 104, 7301-7306, 2007. ${ }^{[4]}$

Quantified levels of

- Infrastructure
- Wealth
- Crime levels
- Disease
- Energy consumption
as a function of city size N (population).
Allometry
Biology
Physics
People
Money
Language
Technology
Specialization
References

PoCS
@pocsvox
Scaling

Fig. 1. Examples of scaling relationships. (a) Total wages per MSA in 2004 for the U.S. (blue points) vs. metropolitan population. (b) Supercreative employment per MSA in 2003, for the U.S. (blue points) vs. metropolitan population. Best-fit scaling relations are shown as solid lines.

Fig. 2. The pace of urban life increases with city size in contrast to the pace of biological life, which decreases with organism size. (a) Scaling of walking speed vs. population for cities around the world. (b) Heart rate vs. the size (mass) of organisms.

Scaling-at-large
Allometry
Biology
Physics
People
Money
Language
Technology

Specialization

References

Scaling in Cities:

Table 1. Scaling exponents for urban indicators vs. city size

Y	β	95% CI	Adj-R2	Observations	Country-year
New patents	1.27	$[1.25,1.29]$	0.72	331	U.S. 2001
Inventors	1.25	$[1.22,1.27]$	0.76	331	U.S. 2001
Private R\&D employment	1.34	$[1.29,1.39]$	0.92	266	U.S. 2002
"Supercreative" employment	1.15	$[1.11,1.18]$	0.89	287	U.S. 2003
R\&D establishments	1.19	$[1.14,1.22]$	0.77	287	U.S. 1997
R\&D employment	1.26	$[1.18,1.43]$	0.93	295	China 2002
Total wages	1.12	$[1.09,1.13]$	0.96	361	U.S. 2002
Total bank deposits	1.08	$[1.03,1.11]$	0.91	267	U.S. 1996
GDP	1.15	$[1.06,1.23]$	0.96	295	China 2002
GDP	1.26	$[1.09,1.46]$	0.64	196	EU 1999-2003
GDP	1.13	$[1.03,1.23]$	0.94	37	Germany 2003
Total electrical consumption	1.07	$[1.03,1.11]$	0.88	392	Germany 2002
New AIDS cases	1.23	$[1.18,1.29]$	0.76	93	U.S. 2002-2003
Serious crimes	1.16	$[1.11,1.18]$	0.89	287	U.S. 2003
Total housing	1.00	$[0.99,1.01]$	0.99	316	U.S. 1990
Total employment	1.01	$[0.99,1.02]$	0.98	331	U.S. 2001
Household electrical consumption	1.00	$[0.94,1.06]$	0.88	377	Germany 2002
Household electrical consumption	1.05	$[0.89,1.22]$	0.91	295	China 2002
Household water consumption	1.01	$[0.89,1.11]$	0.96	295	China 2002
Gasoline stations	0.77	$[0.74,0.81]$	0.93	318	U.S. 2001
Gasoline sales	0.79	$[0.73,0.80]$	0.94	318	U.S. 2001
Length of electrical cables	0.87	$[0.82,0.92]$	0.75	380	Germany 2002
Road surface	0.83	$[0.74,0.92]$	0.87	29	Germany 2002

[^4]Scaling-at-large
Allometry
Biology
Physics
People
Money
Language
Technology
Specialization
References

っのल 68 of 106

Scaling in Cities:

Intriguing findings:

Global supply costs scale sublinearly with N ($\beta<1$).

- Returns to scale for infrastructure.

R Total individual costs scale linearly with $N(\beta=1)$

- Individuals consume similar amounts independent of city size.
Social quantities scale superlinearly with $N(\beta>1)$
- Creativity (\# patents), wealth, disease, crime, ...

Density doesn't seem to matter...
Surprising given that across the world, we observe two orders of magnitude variation in area covered by agglomerations $\widehat{\beta}$ of fixed populations.

Scaling-at-large
Allometry
Biology
Physics
People
Money
Language
Technology
Specialization
References

"Urban scaling and its deviations: Revealing the structure of wealth, innovation and crime across cities" ${ }^{2}$ Bettencourt et al., PLoS ONE, 5, e13541, 2010. ${ }^{[5]}$

Scaling-at-large
Allometry
Biology
Physics
People
Comparing city features across populations:
Cities = Metropolitan Statistical Areas (MSAs)
Story: Fit scaling law and examine residuals
Does a city have more or less crime than expected when normalized for population?
. Same idea as Encephalization Quotient (EQ).

PoCS
＠pocsvox
Scaling

Scaling－at－large
Allometry
Biology
Physics
People
Money
Language
Technology
Specialization

References

っのく 71 of 106

A possible theoretical explanation?

"The origins of scaling in cities" \square Luís M. A. Bettencourt, Science, 340, 1438-1441, 2013. ${ }^{[3]}$
\#sixthology

Scaling-at-large
Allometry
Biology
Physics
People
Money
Language
Technology
Specialization
References

uvm $\left|\begin{array}{l}\text { O } \\ \text { on }\end{array}\right|$
っの® 72 of 106

Non-simple scaling for death:

"Statistical signs of social influence on suicides" ${ }^{2}$
 Melo et al.,
 Scientific Reports, 4, 6239, 2014.

Scaling-at-large
Allometry
Biology
Physics

Bettencourt et al.'s initial work suggested social phenomena would follow superlinear scaling (wealth, crime, disease)

- Homicide, traffic, and suicide ${ }^{[10]}$ all tied to social context in complex, different ways.
For cities in Brazil, Melo et al. show:
- Homicide appears to follow superlinear scaling ($\beta=1.24 \pm 0.01$)
- Traffic accident deaths appear to follow linear scaling ($\beta=0.99 \pm 0.02$)
- Suicide appears to follow sublinear scaling. ($\beta=0.84 \pm 0.02$)

Figure 1 Scaling relations for homicides, traffic accidents, and suicides for the year of 2009 in Brazil. The small circles show the total number of deaths by (a) homicides (red), (b) traffic accidents (blue), and (c) suicides (green) vs the population of each city. Each graph represents only one urban indicator, and the solid gray line indicate the best fit for a power-law relation, using OLS regression, between the average total number of deaths and the city size (population). To reduce the fluctuations we also performed a Nadaraya-Watson kernel regression ${ }^{17,18}$. The dashed lines show the 95% confidence band for the Nadaraya-Watson kernel regression. The ordinary least-squares (OLS) ${ }^{19}$ fit to the Nadaraya-Watson kernel regression applied to the data on homicides in (a) reveals an allometric exponent $\beta=1.24 \pm 0.01$, with a 95% confidence interval estimated by bootstrap. This is compatible with previous results obtained for U.S. ${ }^{2}$ that also indicate a super-linear scaling relation with population and an exponent $\beta=1.16$. Using the same procedure, we find $\beta=0.99 \pm 0.02$ and 0.84 ± 0.02 for the numbers of deaths in traffic accidents (b) and suicides (c), respectively. The values of the Pearson correlation coefficients ρ associated with these scaling relations are shown in each plot. This non-linear behavior observed for homicides and suicides certainly reflects the complexity of human social relations and strongly suggests that the the topology of the social network plays an important role on the rate of these events. (d) The solid lines show the Nadaraya-Watson kernel regression rate of deaths (total number of deaths divided by the population of a city) for each urban indicator, namely, homicides (red), traffic accidents (blue), and suicides (green). The dashed lines represent the 95% confidence bands. While the rate of fatal traffic accidents remains approximately invariant, the rate of homicides systematically increases, and the rate of suicides decreases with population.

PoCS
＠pocsvox

Scaling

US data：

Dynamics（Brazil）：

Figure $2 \mid$ Temporal evolution of allometric exponent $\boldsymbol{\beta}$ for homicides （red squares），deaths in traffic accidents（blue circles），and suicides（green diamonds）．Time evolution of the power－law exponent β for each behavioral urban indicator in Brazil from 1992 to 2009．We can see that the non－linear behavior for homicides and suicides are robust for this 19 years period，and for the traffic accidents the exponent remain close to 1.0 ．

Scaling－at－large
Allometry
Biology
Physics
People
Money
Language
Technology
Specialization
References

っのく 75 of 106

Density of public and private facilities:

$$
\rho_{\mathrm{fac}} \propto \rho_{\mathrm{pop}}^{\alpha}
$$

Left plot: ambulatory hospitals in the U.S.
Right plot: public schools in the U.S.

Scaling-at-large
Allometry
Biology
Physics
People
Money
Language
Technology
Specialization
References

uvm $\left|\begin{array}{l}\mathrm{O} \\ \mathrm{O}\end{array}\right|$
っのल 76 of 106

> "Pattern in escalations in insurgent and terrorist activity".
> Johnson é
> Science, 333, $81-84,2011$.

Scaling

Scaling-at-large
Allometry
Biology

Fig. 1. (A) Schematic timeline of successive fatal days shown as vertical bars. τ_{1} is the time interval between the first two fatal days, labeled 0 and 1 . (B) Successive time intervals τ_{n}, between days with IED fatalities in the Afghanistan province of Kandahar (squares). On this \log - \log plot, the best-fit power-law progress curve is by definition a straight (blue) line with slope $-b$ (b is an escalation rate). (C) The solid blue line shows best linear fit through progress-curve parameter values τ_{1} and b for individual Afghanistan provinces (blue squares) for all hostile fatalities (all coalition military fatalities attributed to insurgent activity). The green dashed line shows value $b=0.5$, which is the situation in which there are no correlations. The subset of fatalities recorded in icasualties as "southern Afghanistan" is shown as a separate region because of their likely connection to operations near the Pakistan border.

Escalation: $\tau_{n} \sim \tau_{1} n^{-b}$
\& $b=$ scaling exponent (escalation rate)
s Interevent time τ_{n} between fatal attacks $n-1$ and n (binned by days)

R Learning curves organizations ${ }^{[37]}$

R More later on size distributions ${ }^{[9,17,6]}$

Physics
People
Money
Language
Technology
Specialization
References

THOUSANDS

Explore the original zoomable and interactive version here：http：／／xkcd．com／980／匹．

Scaling

Scaling－at－large
Allometry
Biology
Physics
People
Money
Language
Technology
Specialization
References

Irregular verbs

Cleaning up the code that is English:

"Quantifying the evolutionary dynamics of language" [J
Lieberman et al.,
Nature, 449, 713-716, 2007. ${ }^{[20]}$

Scaling-at-large
Allometry
Biology
Physics
People
Money
Language
Technology
Specialization
References

uvm $\left|\begin{array}{l}\text { O } \\ \text { on }\end{array}\right|$
っの® 79 of 106

Irregular verbs

- Universal tendency towards regular conjugation Rare verbs tend to be regular in the first place

Scaling-at-large
Allometry
Biology
Physics
People
Money
Language
Technology
Specialization
References

uvm $\left|\begin{array}{l}\mathrm{O} \\ 0\end{array}\right|$
っのल 80 of 106

Irregular verbs

Scaling-at-large
Allometry
Biology
Physics
People
Money
Language
Technology
Specialization
References

R Rates are relative.
The more common a verb is, the more resilient it is to change.

Irregular verbs

Table 1 | The 177 irregular verbs studied

[^5]
Red = regularized

Estimates of half-life for regularization ($\propto f^{1 / 2}$)

R 'Wed' is next to go.
-ed is the winning rule...
But 'snuck' is sneaking up on sneaked. [ra]

Scaling

Scaling-at-large
Allometry
Biology
Physics
People
Money
Language
Technology
Specialization
References

UvM $\left|\begin{array}{l}0 \\ 0 \\ 0\end{array}\right|$
っのल 83 of 106

Scaling-at-large
Allometry
Biology
Physics
People
Money
Language
Technology
Specialization
References

Projecting back in time to proto-Zipf story of many tools.

Moore's Law: ©

Microprocessor Transistor Counts 1971-2011 \& Moore's Law

Scaling-at-large
Allometry
Biology
Physics
People
Money
Language
Technology
Specialization
References

っのल 85 of 106

Scaling laws for technology production:

"Statistical Basis for Predicting Technological Progress" Nagy et al., PLoS ONE, 2013.
\& $y_{t}=$ stuff unit cost; $x_{t}=$ total amount of stuff made.
Wright's Law, cost decreases as a power of total stuff made: ${ }^{[37]}$

$$
y_{t} \propto x_{t}^{-w}
$$

R Moore's Law[$\mathbb{\pi}$, framed as cost decrease connected with doubling of transistor density every two years: ${ }^{[30]}$

$$
y_{t} \propto e^{-m t}
$$

Sahal's observation that Moore's law gives rise to Wright's law if stuff production grows exponentially: ${ }^{[32]}$

$$
x_{t} \propto e^{g t}
$$

Sahal + Moore gives Wright with $w=m / g$.

PoCS
@pocsvox

Scaling

Scaling-at-large
Allometry
Biology
Physics
People
Money
Language
Technology
Specialization

References

Figure 4. An illustration that the combination of exponentially increasing production and exponentially decreasing cost are equivalent to Wright's law. The value of the Wright parameter w is plotted against the prediction m / g based on the Sahal formula, where m is the exponent of cost reduction and g the exponent of the increase in cumulative production.
doi:10.1371/journal.pone.0052669.g004

Size range (in grams) and cell differentiation:

Scaling-at-large
Allometry
Biology
Physics
People
Money
Language
Technology
Specialization
References

10^{-13} to 10^{8} g, p. 3,
McMahon and Bonner [26]

Scaling of Specialization：

＂Scaling of Differentiation in Networks： N̄ervous Systems，Organisms，Ānt Colonies， Écosystems，Businesses，Ūiversities，Cities， Électronic C̄ircuits̄，and Lēgos＂
Changizi，McDannald，and Widders， J．Theor．Biol，218，215－237，2002．${ }^{[8]}$

Fig．3．Log－log（base 10）（left）and semi－log（right）plots of the number of Lego piece types vs．the total number of parts in Lego structures $(n=391)$ ．To help to distinguish the data points，logarithmic values were perturbed by adding a random number in the interval $[-0.05,0.05]$ ，and non－logarithmic values were perturbed by adding a random number in the interval $[-1,1]$ ．

Money
Language
Technology
Specialization
References

vVM
$\left\lvert\, \begin{aligned} & 0 \\ & 0\end{aligned}\right.$
っのく 91 of 106
$C \sim N^{1 / d}, d \geq 1$:
. C = network differentiation = \# node types.
\& $N=$ network size $=\#$ nodes.
\& d = combinatorial degree.
Low d : strongly specialized parts.
\& High d : strongly combinatorial in nature, parts are reused.
Claim: Natural selection produces high d systems.
Claim: Engineering/brains produces low d systems.

Scaling-at-large
Allometry
Biology
Physics
People
Money
Language
Technology
Specialization
References

っの® 92 of 106

Table 1
Summary of results*

Network	Node	No. data points	Range of $\log N$	Log-log R^{2}	Semi-log R^{2}	$p_{\text {power }} / p_{\text {log }}$	Relationship between C and N	Comb. degree	Exponent v for type-net scaling	Figure in text
Selected networks Electronic circuits	Component	373	2.12	0.747	0.602	$0.05 / 4 \mathrm{e}-5$	Power law	2.29	0.92	2
Legos ${ }^{\text {¹4 }}$	Piece	391	2.65	0.903	0.732	$0.09 / \mathrm{le}-7$	Power law	1.41	-	3
Businesses military vessels military offices universities insurance co.	Employee Employee Employee Employee	$\begin{aligned} & 13 \\ & 8 \\ & 9 \\ & 52 \end{aligned}$	$\begin{aligned} & 1.88 \\ & 1.59 \\ & 1.55 \\ & 2.30 \end{aligned}$	$\begin{aligned} & 0.971 \\ & 0.964 \\ & 0.786 \\ & 0.748 \end{aligned}$	$\begin{aligned} & 0.832 \\ & 0.789 \\ & 0.749 \\ & 0.685 \end{aligned}$	$\begin{aligned} & 0.05 / 3 \mathrm{e}-3 \\ & 0.16 / 0.16 \\ & 0.27 / 0.27 \\ & 0.11 / 0.10 \end{aligned}$	Power law Increasing Increasing Increasing	$\begin{aligned} & 1.60 \\ & 1.13 \\ & 1.37 \\ & 3.04 \end{aligned}$	-	$\begin{aligned} & 4 \\ & 4 \\ & 4 \\ & 4 \end{aligned}$
Universities across schools history of Duke	Faculty Faculty	$\begin{aligned} & 112 \\ & 46 \end{aligned}$	$\begin{aligned} & 2.72 \\ & 0.94 \end{aligned}$	$\begin{aligned} & 0.695 \\ & 0.921 \end{aligned}$	$\begin{aligned} & 0.549 \\ & 0.892 \end{aligned}$	$\begin{aligned} & 0.09 / 0.01 \\ & 0.09 / 0.05 \end{aligned}$	Power law Increasing	$\begin{aligned} & 1.81 \\ & 2.07 \end{aligned}$	-	$\begin{aligned} & 5 \\ & 5 \end{aligned}$
Ant colonies caste $=$ type size range $=$ type	Ant Ant	$\begin{aligned} & 46 \\ & 22 \end{aligned}$	$\begin{aligned} & 6.00 \\ & 5.24 \end{aligned}$	$\begin{aligned} & 0.481 \\ & 0.658 \end{aligned}$	$\begin{aligned} & 0.454 \\ & 0.548 \end{aligned}$	$\begin{aligned} & 0.11 / 0.04 \\ & 0.17 / 0.04 \end{aligned}$	Power law Power law	$\begin{aligned} & 8.16 \\ & 8.00 \end{aligned}$	-	$\begin{aligned} & 6 \\ & 6 \end{aligned}$
Organisms	Cell	134	12.40	0.249	0.165	0.08/0.02	Power law	17.73	-	7
Neocortex	Neuron	10	0.85	0.520	0.584	0.16/0.16	Increasing	4.56	-	9
Competitive networks Biotas	Organism	-	-	-	-	-	Power law	≈ 3	0.3 to 1.0	-
Cities	Business	82	2.44	0.985	0.832	0.08/8e-8	Power law	1.56	-	10

*(1) The kind of network, (2) what the nodes are within that kind of network, (3) the number of data points, (4) the logarithmic range of network sizes N (i.e. $\log \left(N_{m a x} / N_{m i n}\right)$), (5) the $\log -\log$ correlation, (6) the semi-log correlation, (7) the serial-dependence probabilities under, respectively, power-law and logarithmic models, (8) the empirically determined best-fit relationship between differentiation C and organization size N (if one of the two models can be refuted with $p<0.05$; otherwise we just write "increasing" to denote that neither model can be rejected), (9) the combinatorial degree (i.e. the inverse of the best-fit slope of a log-log plot of C versus N), (10) the scaling exponent for how quickly the edge-degree δ scales with type-network size C (in those places for which data exist), (11) figure in this text where the plots are presented. Values for biotas represent the broad trend from the literature.

Scaling-at-large

Allometry

Biology
Physics
People
Money
Language
Technology

Specialization

References

uvM

$\left|\begin{array}{l}0 \\ 0 \\ 0\end{array}\right|$

Shell of the nut：

Scaling－at－large
Scaling is a fundamental feature of complex systems．

Allometry
Biology
Physics
Basic distinction between isometric and allometric scaling．
Powerful envelope－based approach：Dimensional analysis．
＂Oh yeah，well that＇s just dimensional analysis＂ said the［insert your own adjective］physicist．
－Tricksiness：A wide variety of mechanisms give rise to scalings，both normal and unusual．

References I

［1］J．L．Aragón，G．G．Naumis，M．Bai，M．Torres，and P．K．Maini．
Turbulent luminance in impassioned van Gogh paintings．

Scaling－at－large
Allometry
Biology
Physics
J．Math．Imaging Vis．，30：275－283，2008．pdf［天
［2］G．I．Barenblatt．
Scaling，self－similarity，and intermediate asymptotics，volume 14 of Cambridge Texts in Applied Mathematics．
Cambridge University Press， 1996.
［3］L．M．A．Bettencourt．
The origins of scaling in cities．
Science，340：1438－1441，2013．pdf［

People
Money
Language
Technology
Specialization
References

vum $\left\lvert\, \begin{aligned} & 0 \\ & 0\end{aligned}\right.$

References II

［4］L．M．A．Bettencourt，J．Lobo，D．Helbing， Kühnhert，and G．B．West． Growth，innovation，scaling，and the pace of life in cities．
Proc．Natl．Acad．Sci．，104（17）：7301－7306， 2007. pdfe

Scaling－at－large
Allometry
Biology
Physics
People
Money
［5］L．M．A．Bettencourt，J．Lobo，D．Strumsky，and G．B．West．
Urban scaling and its deviations：Revealing the structure of wealth，innovation and crime across cities．
PLoS ONE，5： 13541,2010 ．pdf［天
［6］J．C．Bohorquez，S．Gourley，A．R．Dixon，M．Spagat， and N．F．Johnson．
Common ecology quantifies human insurgency． Nature，462：911－914，2009．pdf［て

Language
Technology
Specialization
References

uvM

｜o

References III

［7］E．Buckingham．
On physically similar systems：Illustrations of the use of dimensional equations．
Phys．Rev．，4：345－376，1914．pdf［
［8］M．A．Changizi，M．A．McDannald，and D．Widders． Scaling of differentiation in networks：Nervous systems，organisms，ant colonies，ecosystems， businesses，universities，cities，electronic circuits， and Legos．
J．Theor．Biol，218：215－237，2002．pdf［3
［9］A．Clauset，M．Young，and K．S．Gleditsch． On the Frequency of Severe Terrorist Events． Journal of Conflict Resolution，51（1）：58－87， 2007. pdf［̄

Scaling－at－large
Allometry
Biology
Physics
People
Money
Language
Technology
Specialization
References

References IV

[10] E. Durkheim.
Suicide: A study in sociology.
Free Press, 2005.
Reissue edition (February 1, 1997).
Scaling-at-large
Allometry
Biology
Physics
People
[11] G. Galilei.
Dialogues Concerning Two New Sciences.
Kessinger Publishing, 2010.
Translated by Henry Crew and Alfonso De Salvio.
[12] M. R. Hirt, W. Jetz, B. C. Rall, and U. Brose.
A general scaling law reveals why the largest animals are not the fastest.
Nature Ecology \& Evolution, 1:1116, 2017. pdf[^

References V

［13］R．E．Horton．
Erosional development of streams and their drainage basins；hydrophysical approach to quatitative morphology．
Bulletin of the Geological Society of America， 56（3）：275－370，1945．pdf［＾
［14］H．E．Hurst．
Long term storage capacity of reservoirs．
Transactions of the American Society of Civil Engineers，116：770－808， 1951.
［15］J．S．Huxley and G．Teissier．
Terminology of relative growth．
Nature，137：780－781，1936．pdf［天

Scaling－at－large
Allometry
Biology
Physics
People
Money
Language
Technology
Specialization
References

uvm $\left|\begin{array}{l}\text { O } \\ \text { on } \\ 0\end{array}\right|$

References VI

[16] N. Johnson, S. Carran, J. Botner, K. Fontaine, N. Laxague, P. Nuetzel, J. Turnley, and B. Tivnan. Pattern in escalations in insurgent and terrorist activity.
Science, 333:81-84, 2011. pdf[
[17] N. F. Johnson, M. Spagat, J. A. Restrepo, O. Becerra, J. C. Bohorquez, N. Suarez, E. M. Restrepo, and R. Zarama.
Universal patterns underlying ongoing wars and terrorism, 2006. pdf[
[18] A. N. Kolmogorov.
The local structure of turbulence in incompressible viscous fluid for very large reynolds numbers.
Proceedings of the USSR Academy of Sciences, 30:299-303, 1941.

Scaling-at-large
Allometry
Biology
Physics
People
Money
Language
Technology
Specialization
References

References VII

[19] S. Levin.
The problem of pattern and scale in ecology.
Ecology, 73(6):1943-1967, 1992.

- pdfer

Scaling-at-large
Allometry
Biology
Physics
People
[20] E. Lieberman, J.-B. Michel, J. Jackson, T. Tang, and M. A. Nowak.

Quantifying the evolutionary dynamics of language.
Nature, 449:713-716, 2007. pdf[
[21] R. H. MacArthur and E. O. Wilson.
An equilibrium theory of insular zoogeography. Evolution, 17:373-387, 1963. pdf[

References VIII

[22] B. B. Mandelbrot.
How long is the coast of britain? statistical self-similarity and fractional dimension. Science, 156(3775):636-638, 1967. pdf[3
[23] B. B. Mandelbrot.
Fractals: Form, Chance, and Dimension.
Freeman, San Francisco, 1977.
[24] B. B. Mandelbrot.
The Fractal Geometry of Nature. Freeman, San Francisco, 1983.
[25] T. McMahon.
Size and shape in biology.
Science, 179:1201-1204, 1973. pdfc

Scaling-at-large
Allometry
Biology
Physics
People
Money
Language
Technology
Specialization
References

References IX

[26] T. A. McMahon and J. T. Bonner.
On Size and Life. Scientific American Library, New York, 1983.
[27] H. P. M. Melo, A. A. Moreira, É. Batista, H. A. Makse, and J. S. Andrade.
Statistical signs of social influence on suicides.
Scientific Reports, 4:6239, 2014. pdf[T
[28] N. Meyer-Vernet and J.-P. Rospars. How fast do living organisms move: Maximum speeds from bacteria to elephants and whales. American Journal of Physics, pages 719-722, 2015. pdf[天

Scaling-at-large
Allometry
Biology
Physics
People
Money
Language
Technology
Specialization
References

๑a^ 103 of 106

References X

[29] J.-B. Michel, Y. K. Shen, A. P. Aiden, A. Veres, M. K. Gray, T. G. B. Team, J. P. Pickett, D. Hoiberg, D. Clancy, P. Norvig, J. Orwant, S. Pinker, M. A. Nowak, and E. A. Lieberman.
Quantitative analysis of culture using millions of digitized books.
Science, 2010. pdf■
[30] G. E. Moore.
Cramming more components onto integrated circuits.
Electronics Magazine, 38:114-117, 1965.
[31] B. Nagy, J. D. Farmer, Q. M. Bui, and J. E. Trancik. Statistical basis for predicting technological progress.
PloS one, 8(2):e52669, 2013. pdf[

Scaling-at-large
Allometry
Biology
Physics
People
Money
Language
Technology
Specialization
References

vin
|o

References XI

[32] D. Sahal.
A theory of progress functions.
AllE Transactions, 11:23-29, 1979.
Scaling-at-large
Allometry
Biology
[33] S. Savaglio and V. Carbone.
Scaling in athletic world records.
Nature, 404:244, 2000. pdf[
Physics
People
Money
Language
[34] A. Shingleton.
Technology
Allometry: The study of biological scaling. Nature Education Knowledge, 1:2, 2010.
[35] A. J. Tatem, C. A. Guerra, P. M. Atkinson, and S. I. Hay.
Athletics: Momentous sprint at the 2156 Olympics?
Nature, 431 (7008):525-525, 2004. pdf[3

References XII

［36］C．Tomasetti and B．Vogelstein．
Variation in cancer risk among tissues can be explained by the number of stem cell divisions． Science，347：78－81，2015．pdf［
［37］T．P．Wright．
Factors affecting the costs of airplanes．
Journal of Aeronautical Sciences，10：302－328， 1936．pdfC
［38］K．Zhang and T．J．Sejnowski．
A universal scaling law between gray matter and white matter of cerebral cortex．
Proceedings of the National Academy of Sciences， 97：5621－5626，2000．pdf［天

Scaling－at－large
Allometry
Biology
Physics
People
Money
Language
Technology
Specialization
References

っのく 106 of 106

[^0]: UVM $\left|\begin{array}{l}0 \\ 5 \\ 0\end{array}\right|$

[^1]: wum = $\left|\begin{array}{l}0 \\ 0\end{array}\right|$

[^2]: uvM

 ## $\left|\begin{array}{l}0 \\ 0 \\ 0\end{array}\right|$

[^3]: ${ }^{3}$ Not without some arguing ...

[^4]: Data sources are shown in SI Text. CI, confidence interval; Adj- R^{2}, adjusted R^{2}; GDP, gross domestic product.

[^5]: 177 Old English irregular verbs were compiled for this study. These are arranged according to frequency bin, and in alphabetical order within each bin. Also shown is the percentage of verbs in each bin that have regularized. The half-life is shown in years. Verbs that have regularized are indicated in red. As we move down the list, an increasingly large fraction of the verbs are red; the frequencydependent regularization of irregular verbs becomes immediately apparent.

